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�e purpose of the study is to explore graph theory based on cubic Pythagorean fuzzy sets.�e concept of cubic Pythagorean fuzzy
graphs (CuPFGs) is introduced in this research work. In addition, we de�ne certain fundamental operations on CuPFGs including
semistrong product, lexicographical product, and symmetric di�erence of two CuPFGs and demonstrate some of their key
characteristics. Meanwhile, to investigate the preference of decision makers, cubic Pythagorean fuzzy preference relation is
de�ned. Moreover, through a practical example, the applicability of our proposed work in multicriteria decision-making is
described, and to clarify the organization of the proposed method, a frame diagram is presented.

1. Introduction

To deal with uncertain and vague information, Zadeh [1]
initiated the concept of fuzzy set theory. Fuzzy sets (FSs)
have many applications in the �eld of science and tech-
nology. Atanassov [2] put forward the idea of intuitionistic
fuzzy set (IFS), a new tool of presenting ambiguous and
uncertain information by associating degree of belonging-
ness (λ) and nonbelongingness (μ) with condition
0≤ λ + μ≤ 1. After successful implementation of IFS in
numerous �elds, Gorzalczany [3] introduced interval-valued
fuzzy sets, where the ambiguous information is presented in
the form of interval. Later, Atanassov and Gargov [4]
proposed the concept of interval-valued intuitionistic fuzzy
sets, in which the degree of belongingness and non-
belongingness is expressed in the form of intervals.

Preceding, the idea of IFS, Yager [5] introduced the
concept Pythagorean fuzzy set (PFS) with more �exible
constraint 0≤ λ2 + μ2 ≤ 1. PFSs have more capacity than IFS
and IVFS to model the ambiguity and to handle complex
coarsens. �e applications of IFS and PFS have gained a lot
of attention in areas like multicriteria decision-making
(MCDM) and image processing. Furthermore, Yager [6]
developed the Pythagorean membership grades in decision-
making.

In many real-life situations, one has to mention the
degree of belongingness both in interval value and simple
fuzzy value. Such types of situations cannot be handled by
FS, IFS, PFS etc. �us, to adequately treat such types of
situations, Jun et al. [7] proposed the idea of cubic sets (CSs),
which is the mixture of both interval-valued fuzzy sets and
fuzzy sets. Furthermore, they investigated some properties
and operations on CSs. Since, CSs are centered only on
degree of belongingness, it may face trouble when degree of
nonbelongingness comes into account. �us, to investigate
such type of obscurity, Kaur and Garg [8, 9] proposed the
concept of cubic intuitionistic fuzzy set (CuIFS) which in-
cludes two parts, one representing the degree of belong-
ingness and nonbelongingness in IVFS and other
representing the degree of belongingness and non-
belongingness in simple FS. CuIFS is a more generalized
form of IFS and IVIFS because it provides a more �exible
environment to describe those situations where degree of
belongingness or nonbelongingness �uctuates during the
procedure of decision-making and it also enlarges the level
of precision.

Since CuIFS fails to deal with information where sum of
squares of upper interval-values of degree of belongingness
and nonbelongingness and sum of squares of simple degree
of belongingness and nonbelongingness are less than 1, to
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deal with such problem, Abbas et al. [10] introduced the
concept of CuPFSs and their application to MCDM with
unknown weight information. Recently, Khan et al. [11]
studied Pythagorean cubic fuzzy aggregation operators to
aggregate cubic information and studied their application in
MCDM. Ashraf et al. [12] presented the concept of cubic
picture fuzzy sets. Furthermore, Mehmood et al. [13] pro-
posed cubic hesitant fuzzy sets and its applications to
MCDM. Muhiuddin and Al-roqi [14] introduced cubic soft
sets with applications in BCK/BCI-algebras.

Graphs communicate information visually, but if the
information is ambiguous and uncertain, then it can be
recognized as fuzzy graphs (FGs). FGs have been shown to
be a powerful tool for modeling complex problems such as
communications, social networking, data hypothesis, man-
made reasoning, system analysis, operations research, and
economics. Kaufmann [15] initiated the idea of FG theory.
Rosenfeld [16] gave the theoretical concept of FG by in-
troducing relations between fuzzy sets and establishing the
structure of FGs. Mordeson and Chang-Shyh [17] illustrated
certain operations on FGs. Bhattacharya [18] added some
remarks on FGs. Yeh and Bang [19] defined fuzzy relations,
fuzzy graphs, and their applications to clustering analysis,
fuzzy sets, and their applications in cognitive and decision
process. Dogra [20] presented different types of products of
FGs, and Al-Hawary [21] introduced complete FGs.

Afterward, Parvathi and Karunambigai [22] initiated the
concept of intuitionistic fuzzy graphs (IFGs). Gani and
Begum [23] illustrated degree, order, and size in IFGs.
Akram et al. [24–26] introduced the idea of PFGs and
presented specific types of PFGs, their direct sum, and their
application in decision-making. Garg [23] presented Py-
thagorean fuzzy geometric aggregation operators for mul-
tiple attribute group decision analysis. Mandal and Ranadive
[27] gave the idea of Pythagorean fuzzy preference relations
and their applications in group decision-making systems.
Wang and Garg [28] presented the algorithm for MADM
with interactive Archimedean norm operations under Py-
thagorean fuzzy uncertainty. Furthermore, Akram and Naz
[29] studied energy of Pythagorean fuzzy graphs (PFGs)
with applications.

Moreover, Akram et al. [24] extended FGs to interval-
valued fuzzy graphs (IVFGs), in which the ambiguous in-
formation is expressed in the form of interval. Naz et al. [30]

gave the concept of simplified IVFGs with application.
Akram et al. [31] presented certain types of interval-valued
fuzzy graphs. Mohamed and Ali [32–34] developed some
products on interval-valued Pythagorean fuzzy graphs and
defined strong interval-valued Pythagorean fuzzy graphs.
Rashid et al. [35] put forward the idea of graphical structure
of cubic sets and discuss some operations on them. More-
over, Muhiuddin et al. [36,37] extended the concept cubic
graphs and presented their application.

Recently, Khan et al. [38] introduced graphical struc-
tures of cubic intuitionistic fuzzy information and its ap-
plication in multiattribute decision-making (MADM). For
other concepts, the readers are suggested to [39–42].

$e objective of our proposed work is to apply graph
terminology on cubic Pythagorean fuzzy sets. $e presented
work is devoted to elaborate the degree, order, and size of
CuPFGs. Furthermore, cubic Pythagorean fuzzy preference
relation (CuPFPR) is defined and to examine the rationality
of the purposed work an application is presented. Aggre-
gation operators are commonly used to compose all the
inputted individual information into a single value. So, we
use cubic Pythagorean fuzzy weighted averaging (CuPFWA)
operator and cubic Pythagorean fuzzy weighted geometric
(CuPFWG) operator to aggregate all cubic Pythagorean
fuzzy preference relation matrices. Finally, we develop a
CuPFG based MADM approach to handle situations in
which the attributes’ graphic structure is uncertain.

$e proposed work is organized as follows: Section 2
presents the basic notions and definitions of CuPFGs, de-
gree, total degree, order, size, and complete CuPFGs. In
addition, certain operations including semistrong product,
lexicographical product, and symmetric difference of two
cubic Pythagorean fuzzy graphs are elaborated. Section 3
defines CuPFPR to compare the preference of the experts.
Furthermore, the information of CuPFGs in MCDM is
applied, and the proposed method is presented in a frame
diagram. Section 4 concludes the entire work with certain
remarks and further directions for future work.

2. Cubic Pythagorean Fuzzy Graphs

Definition 1. (see [10]). Let R be the universe of discourse. A
cubic Pythagorean fuzzy set (CuPFS)A, defined on R is given
as follows:

A � r, RAL(r),RAU(r) , ℵAL(r),ℵAU(r) , (μ(r), ](r)) | r ∈ R , (1)

where the functions RAL: R⟶ D[0, 1], RAU: R⟶ D

[0, 1] and ℵAL: R⟶ D[0, 1], ℵAU: R⟶ D[0, 1] and
μA: R⟶ [0, 1], and ]A: R⟶ [0, 1] denote the degree of
membership and nonmembership of the element r ∈ R,

respectively, such that 0≤ (RAU(r))2 + (ℵAU(r))2 ≤ 1 and
0≤ (μ(r))2 + (](r))2 ≤ 1.

Definition 2. A CuPFS B on R × R is regarded as cubic
Pythagorean fuzzy relation (CuPFR) in R indicated as

B � (r, s), RAL(r, s),RAU(r, s) , ℵAL(r, s),ℵAU(r, s) , (μ(r, s), ](r, s))|(r, s) ∈ R×R , (2)
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where RBL: R⟶ D[0, 1], RBU: R⟶ D[0, 1] and
ℵBL: R⟶ D[0, 1], ℵBU: R⟶ D[0, 1] and μB: R⟶
[0, 1], and ]B: R⟶ [0, 1] are such that 0≤ (RBU(r, s))2 +

(ℵBU(r, s))2 ≤ 1 and 0≤ (μ(r, s))2 + (](r, s))2 ≤ 1, for all
(r, s) ∈ E.

Definition 3. A cubic Pythagorean fuzzy graph (CuPFG) G
⌣

on a nonempty set R is a pair G
⌣

� (A, B), where A is cubic
Pythagorean fuzzy set and B is cubic Pythagorean fuzzy
relation on R such that

RBL(r, s)≤RAL(r)∧RAL(s), RBU(r, s)≤RAU(r)∧
RAU(s), and ℵBL(r, s)≤ℵAL(r)∨ℵAL(s)

ℵBU(r, s)≤ℵAU(r)∨ℵAU(s), μB(r, s)≤ μA(r)∧μA(s),
and ]B(r, s)≤ ]A(r)∨]A(s)

where 0≤ (RBU(r, s))2 + (ℵBU(r, s))2 ≤ 1 and 0≤ (μ(r,

s))2) + (](r, s))2 ≤ 1, for all (r, s) ∈ E.

Example 1. Consider a graph G � (R, E), where R � r1, r2,

r3, r4} is the set of vertices and E � r1r2, r2r3, r3r4, r1r4  is
the set of edges. $e membership and nonmembership
degrees of the vertices and edges are given in Figure 1.

Definition 4. $e degree and total degree of a vertex r ∈ R in
a CuPFG G

⌣
� (A, B) is described as

d
G
⌣(r) �〈 dRAL(r), dRAU(r), dℵAL(r), dℵAU(r)( , dμA(r), d]A(r)( 〉, (3)

td
G
⌣ (r) �〈 t dRAL(r), t dRAU(r), t dℵAL(r), t dℵAU(r))), t t dμA(r), t d]A(r)(( 〉, (4)

where dRAL(r) � (r≠s,s)∈ERBL(rs), dRAU(r) � (r≠s,s)∈E
RBU(rs), dℵAL(r) � (r≠s,s)∈EℵBL(rs), dℵAU(r) �

(r≠s,s)∈EℵBU(rs), dμA(r) � (r≠s,s)∈EμB(rs), d]A(r) �

(r≠s,s)∈E]B(rs), and
t dRAL(r) � (r≠s,s)RBL(rs) + RAL(r), t dRAU(r) �

(r≠s,s)∈E RBU(rs) + RAU(r), t dℵAL(r) � (r≠s,s)∈E

ℵBL(rs) + ℵAL(r), t dℵAU(r) � (r≠s,s)∈EℵBU(rs) + ℵAL

(r), and t dμA(r) � (r≠s,s)∈EμB(rs) + μA(r), t d]A(r) �

(r≠s,s)∈E]B(rs) + μA(r).

Definition 5. $e order of CuPFG G
⌣

� (A, B) is denoted as
O(G

⌣
) and defined as

O(G
⌣

) � 
r∈R

RAL(r), 
r∈R

RAU(r), 
r∈R
ℵAL(r), 

r∈R
ℵAU(r)⎛⎝ ⎞⎠, 

r∈R
μA(r), 

r∈R
]A(r)⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (5)

and the size of CuPFG is denoted as S(G
⌣

) and defined as

S(G
⌣

) � 
(r≠ s,s)∈E

RAL(rs), 
(r≠ s,s)∈E

RAU(rs), 
(r≠ s,s)∈E
ℵAL(rs), 

(r≠ s,s)∈E
ℵAU(rs)⎛⎝ ⎞⎠, 

(r≠ s,s)∈E
μA(rs), 

(r≠ s,s)∈E
]A(rs)⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (6)

Definition 6. A CuPFG G
⌣

� (A, B) of a graph G � (R, E) is
said to be complete if it satisfies the following conditions:

RBL(r, s) � RAL(r)∧RAL(s), RBL(r, s) � RAL(r)∧
RAL(s), and ℵBL(r, s) � ℵAL(r)∨ℵAL(s).
ℵBU(r, s) � ℵAU(r)∨ℵAU(s), μB(r, s) � μA(r)∧μA(s),
and ]B(r, s) � ]A(r)∨]A(s).

Now, we present certain operations on CuPFGs along
with examples and some valuable results.

Definition 7. Let G
⌣

1 � (ℵ1,R1) and G
⌣

2 � (ℵ2,R2) be two
CuPFGs of graphs G1 � (R1, E1) and G2 � (R2, E2), re-
spectively.$e semistrong product of G

⌣

1 and G
⌣

2 is denoted as
G
⌣

1•G
⌣

2 � (ℵ1•ℵ2,R1•R2) and is defined as follows:

(i) (RA1L•RA2L)(r1, r2) � RA1L(r1)∧RA2L(r2)

(RA1U•RA2U)(r1, r2) � RA1U(r1)∧RA2U(r2)

(ℵA1L•ℵA2L)(r1, r2) � ℵA1L(r1)∨ℵA2L(r2)

(ℵA1U•ℵA2U)(r1, r2) � ℵA1U(r1)∨ℵA2U(r2)

(μA1
•μA2

)(r1, r2) � μA1
(r1)∧μA2

(r2)

(]A1
•]A2

)(r1, r2) � ]A1
(r1)∨]A2

(r2), for all (r1, r2)

∈ R1 × R2

(ii) (RB1L•RB2L)((r,r2),(r, s2)) �RA1L(r)∧RB2L(r2, s2)

(RB1U•RB2U)((r, r2), (r, s2)) � RA1U(r)∧RB2U(r2, s2)

(ℵB1L•ℵB2L)((r, r2), (r, s2)) � ℵA1L(r1)∧ℵB2L(r2, s2)

(ℵB1U•ℵB2U)((r, r2), (r, s2)) � ℵA1U(r1)∧ℵB2U(r2, s2)

(μB1
•μB2

)((r, r2), (r, s2)) � μA1
(r1)∧μB2

(r2, s2)
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(]B1
•]B2

)((r,r2),(r, s2)) � ]A1
(r1)∧]B2

(r2, s2)

forallr ∈R1, forallr2s2 ∈E2

(iii) (RB1L•RB2L)((r1, r2), (s1, s2)) � RB1L(r1, s1)∧RB2L

(r2, s2)

(RB1U•RB2U)((r1, r2),(s1, s2)) �RB1U(r1, s1)∧RB2U

(r2, s2)

(ℵB1L•ℵB2L)((r1, r2), (s1, s2)) � ℵB1L(r1, s1)∧ℵB2L

(r2, s2)

(ℵB1U•ℵB2U)((r1, r2), (s1, s2)) � ℵB1U(r1, s1)∧ℵB2U

(r2, s2)

(μB1
•μB2

)((r1, r2), (s1, s2)) � μB1
(r1, s1)∧μB2

(r2, s2)

(]B1
•]B2

)((r1, r2), (s1, s2)) � ]B1
(r1, s1)∧]B2

(r2, s2)

for all r1s1 ∈ E1, for all r2s2 ∈ E2

Example 2. Consider two CuPFGs G
⌣

1 and G
⌣

2 on R1 � r1,

s1} and R2 � r2, s2 , respectively, as shown in Figure 2.
$en, their semistrong product G

⌣

1•G
⌣

2 is shown in Figure 3.

Proposition 1. 4e semistrong product G
⌣

1•G
⌣

2 of two
CuPFGs G

⌣

1 and G
⌣

2 is also a CuPFG.

Definition 8. Let G
⌣

1 and G
⌣

2 be two CuPFGs. $en, for any
vertex (r1, r2) ∈ R1 × R2,

dRL( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L•RB2L  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r1s1∈E1 ,r2s2∈E2

RB1L r1s1( ∧RB2L r2s2( ,

dRU( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U•RB2U  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2U r2s2(  + 
r1s1∈E1 ,r2s2∈E2

RB1U r1s1( ∧RB2U r2s2( ,

(7)

dℵL( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1L•ℵB2L  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r1s1∈E1 ,r2s2∈E2

ℵB1L r1s1( ∧ℵB2L r2s2( ,
(8)

dℵU( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1U•ℵB2U  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r1s1∈E1 ,r2s2∈E2

ℵB1U r1s1( ∧ℵB2U r2s2( ,
(9)

r2

r3r 1

r4

[0
.3

, 0
.5

], 
[0

.4
, 0

.7
], 

(0
.6

, 0
.7

) [0.2, 0.7], [0.3, 0.5], (0.4, 0.5)

[0.4, 0.5], [0.3, 0.7], (0.5, 0.8)

[0.4, 0.5], [0.3, 0.6], (0.3, 0.8)

[0.3, 0.5], [
0.4, 0.7], (

0.5, 0.8)

[0.2, 0.5], [
0.3, 0.6], (

0.3, 0.8)

[0.2, 0.5], [0.3, 0.7], (0.4, 0.8)

[0.3, 0.5], [0.4, 0.7], (0.3, 0.7)
Figure 1: A cubic Pythagorean fuzzy graph G

⌣
.
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(dμ)
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1L•μB2L  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r1s1∈E1 ,r2s2∈E2

μB1
r1s1( ∧μB2

r2s2( ,
(10)

(d])
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

]B1
•]B2

  r1, r2( , s1, s2( ( 

� 
r1�s1,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r1s1∈E1,r2s2∈E2

]B1
r1s1( ∧]B2

r2s2( .
(11)

r1

s1

([0.4, 0.5], [0.3, 0.6], (0.3, 0.6)) ([0.3, 0.9], [0.5, 0.7], (0.2, 0.8))

([0.2, 0.6], [0.1, 0.4], (0.6, 0.7))([0.1, 0.3], [0.3, 0.7], (0.6, 0.8))

([
0.

1,
 0

.2
], 

[0
.2

, 0
.5

], 
(0

.1
, 0

.6
))

([
0.

2,
 0

.4
], 

[0
.4

, 0
.5

], 
(0

.1
, 0

.7
))

G1
*

r2

s2

G2
*

Figure 2: CuPFGs G
⌣

1 and G
⌣

2.

〈[0.3, 0.5], [0.5, 0.7], (0.2, 0.8)〉 〈[0.2, 0.5], [0.3, 0.6], (0.3, 0.7)〉

〈[0.1, 0.3], [0.5, 0.7], (0.2, 0.8)〉 〈[0.2, 0.6], [0.5, 0.7], (0.6, 0.8)〉

〈[0.2, 0.4], [0.4, 0.6], (0.1, 0.7)〉

〈[0.1, 0.3], [0.4, 0.7], (0.1, 0.8)〉

(r1, r2) (r1, s2)

(s1, r2) (s1, s2)

〈[0.1, 0.3], [
0.5, 0.7], (

0.2, 0.8)〉 〈[0.1, 0.3], [0.5, 0.7], (0.2, 0.8)〉

Figure 3: Semistrong product of two CuPFGs G
⌣

1 and G
⌣

2.
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Theorem 1. Let G
⌣

1 and G
⌣

2 be two CuPFGs. If RA1L≥RB2L,

ℵA1L≤ℵB2L, RA1L≥RB2U, ℵA1U≤ℵB2U, μA1
≥ μB2

, ]A1
≤ ]B2

and RA2L≥RB1L, ℵA2L≤ℵB1L, RA2L≥RB1U, ℵA2U≤ℵB1U,

μA2
≥ μB1

, ]A2
≤ ]B1

, then d
G
⌣

1•G
⌣

2
(r1, r2) � d

G
⌣

1
(r1) + d

G
⌣

2
(r2), for all (r1, r2) ∈ R1 × R2.

Definition 9. Let G
⌣

1 and G
⌣

2 be two CuPFGs. $en, for any
vertex (r1, r2) ∈ R1 × R2,

t dRL( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L•RB2L  r1, r2( , s1, s2( (  + RA1L•RA2L  r1, r2( 

� 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r1s1∈E1 ,r2s2∈E2

RB1L r1s1( ∧RB2L r2s2(  + RA1L r1( ∧RA2L r2( ,
(12)

t dRU( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U•RB2U  r1, r2( , s1, s2( (  + RA1U•RA2U  r1, r2( 

� 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2U r2s2(  + 
r1s1∈E1 ,r2s2∈E2

RB1L r1s1( ∧RB2U r2s2(  + RA1U r1( ∧RA2U r2( ,

(13)

t dℵL( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1L•ℵB2L  r1, r2( , s1, s2( (  + ℵA1L•ℵA2L  r1, r2( 

� 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r1s1∈E1 ,r2s2∈E2

ℵB1L r1s1( ∧ℵB2L r2s2(  +ℵA1L r1( ∧ℵA2L r2( ,

(14)

t dℵU( 
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1U•ℵB2U  r1, r2( , s1, s2( (  + ℵA1U•ℵA2U  r1, r2( 

� 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r1s1∈E1 ,r2s2∈E2

ℵB1U r1s1( ∧ℵB2U r2s2(  +ℵA1U r1( ∧ℵA2U r2( ,

(15)

(t dμ)
G
⌣

1•G
⌣

2
r1, r2(  � 

r1,r2( ) s1 ,s2( )∈R1×R2

μB1
•μB2

  r1, r2( , s1, s2( (  + μA1
•μA2

  r1, r2( 

� 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r1s1∈E1 ,r2s2∈E2

μB1
r1s1( ∧μB2

r2s2(  + μA1
r1( ∧μA2

r2( ,
(16)

(t d])
G
⌣

1•G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

]B1
•]B2

  r1, r2( , s1, s2( (  + ]A1
•]A2

  r1, r2( 

� 
r1�s1 ,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r1s1∈E1 ,r2s2∈E2

]B1
r1s1( ∧]B2

r2s2(  + ]A1
r1( ∧]A2

r2( .
(17)

Theorem 2. Let G
⌣

1 and G
⌣

2 be two CuPFGs. If (i) RA1L≥RB2L and RA2L≥RB1L, then

t dRAL( 
G
⌣

1•G
⌣

2
r1, r2(  � t dRAL( 

G
⌣

1
r1(  + t dRAL( 

G
⌣

2
r2(  − RA1L r1( ∨RA2L r2(  . (18)

(ii) RA1U≥RB2U and RA2U≥RB1U, then

t dRAU( 
G
⌣

1•G
⌣

2
r1, r2(  � t dRAU( 

G
⌣

1
r1(  + t dRAU( 

G
⌣

2
r2(  − RA1U r1( ∨RA2U r2(  . (19)
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(iii) ℵA1L≥ℵB2L and ℵA2L≥ℵB1L, then

t dℵAL( 
G
⌣

1•G
⌣

2
r1, r2(  � t dℵAL( 

G
⌣

1
r1(  + t dℵAL( 

G
⌣

2
r2(  − ℵA1L r1( ∨ℵA2L r2(  . (20)

(iv) ℵA1U≥ℵB2U and ℵA2U≥ℵB1U, then

t dℵAU( 
G
⌣

1•G
⌣

2
r1, r2(  � t dℵAU( 

G
⌣

1
r1(  + t dℵAU( 

G
⌣

2
r2(  − ℵA1U r1( ∨ℵA2U r2(  . (21)

(v) μA1
≥ μB2

and μA2
≥ μB1

, then

t dμA( 
G
⌣

1•G
⌣

2
r1, r2(  � t dμA( 

G
⌣

1
r1(  + t dμA( 

G
⌣

2
r2(  − μA1

r1( ∨μA2
r2(  . (22)

(vi) ]A1
≥ ]B2

and ]A2
≥ ]B1

, then

t d]A( 
G
⌣

1•G
⌣

2
r1, r2(  � t d]A( 

G
⌣

1
r1(  + t d]A( 

G
⌣

2
r2(  − ]A1

r1( ∨]A2
r2(  . (23)

proof. It is easy to prove by using Definition 9 and$eorem
2. □

Definition 10. Let G
⌣

1 � (ℵ1,R1) and G
⌣

2 � (ℵ2,R2) be two
CuPFGs of graphs G1 � (R1, E1) and G2 � (R2, E2), re-
spectively. $e lexicographical product of G

⌣

1 and G
⌣

2 is
denoted as G

⌣

1°G
⌣

2 � (ℵ1 ∘ ℵ2,R1 ∘R2) and is defined as
follows:

(i) (RA1L ∘RA2L)(r1, r2) � RA1L(r1)∧RA2L(r2)

(RA1U ∘RA2U)(r1, r2) � RA1U(r1)∧RA2U(r2)

(ℵA1L ∘ℵA2L)(r1, r2) � ℵA1L(r1)∧ℵA2L(r2)

(ℵA1U ∘ℵA2U)(r1, r2) � ℵA1U(r1)∧ℵA2U(r2)

(μA1
∘ μA2

)(r1, r2) � μA1
(r1)∧μA2

(r2)

(]A1
∘ ]A2

)(r1, r2) � ]A1
(r1)∧]A2

(r2)

for all (r1, r2) ∈ R1 × R2

(ii) (RB1L∘RB2L)((r,r2),(r,s2))�RA1L(r)∧RB2L(r2,s2)

(RB1U ∘RB2U)((r, r2), (r, s2)) � RA1U(r)∧RB2U(r2, s2)

(ℵB1L ∘ℵB2L)((r, r2), (r, s2)) � ℵA1L(r)∧ℵB2L(r2, s2)

(ℵB1U ∘ℵB2U)((r, r2), (r, s2)) � ℵA1U(r)∧ℵB2U(r2, s2)

(μB1
∘ μB2

)((r, r2), (r, s2)) � μA1
(r)∧μB2

(r2, s2)

(]B1
∘ ]B2

)((r, r2), (r, s2)) � ]A1
(r)∧]B2

(r2, s2)

for all r ∈ R1, for all r2s2 ∈ E2

(iii) (RA1L∘RB2L)((r1,z),(s1,z))�RB1L(r1,s1)∧RA2L(z)

(RA1U ∘RB2U)((r1, z), (s1, z)) � RB1U(r1, s1)∧RA2U(z)

(ℵA1L ∘ℵB2L)((r1, z), (s1, z)) � ℵB1L(r1, s1)∧ℵA2L(z)

(ℵA1U ∘ℵB2U)((r1, z), (s1, z)) � ℵB1U(r1, s1)∧ℵA2U(z)

(μB1
∘ μB2

)((r1, z), (s1, z)) � μB1
(r1, s1)∧μA2

(z)

(]B1
∘ ]B2

)((r1, z), (s1, z)) � ]B1
(r1, s1)∧]A2

(z)

for all z ∈ R2, for all r1s1 ∈ E1

(iv) (RB1L∘RB2L)((r1,r2),(s1, s2)) �RB1L(r1, s1)∧ RA2L

(r2)∧RA2L(s2)

(RB1U ∘RB2U)((r1, r2), (s1, s2)) � RB1UU(r1, s1)∧
RA2U (r2)∧RA2U(s2)

(ℵB1L ∘ℵB2L)((r1, r2), (s1, s2)) � ℵB1L(r1, s1)∧ℵA2L

(r2)∧ℵA2L(s2)

(ℵB1U ∘ ℵB2U)((r1, r2), (s1, s2)) � ℵB1U(r1, s1)∧
ℵA2U (r2)∧ℵA2U(s2)

(μB1
∘ μB2

)((r1, r2), (s1, s2)) � μB1
(r1, s1)∧μB2

(r2)

∧μB2
(s2)

(μB1
∘ μB2

)((r1, r2), (s1, s2)) � μB1
(r1, s1)∧μB2

(r2) ∧
μB2

(s2) for all r1s1 ∈ E1, r2 ≠ s2

Example 3. Consider two CuPFGs G
⌣

1 and G
⌣

2 on R1 � r, s{ }

and R2 � t, u, v{ }, respectively, as shown in Figure 4. $eir
lexicographical product G

⌣

1°G
⌣

2 is shown in Figure 5.

Proposition 2. 4e lexicographical product G
⌣

1°G
⌣

2 of two
CuPFGs G

⌣

1 and G
⌣

2 is also a CuPFG.
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Definition 11. Let G
⌣

1 and G
⌣

2 be two CuPFGs. $en, for any
vertex (r1, r2) ∈ R1 × R2,

dRL( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L ∘RB2L  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2L r2( ∧RB1L r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

RB1L r1s1( ∧RB2L r2( ∧RB2L s2( ,

(24)

〈[0.4, 0.8], [0.5, 0.6], (0.6, 0.8)〉

〈[0.4, 0.5], [0.7, 0.8], (0.4, 0.8)〉

〈
[0

.2
, 0

.3
], 

[0
.5

, 0
.7

], 
(0

.4
, 0

.7
)〉

〈[0.8, 0.9], [0.3, 0.4], (0.6, 0.7)〉

〈[0.3, 0.5], [0.6, 0.8], (0.5, 0.6)〉

〈[0.6, 0.7], [0.5, 0.7], (0.4, 0.8)〉

〈[0.5, 0.7], [0
.4, 0.6], (0

.3, 0.5)〉

〈[0.3, 0.4], [0.5, 0.6], (0.2, 0.7)〉 v

t

u

r

s

Figure 4: CuPFGs G
⌣

1 and G
⌣

2.

(r, t)

(r, u)

(r, v)

(s, t)

(s, u)

(s, v)

〈[0.4, 0.7], [0.5, 0.7], (0.4, 0.8)〉

〈
[0

.2
, 0

.3
], 

[0
.5

, 0
.7

], 
(0

.4
, 0

.7
)〉

〈
[0

.2
, 0

.3
], 

[0
.5

, 0
.7

], 
(0

.4
, 0

.8
)〉

〈[0.2, 0.3], [0.5, 0.6], (0.2, 0.7)〉

〈[0.4, 0.5], [0.7, 0.8], (0.4, 0.8)〉

〈[0.4, 0.8], [0
.5, 0.6], (0

.6, 0.8)〉

〈[0.4, 0.5], [0.7, 0.8], (0.4, 0.8)〉

〈[0.4, 0.5], [0.7, 0.8], (0.3, 0.8)〉

〈[0
.2, 0.3], [

0.5, 0.7], (
0.4, 0.8)〉

〈[0.2, 0.3], [0.6, 0.8], (0.4, 0.7)〉

〈[0.2, 0.3], [0.5, 0.7], (0.4, 0.8)〉 〈[0
.2,

 0.
3],

 [0
.6,

 0.
8],

 (0
.3,

 0.
8)〉

〈[0.3, 0.5], [0.6, 0.8], (0.6, 0.8)〉

〈[0.3, 0.5], [0
.7, 0.8], (0

.4, 0.8)〉

〈[0.3, 0.4], [0.7, 0.8], (0.2, 0.8)〉

〈[0.4, 0.7], [0.5, 0.6], (0.3, 0.8)〉

〈[0.2, 0.3], [0.6, 0.8], (0.4, 0.7)〉

〈[0.2, 0.3], [0.6, 0.8], (0.3, 0.8)〉

〈[0.3, 0.4], [0.5, 0.6], (0.2, 0.8)〉

Figure 5: Lexicographical product of two CuPFGs G
⌣

1 and G
⌣

2.
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dRU( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U ∘RB2U  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2U r2s2(  + 
r2�s2 ,r1s1∈E1

RA2U r2( ∧RB1U r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

RB1U r1s1( ∧RB2U r2( ∧RB2U s2( ,

(25)

(dℵ)
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1
∘ ℵB2

  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2L r2( ∧ℵB1L r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

ℵB1L r1s1( ∧ℵB2L r2( ∧ℵB2L s2( ,

(26)

dℵU( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1U ∘ℵB2U  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2U r2( ∧ℵB1U r1s1( 

+ 
r1s1∈E1,r2 ≠ s2

ℵB1U r1s1( ∧ℵB2U r2( ∧ℵB2U s2( ,

(27)

dμL( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1L ∘ μB2L  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r2�s2 ,r1s1∈E1

μA2
r2( ∧μB1

r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

μB1
r1s1( ∧μB2

r2( ∧μB2
s2( ,

(28)

(d])
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

]B1
∘ ]B2

  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r2�s2 ,r1s1∈E1

]A2
r2( ∧]B1

r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

]B1
r1s1( ∧]B2

r2( ∧]B2
s2( .

(29)

Theorem 3. Let G
⌣

1 and G
⌣

2 be two CuPFGs. If RA1L≥
RB2L, ℵA1L≤ℵB2L, RA1L≥RB2U, ℵA1U≤ℵB2U, μA1

≥ μB2
,

]A1
≤ ]B2

and RA2L≥RB1L, ℵA2L≤ℵB1L, RA2L≥RB1U,

ℵA2U≤ℵB1U, μA2
≥ μB1

, ]A2
≤ ]B1

, then d
G
⌣

1°G
⌣

2
(r1, r2) �

a2(d
G
⌣

1
)(r1) + d

G
⌣

2
(r2), where, a2 � |R2| for all (r1, r2) ∈

R1 × R2.

proof. From the Definition 11 of vertex degree of G
⌣

1°G
⌣

2,

dRL( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L ∘RB2L  r1, r2( , s1, s2( ( 

� 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2L r2( ∧RB1L r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

RB1L r1( ∧RB1Ls1∧RB2L r2s2( 

� 
r2s2∈E2

RA2L r2s2(  + 
r1s1∈E1

RA1L r1s1( 

+ 
r1s1∈E1

RA1L r1s1(  by usingRA1L≥RB2L andRA2L≥RB1L 

� a2 dRL( 
G
⌣

1
r1(  + dRL( 

G
⌣

2
r2( ,

(30)
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where a2 � |R2|. By following the same steps, we have

dRU( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 dRU( 

G
⌣

1
r1(  + dRU( 

G
⌣

2
r2( ,

dℵL( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 dℵL( 

G
⌣

1
r1(  + dℵL( 

G
⌣

2
r2( ,

dℵU( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 dℵU( 

G
⌣

1
r1(  + dℵU( 

G
⌣

2
r2( ,

(dμ)
G
⌣

1°G
⌣

2
r1, r2(  � a2(dμ)

G
⌣

1
r1(  +(dμ)

G
⌣

2
r2( ,

(d])
G
⌣

1°G
⌣

2
r1, r2(  � a2(d])

G
⌣

1
r1(  +(d])

G
⌣

2
r2( .

(31)

□

Definition 12. Let us take two CuPFGs G
⌣

1 and G
⌣

2, then the
total degree for any vertex (r1, r2) ∈ R1 × R2 is defined as

t dRL( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L°RB2L  r1, r2( , s1, s2( (  + RA1L°RA2L  r1, r2( 

· 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2L r2( ∧RB1L r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

RB1L r1( ∧RB1L s1( ∧RB2L r2s2(  + RA1L r1( ∧RA2L r2( ,

(32)

t dRU( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U°RB2U  r1, r2( , s1, s2( (  + RA1L°RA2U  r1, r2( 

· 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2U r2( ∧RB1U r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

RB1U r1( ∧RB1U s1( ∧RB2U r2s2(  + RA1U r1( ∧RA2U r2( ,

(33)

t dℵL( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1L°ℵB2L  r1, r2( , s1, s2( (  + ℵA1L°ℵA2L  r1, r2( 

· 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2L r2( ∧ℵB1L r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

ℵB1L r1( ∧ℵB1L s1( ∧ℵB2L r2s2(  + ℵA1L r1( ∧ℵA2L r2( ,

(34)

t dℵU( 
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1U°ℵB2U  r1, r2( , s1, s2( (  + ℵA1U°ℵA2U  r1, r2( 

· 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2U r2( ∧ℵB1U r1s1( 

+ 
r1s1∈E1 ,r2 ≠ s2

ℵB1U r1( ∧ℵB1U s1( ∧ℵB2U r2s2(  + ℵA1U r1( ∧ℵA2U r2( ,

(35)

(t dμ)
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1°μB2
  r1, r2( , s1, s2( (  + μA1°μA2

  r1, r2( 

· 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r2�s2 ,r1s1∈E1

μA2
r2( ∧μB1

r1s1( 

+ 
r1s1∈E1,r2 ≠ s2

μB1
r1( ∧μB1

s1( ∧μB2
r2s2(  + μA1

r1( ∧μA2
r2( ,

(36)
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(t d])
G
⌣

1°G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

]B1°]B2
  r1, r2( , s1, s2( (  + ]A1°]A2

  r1, r2( 

· 
r1�s1 ,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r2�s2 ,r1s1∈E1

]A2
r2( ∧]B1

r1s1( 

+ 
r1s1∈E1,r2 ≠ s2

]B1
r1( ∧]B1

s1( ∧]B2
r2s2(  + ]A1

r1( ∧]A2
r2( .

(37)

Theorem 4. Let us take two CuPFGs G
⌣

1 and G
⌣

2. If (i) RA1L≥RB2L and RA2L≥RB1L, then

t dRAL( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t dRAL( 

G
⌣

1
r1(  + t dRAL( 

G
⌣

2
r2(  − a2 − 1( RA1L r1(  − RA1L r1( ∨RA2L r2(  . (38)

(ii) RA1U≥RB2U and RA2U≥RB1U, then

t dRAU( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t dRAU( 

G
⌣

1
r1(  + t dRAU( 

G
⌣

2
r2(  − a2 − 1( RA1U r1(  − RA1U r1( ∨RA2U r2(  . (39)

(iii) ℵA1L≥ℵB2L and ℵA2L≥ℵB1L, then

t dℵAL( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t dℵAL( 

G
⌣

1
r1(  + t dℵAL( 

G
⌣

2
r2(  − a2 − 1( ℵA1L r1(  − ℵA1L r1( ∨ℵA2L r2(  . (40)

(iv) ℵA1U≥ℵB2U and ℵA2U≥ℵB1U, then

t dℵAU( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t dℵAU( 

G
⌣

1
r1(  + t dℵAU( 

G
⌣

2
r2(  − a2 − 1( ℵA1U r1(  − ℵA1U r1( ∨ℵA2U r2(  . (41)

(v) μA1
≥ μB2

and μA2
≥ μB1

, then

t dμA( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t dμA( 

G
⌣

1
r1(  + t dμA( 

G
⌣

2
r2(  − a2 − 1( μA1

r1(  − μA1
r1( ∨μA2

r2(  . (42)

(vi) ]A1
≥ ]B2

and ]A2
≥ ]B1

, then

t d]A( 
G
⌣

1°G
⌣

2
r1, r2(  � a2 t d]A( 

G
⌣

1
r1(  + t d]A( 

G
⌣

2
r2(  − a2 − 1( μA1

r1(  − ]A1
r1( ∨]A2

r2(  . (43)

where a2 � |R2|.

proof. It is easy to prove by using Definition 12 and$eorem
4. □

Definition 13. Let G
⌣

1 � (ℵ1,R1) and G
⌣

2 � (ℵ2,R2) be two
CuPFGs of graphs G1 � (R1, E1) and G2 � (R2, E2), re-
spectively. $e symmetric difference of G

⌣

1 and G
⌣

2 is denoted
by G

⌣

1⊕G
⌣

2 � (ℵ1⊕ℵ2,R1⊕R2) and is defined as follows:

(i) (RA1L⊕RA2L)(r1, r2) � RA1L(r1)∧RA2L(r2)

(RA1U⊕RA2U)(r1, r2) � RA1U(r1)∧RA2U(r2)

(ℵA1L⊕ℵA2L)(r1, r2) � ℵA1L(r1)∧ℵA2L(r2)

(ℵA1U⊕ℵA2U)(r1, r2) � ℵA1U(r1)∧ℵA2U(r2)

(μA1
⊕μA2

)(r1, r2) � μA1
(r1)∧μA2

(r2)

(]A1
⊕]A2

)(r1, r2) � ]A1
(r1)∧]A2

(r2) for all (r1, r2)

∈ R

(ii) (RB1L⊕RB2L)((r,r2),(r,s2))�RA1L(r)∧RB2L(r2,s2)

(RB1U⊕RB2U)((r, r2), (r, s2)) � RA1U(r)∧RB2U(r2, s2)

(ℵB1L⊕ℵB2L)((r, r2), (r, s2)) � ℵA1L(r)∧ℵB2L(r2, s2)
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(ℵB1U⊕ℵB2U)((r, r2), (r, s2)) � ℵA1U(r)∧ℵB2U(r2, s2)

(μB1U⊕ℵB2U)((r, r2), (r, s2)) � ℵA1U(r)∧ℵB2U(r2, s2)

(]B1
⊕]B2

)((r, r2), (r, s2)) � ]A1
(r1)∨]B2

(r2, s2),

for all r ∈ R1, for all r2s2 ∈ E2

(iii) (RA1L⊕RB2L)((r1,z),(s1,z))�RB1L(r1,s1)∧RA2L(z)

(RA1U⊕RB2U)((r1, z), (s1, z)) � RB1U(r1, s1)∧RA2U(z)

(ℵA1L⊕ℵB2L)((r1, z), (s1, z)) � ℵB1L(r1, s1)∧ℵA2L(z)

(ℵA1U⊕ℵB2U)((r1, z), (s1, z)) � ℵB1U(r1, s1)∧ℵA2U(z)

(μB1
⊕μB2

)((r1, z), (s1, z)) � μB1
(r1, s1)∧μA2

(z)

(]B1
⊕]B2

)((r1,z),(s1,z)) � ]B1
(r1, s1)∧]A2

(z) forall
z ∈R2, forallr1s1 ∈E1

(iv) (RB1L⊕RB2L)(r1, r2),((s1, s2)) � RB1L(r1, s1)∧RA2L

(r2)∧RA2L(s2) ∀r1s1 ∉E1, r2s2 ∈E2 or �RB2L(r2,

s2)∧RA1L(r1)∧RA1L(s1) ∀r2s2 ∉E2, r1s1 ∈E1

(RB1U ⊕RB2U)(r1, r2), ((s1, s2)) � RB1U(r1, s1)∧
RA2U(r2)∧ RA2U(s2) ∀r1s1 ∉ E1, r2s2 ∈ E2 or �

RB2U(r2, s2)∧RA1U(r1)∧RA1U(s1) ∀r2s2 ∉ E2, r1
s1 ∈ E1

(ℵB1L⊕ℵB2L)(r1, r2), ((s1, s2)) � ℵB1L(r1, s1)∧ℵA2L

(r2)∧ℵA2L

(s2) ∀r1s1 ∉ E1, r2s2 ∈ E2 or � ℵB2L(r2, s2)∧ ℵA1L

(r1) ∧ℵA1L(s1) ∀r2s2 ∉ E2, r1s1 ∈ E1

(ℵB1U⊕ℵB2U)(r1, r2), ((s1, s2)) � ℵB1U(r1, s1)∧
ℵA2U (r2)∧ℵA2

U(s2) ∀r1s1 ∉ E1, r2 s2 ∈ E2 or �

ℵB2U(r2, s2)∧ℵA1U(r1)∧ℵA1U (s1) ∀r2s2 ∉ E2, r1
s1 ∈ E1

(μB1
⊕μB2

)(r1,r2),((s1,s2)) �μB1
(r1,s1)∧μA2

(r2)∧μA2
(s2)∀r1 s1∉E1,r2s2∈E2or�μB2

(r2,s2)∧μA1
(r1)∧μA1

(s1)∀r2s2∉E2,r1s1∈E1

(]B1
⊕]B2

)(r1, r2), ((s1, s2)) � ]B1
(r1, s1)∧]A2

(r2)∧
]A2

(s2) ∀r1s1 ∉ E1, r2s2 ∈ E2 or � ]B2
(r2,

s2)∧]A1
(r1)∧]A1

(s1) ∀r2s2 ∉ E2, r1s1 ∈ E1

Example 4. Consider two CuPFGs G
⌣

1 and G
⌣

2 on R1 � r, s{ }

and R2 � t, u, v{ }, respectively, as shown in Figure 4. $eir
symmetric difference G

⌣

1⊕G
⌣

2 is shown in Figure 6.

Proposition 3. 4e symmetric difference G
⌣

1⊕G
⌣

2 of two
CuPFGs G

⌣

1 and G
⌣

2 of G1 and G2 is also a CuPFG.

Definition 14. Let G
⌣

1 and G
⌣

2 be two CuPFGs. $en, for any
vertex (r1, r2) ∈ V1 × V2,

dRL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L⊕RB2L  r1, r2( , s1, s2( ( ,

� 
r1�s1,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2L r2( ∧RB1L r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

RB1L r1s1( ∧RB2L r2( ∧RB2L s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

RB2L r2s2( ∧RB1L r1( ∧RB1L s1( ,

(44)

dRU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U⊕RB2U  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2U r2s2(  + 
r2�s2 ,r1s1∈E1

RA2U r2( ∧RB1U r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

RB1U r1s1( ∧RB2U r2( ∧RB2U s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

RB2U r2s2( ∧RB1U r1( ∧RB1U s1( ,

(45)

dℵL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1L⊕ℵB2L  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2L r2( ∧ℵB1L r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

ℵB1L r1s1( ∧ℵB2L r2( ∧ℵB2L s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

ℵB2L r2s2( ∧ℵB1L r1( ∧ℵB1L s1( ,

(46)
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dℵU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1,s2( )∈R1×R2

ℵB1U⊕ℵB2U  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2U r2( ∧ℵB1U r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

ℵB1U r1s1( ∧ℵB2U r2( ∧ℵB2U s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

ℵB2U r2s2( ∧ℵB1U r1( ∧ℵB1U s1( ,

(47)

dμL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1L⊕μB2L  r1, r2( , s1, s2( ( ,

� 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r2�s2 ,r1s1∈E1

μA2
r2( ∧μB1

r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

μB1
r1s1( ∧μB2

r2( ∧μB2
s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

μB2
r2s2( ∧μB1

r1( ∧μB1
s1( ,

(48)

(d])
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

]B1
⊕]B2

  r1, r2( , s1, s2( ( ,

� 
r1�s1,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r2�s2 ,r1s1∈E1

]A2
r2( ∧]B1

r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

]B1
r1s1( ∧]B2

r2( ∧]B2
s2( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

]B2
r2s2( ∧]B1

r1( ∧]B1
s1( .

(49)

Theorem 5. Let G
⌣

1 and G
⌣

2 be two CuPFGs. If RA1L≥RB2
L, ℵA1L≤ℵB2L, RA1L≥RB2U, ℵA1U≤ℵB2U, μA1

≥ μB2
, ]A1

≤ ]B2
and RA2L≥RB1L, ℵA2L≤ℵB1L, RA2L≥RB1

L, ℵA2U≤

ℵB1U, μA2
≥ μB1

, ]A2
≤ ]B1

, then d
G
⌣

1⊕G
⌣

2
(r1, r2) � b2dG

⌣

1
(r1) + b1dG

⌣

2
(r2), where b2 � |R2| − d

G
⌣

2
(r2) and

b1 � |R1| − d
G
⌣

1
(r1), for all (r1, r2) ∈ R1 × R2.

(r, t)

(r, u)

(r, v)

(s, t)

(s, u)

(s, v)

〈[0.4, 0.7], [0.5, 0.7], (0.4, 0.8)〉

〈
[0

.2
, 0

.3
], 

[0
.5

, 0
.7

], 
(0

.4
, 0

.8
)〉

〈[0.4, 0.5], [0.7, 0.8], (0.4, 0.8)〉

〈[0.4, 0.8], [0
.5, 0.6], (0

.6, 0.8)〉

〈[0.4, 0.5], [0.3, 0.4], (0.4, 0.8)〉

〈[0.2, 0.3], [0.6, 0.8], (0.4, 0.7)〉

〈[0.3, 0.5], [0.6, 0.8], (0.6, 0.8)〉

〈[0.3, 0.5], [0
.7, 0.8], (0

.4, 0.8)〉

〈[0.2, 0.3], [0.6, 0.8], (0.4, 0.7)〉
〈

[0
.2

, 0
.3

], 
[0

.5
, 0

.7
], 

(0
.4

, 0
.7

)〉
〈[0.2, 0.3], [0.5, 0.6], (0.2, 0.7)〉

〈[0.4, 0.5], [0.7, 0.8], (0.3, 0.8)〉 〈[0.3, 0.4], [0.7, 0.8], (0.2, 0.8)〉

〈[0.4, 0.7], [0.5, 0.6], (0.3, 0.8)〉 〈[0.3, 0.4], [0.5, 0.6], (0.2, 0.8)〉

Figure 6: Symmetric difference of two CuPFGs G
⌣

1 and G
⌣

2.
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Definition 15. Let G
⌣

1 and G
⌣

2 be two CuPFGs. $en, for any
vertex (r1, r2) ∈ R1 × R2,

t dRL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1L⊕RB2L  r1, r2( , s1, s2( (  + RA1L⊕RA2L  r1, r2( 

� 
r1�s1 ,r2s2∈E2

RA1L r1( ∧RB2L r2s2(  + 
r2�s2 ,r1s1∈E1

RA2L r2( ∧RB1L r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

RA2L r2( ∧RA2L s2( ∧RB1L r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

RA1L r1( ∧RA1L s1( ∧RB2L r2s2(  + RA1L r1( ∧RA2L r2( ,

(50)

t dRU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

RB1U⊕RB2U  r1, r2( , s1, s2( (  + RA1U⊕RA2U  r1, r2( 

� 
r1�s1 ,r2s2∈E2

RA1U r1( ∧RB2U r2s2(  + 
r2�s2 ,r1s1∈E1

RA2U r2( ∧RB1U r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

RA2U r2( ∧RA2U s2( ∧RB1U r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

RA1U r1( ∧RA1U s1( ∧RB2U r2s2(  + RA1U r1( ∧RA2U r2( ,

(51)

t dℵL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1L⊕ℵB2L  r1, r2( , s1, s2( (  + ℵA1L⊕ℵA2L  r1, r2( 

� 
r1�s1 ,r2s2∈E2

ℵA1L r1( ∧ℵB2L r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2L r2( ∧ℵB1L r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

ℵA2L r2( ∧ℵA2L s2( ∧ℵB1L r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

ℵA1L r1( ∧ℵA1L s1( ∧ℵB2L r2s2(  + ℵA1L r1( ∧ℵA2L r2( ,

(52)

t dℵU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

ℵB1U⊕ℵB2U  r1, r2( , s1, s2( (  + ℵA1U⊕ℵA2U  r1, r2( 

� 
r1�s1 ,r2s2∈E2

ℵA1U r1( ∧ℵB2U r2s2(  + 
r2�s2 ,r1s1∈E1

ℵA2U r2( ∧ℵB1U r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

ℵA2U r2( ∧ℵA2U s2( ∧ℵB1U r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

ℵA1U r1( ∧ℵA1U s1( ∧ℵB2U r2s2(  + ℵA1U r1( ∧ℵA2U r2( ,

(53)

(t dμ)
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1
⊕μB2

  r1, r2( , s1, s2( (  + μA1
⊕μA2

  r1, r2( 

� 
r1�s1 ,r2s2∈E2

μA1
r1( ∧μB2

r2s2(  + 
r2�s2 ,r1s1∈E1

μA2
r2( ∧μB1

r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

μA2
r2( ∧μA2

s2( ∧μB1
r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

μA1
r1( ∧μA1

s1( ∧μB2
r2s2(  + μA1

r1( ∧μA2
r2( ,

(54)
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(t d])
G
⌣

1⊕G
⌣

2
r1, r2(  � 

r1 ,r2( ) s1 ,s2( )∈R1×R2

μB1
⊕μB2

  r1, r2( , s1, s2( (  + ]A1
⊕]A2

  r1, r2( 

� 
r1�s1 ,r2s2∈E2

]A1
r1( ∧]B2

r2s2(  + 
r2�s2 ,r1s1∈E1

μA2
r2( ∧μB1

r1s1( 

+ 
r1s1∈E1 ,r2s2 ∉ E2

]A2
r2( ∧]A2

s2( ∧μB1
r1s1( 

+ 
r2s2∈E2 ,r1s1 ∉ E1

]A1
r1( ∧]A1

s1( ∧μB2
r2s2(  + μA1

r1( ∧μA2
r2( .

(55)

Theorem 6. Let G
⌣

1 and G
⌣

2 be two CuPFGs. If (i) RA1L≥RB2L and RA2L≥RB1L, then

t dRAL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t dRAL( 

G
⌣

1
r1(  + b1 t dRAL( 

G
⌣

2
r2( 

− b2 − 1( RA1L r1(  − b1 − 1( RA2L r2(  − RA1L r1( ∨RA2L r2(  .
(56)

(ii) RA1U≥RB2U and RA2U≥RB1U, then

t dRAU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t dRAU( 

G
⌣

1
r1(  + b1 t dRAU( 

G
⌣

2
r2( 

− b2 − 1( RA1U r1(  − b1 − 1( RA2U r2(  − RA1U r1( ∨RA2U r2(  .
(57)

(iii) ℵA1L≥ℵB2L and ℵA2L≥ℵB1L, then

t dℵAL( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t dℵAL( 

G
⌣

1
r1(  + b1 t dℵAL( 

G
⌣

2
r2(  − b2 − 1( ℵA1L r1( 

− b1 − 1( ℵA2L r2(  − ℵA1L r1( ∨ℵA2L r2(  .
(58)

(iv) ℵA1U≥ℵB2U and ℵA2U≥ℵB1U, then

t dℵAU( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t dℵAU( 

G
⌣

1
r1(  + b1 t dℵAU( 

G
⌣

2
r2(  − b2 − 1( ℵA1U r1( 

− b1 − 1( ℵA2U r2(  − ℵA1U r1( ∨ℵA2U r2(  .
(59)

(v) μA1
≥ μB2

and μA2
≥ μB1

, then

t dμA( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t dμA( 

G
⌣

1
r1(  + b1 t dμA( 

G
⌣

2
r2(  − b2 − 1( μA1

r1(  − b1 − 1( μA2
r2(  − μA1

r1( ∨μA2
r2(  .

(60)

(vi) ]A1
≥ ]B2

and ]A2
≥ ]B1

, then
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t d]A( 
G
⌣

1⊕G
⌣

2
r1, r2(  � b2 t d]A( 

G
⌣

1
r1(  + b1 t d]A( 

G
⌣

2
r2(  − b2 − 1( ]A1

r1(  − b1 − 1( ]A2
r2(  − ]A1

r1( ∨]A2
r2(  , (61)

where b2 � |R2| − d
G
⌣

2
(r2) and b1 � |R1| − d

G
⌣

1
(r1), for all

(r1, r2) ∈ R1 × R2.

proof. It is easy to prove by using Definition 15 and$eorem
5. □

3. Application

$e purpose of decision-making activity is to solve an issue
ended up with satisfactory results. In current section, we
investigate MCDM problem in cubic PF environment,
demonstrating the validity of our proposed work in realistic
scenarios. To express the experts’ preference among the
given alternatives, preference relation is the most beneficial
technique by which the ranking of alternatives can be ob-
tained. For set of alternatives E � E1, E2, E3, . . . , En , the
decision makers compare each one alternative to other and
obtained preference relations, respectively. If every element
in the preference relations belongs to a CuPFSs then the
concept of the cubic Pythagorean fuzzy preference relation
(CuPFPR) can be taken as follows.

Definition 16. A CuPFPR on the set of alternatives E � E1,

E2, E3, . . . , En} is represented by a matrix Z � (ejk)n×n, for
j≠ k, where

ejk 
n×n

�〈 RL
jk,R

U
jk , ℵL

jk,ℵU
jk , μjk, ]jk , (62)

for all (j, k � 1, 2, 3, . . . , n). Such that, RL
jk and RU

jk repre-
sent the lower and upper limits of interval-valued preference
degree to which the object Ej is preferred to Ek, ℵL

jk and ℵ
U
jk

represent the lower and upper limits of interval-valued
degree to which the object Ej is not preferred to Ek, μjk is the
simple fuzzy valued degree of preference, and ]jk is the
simple fuzzy valued degree of nonpreference of the alter-
native Ej over Ek, respectively, with the following
conditions:

RL
jk,RU

jk,ℵL
jk,ℵU

jk, μjk, ]jk ∈ [0, 1], (RU
jk)2 + (ℵU

jk)2 ≤ 1
and (μjk)2 + (]jk)2 ≤ 1
RL

jk � ℵL
kj, R

U
jk � ℵU

kj, μjk � ]kj.

3.1. Selection of the Best Captain for a Cricket Team.
Teams often consist of multitalented individuals who have
the right skills and experience to deliver results. But a team
leader (captain) is always needed to direct the energy of the
members of team towardmore effectiveness.$e captain of a
team provides a road map outlining the steps the team needs
to achieve the preferred destination. He helps everybody to
identify the roles that best fit skills and experiences. Suc-
cessful captains are committed to the success of their team

and its players. Captain should not just be the best players of
the team or the player that the coach likes the most, but it is
about having certain qualities that make that player a good
leader.

$e selection of a captain is one of the most important
and critical decisions that can be made as its influence is
deep across all players of the team. A poor process and little
thought invite risk and disaster, while a well-considered and
inviting process can establish a foundation for progress and
success. Keeping in view the role of captain, the experts aim
is to choose the best among four candidates I1,I2,I3,I4 

on the basis of certain criterion:

C1: personal traits: a courageous leader is someone who
is not afraid to honestly and openly seek out feedback
from those around them and always motivate his team.
He is self-confident and a good instructor.
C2: previous performance and experience: the past
performance of a player defines his expertise and ex-
perience helps him to guide others.
C3: professional skills: the best captain cares passion-
ately about team’s success and about their teammates
with his leadership qualities. He is a good planner,
courageous, and consistent.

$e experts of the game assigned the weight vector,
W � 0.4, 0.3, 0.3{ }T, where 

3
m�1 wm � 1, demonstrating the

significance of that particular criterion Cl (l � 1, 2, 3). $e
decision-making experts of the game pairwise compare the
four players Ih (h � 1, 2, 3, 4) under consideration with
respect to the three criteria Cl (l � 1, 2, 3) and provides
information according to their preference in the form of
cubic Pythagorean fuzzy preference relation (CuPFPR)
Z(l) � e

(l)
jk4×4, where (el

jk)4×4 � 〈[RL
jk,RU

jk], [ℵL
jk,ℵUjk],

(μjk, ]jk) is cubic Pythagorean fuzzy element assigned by the
experts, such that interval-valued terms present the pref-
erence and rejection grade of each attribute in past and
simple fuzzy terms represents the preference and rejection
grade of each attribute in present. $e CuPFPRs,
Z(l) � e

(l)
jk4×4, are shown in Tables 1–3 as follows.

$e cubic Pythagorean fuzzy influenced networks cor-
responding to CuPFPRs Z(l) (l � 1, 2, 3) given in Tables 1–3,
are shown in Figure 7.

Now, we find aggregated CuPFPR by applying CuPFWA
operator.

$e Pythagorean fuzzy influenced graph, corresponding
to the aggregated CuPFPR given in Table 4, is displayed in
Figure 8. Under the constraint on degree of truthness ηjk ≥ 0.5
(i, j � 1, 2, 3, 4) on both interval value and simple value, a
partial influenced graph is constructed and depicted in Fig-
ure 9. $e out-degrees out-d (Ih) (h� 1, 2, 3, 4) of all
considered players in the partial graph are calculated as
follows:
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out − d I1(  � 〈[1.0956, 1.3665], [1.1294, 1.3801], (1.2598, 1.2071)〉,

out − d I2(  � 〈[1.8400, 2.2780], [1.4037, 1.7545], (2.0531, 1.8709)〉,

out − d I3(  � 〈[0.6, 0.7286], [0.4733, 0.6446], (0.7602, 0.5213)〉,

out − d I4(  � 〈[1.1264, 1.4029], [0.9953, 1.2663], (1.1759, 1.3917)〉.

(63)

According to membership value of out-d (Ih)(h �

1, 2, 3, 4), we obtain the optimal ranking order of the four
players Ih(h � 1, 2, 3, 4) as follows:

I2 >I4 >I1 >I3. (64)

$us, I4 is decided as the best for captaincy of the team.
Now, we find aggregated CuPFPR by applying CuPFWG

operator.

$e Pythagorean fuzzy influenced graph, corresponding
to the aggregated CuPFPR given in Table 5 is displayed in
Figure 10. Within the constraint on degree of truthness
ηjk ≥ 0.5 (j, k � 1, 2, 3, 4) on both interval value and simple
value, a partial influenced graph is constructed as depicted in
Figure 11. $e out-degrees out-d (Ih) (h� 1, 2, 3, 4) of all
considered players in the partial graph are calculated as

out − d I1(  � 〈[1.2828, 1.5558], [0.9448, 1.1943], (1.3689, 1.0932)〉,

out − d I2(  � 〈[1.9033, 2.3333], [1.3648, 1.6890], (2.2221, 1.7036)〉,

out − d I3(  � 〈[0.6, 0.7352], [0.4676, 0.6382], (0.8042, 0.5030)〉,

out − d I4(  � 〈[1.8239, 2.1913], [1.4790, 1.8470], (1.9008, 1.8269)〉.

(65)

According to membership value of out-d (Ih) (h �

1, 2, 3, 4), we obtain ranking order of the four playersIh(h �

1, 2, 3, 4) as

I2 >I4 >I1 >I3. (66)

Hence, in both cases I4 is decided as the best for
captaincy of the team.

Our proposed method in MCDM of CuPFGs is outlined
in Algorithm 1.

Furthermore, for better understanding the organization
of the proposed method is presented in Figure 12.

3.2. Comparative Analysis. In order to demonstrate the
effectiveness and validity of the propose method, a com-
parative analysis with already existing techniques is carried

Table 1: CuPFPR with respect to the criteria “personal traits.”

Z1 I1 I2 I3 I4

I1 — 〈[0.6, 0.7], [0.5, 0.7], (0.6, 0.7)〉 〈[0.8, 0.9], [0.3, 0.4], (0.7, 0.5)〉 〈[0.4, 0.8], [0.5, 0.6], (0.9, 0.4)〉

I2 〈[0.8, 0.9], [0.3, 0.4], (0.8, 0.6)〉 — 〈[0.6, 0.8], [0.4, 0.5], (0.9, 0.3)〉 〈[0.7, 0.8], [0.5, 0.6], (0.7, 0.5)〉

I3 〈[0.3, 0.5], [0.7, 0.8], (0.3, 0.9)〉 〈[0.5, 0.6], [0.7, 0.8], (0.8, 0.4)〉 — 〈[0.6, 0.7], [0.5, 0.7], (0.8, 0.6)〉

I4 〈[0.7, 0.8], [0.5, 0.6], (0.7, 0.6)〉 〈[0.8, 0.9], [0.3, 0.4], (0.5, 0.8)〉 〈[0.3, 0.4], [0.8, 0.9], (0.8, 0.5)〉 —

Table 2: CuPFPR with respect to the criteria “previous performance and experience.”

Z2 I1 I2 I3 I4

I1 — 〈[0.3, 0.4], [0.8, 0.9], (0.3, 0.8)〉 〈[0.4, 0.5], [0.7, 0.8], (0.7, 0.6)〉 〈[0.2, 0.3], [0.8, 0.9], (0.7, 0.5)〉

I2 〈[0.7, 0.9], [0.3, 0.4], (0.5, 0.8)〉 — 〈[0.6, 0.7], [0.5, 0.6], (0.5, 0.7)〉 〈[0.5, 0.7], [0.6, 0.7], (0.8, 0.6)〉

I3 〈[0.6, 0.7], [0.5, 0.6], (0.6, 0.7)〉 〈[0.3, 0.4], [0.4, 0.5], (0.7, 0.6)〉 — 〈[0.6, 0.8], [0.4, 0.6], (0.9, 0.4)〉

I4 〈[0.3, 0.4], [0.8, 0.9], (0.8, 0.5)〉 〈[0.7, 0.8], [0.4, 0.5], (0.7, 0.4)〉 〈[0.8, 0.9], [0.3, 0.4], (0.4, 0.9)〉 —

Table 3: CuPFPR with respect to the criteria “professional skills.”

Z3 I1 I2 I3 I4

I1 — 〈[0.8, 0.9], [0.3, 0.4], (0.8, 0.3)〉 〈[0.5, 0.8], [0.5, 0.6], (0.8, 0.5)〉 〈[0.3, 0.4], [0.7, 0.8], (0.4, 0.9)〉

I2 〈[0.6, 0.7], [0.5, 0.7], (0.8, 0.5)〉 — 〈[0.6, 0.7], [0.5, 0.6], (0.7, 0.6)〉 〈[0.4, 0.6], [0.6, 0.7], (0.5, 0.8)〉

I3 〈[0.5, 0.6], [0.6, 0.7], (0.7, 0.6)〉 〈[0.6, 0.7], [0.5, 0.6], (0.6, 0.4)〉 — 〈[0.6, 0.7], [0.5, 0.6], (0.6, 0.5)〉

I4 〈[0.4, 0.5], [0.5, 0.7], (0.5, 0.8)〉 〈[0.5, 0.8], [0.4, 0.6], (0.4, 0.8)〉 〈[0.4, 0.5], [0.6, 0.7], (0.5, 0.4)〉 —
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Figure 7: Cubic Pythagorean fuzzy influenced networks corresponding to CuPFPRs.
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Figure 10: Influenced graph of aggregated CuPFPR.
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Figure 11: Partial influenced graph of aggregated CuPFPR.
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out in this section. $e Pythagorean fuzzy weighted average
(PFWA) operator and the Pythagorean fuzzy weighted
geometric (PFWG) operator introduced by Yager [6] are
applied for solving the above decision-making problem. For
comparison with previous techniques, we have to take in-
formation in Pythagorean fuzzy environment. $e results

corresponding to these approaches are summarized in
Table 6.

Hence, the final result for the ranking of the alternatives
of the existing technique (PFWG operator and PFWA op-
erator) is the same as the proposed method which indicates
the rationality and effectiveness of the proposed technique.

(1) Input: first of all, take discrete set of alternatives E � E1, E2, E3, . . . , En  and attributes C � C1, C2, C3, . . . , Cn  under some
parameters in order to achieve the target

(2) Let the cubic Pythagorean fuzzy preference relation(CuPFPR) is of the form:
Z � (ejk)4×4 � 〈[RL

jk,RU
jk], [ℵL

jk,ℵU
jk], (μjk, ]jk) (j, k � 1, 2, 3, . . . , n) of each alternative Ej over the Ek with respect to the all

considered criteria Cl (l � 1, 2, 3 . . . , n)

(3) Apply cubic Pythagorean fuzzy weighted averaging(CuPFWA) operator [10]

(ej) � CuPFWA(ej1, ej2, ej3, . . . , ejn) � 〈
[Πn

j�1(R
L
ej

)
wi ,R

n
j�1(μ

U
ej

)
wj ], [

������������������

1 − Πn
j�1(1 − (ℵL

ej
)
2wj



,

�������������������

1 − Πn
j�1(1 − (ℵU

ej
)
2
)
wj



],

(Πn
j�1(μej

)
wj ,

������������������
1 − Πn

j�1(1 − (]ej
)
2
)
wj


)

〉

and cubic Pythagorean fuzzy weighted geometric(CuPFWG) operator [10]

(ej) � CuPFWG(ej1, ej2, ej3, . . . , ejn)〈
[

�������������������
1 − Πn

j�1(1 − (ℵL
ej

))
2wj


,

�������������������
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2
)
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������������������
1 − Πn

j�1(1 − (]ej
)
2
)
wj


,Πn

j�1(μej
)
wj )

〉
to aggregate the individual CuPFPR

(4) Construct the collective averaged CuPFR
(ejk)4×4 � 〈[RL

jk,RU
jk], [ℵL

jk,ℵU
jk], (μjk, ]jk)〉 (j, k � 1, 2, 3, 4),

computed by CuPFWA and CuPFWG operator
(5) Draw an influenced model relating the collective CuPFPR
(6) Draw a partially influenced model relating the collective CuPFPR by using constraint on degree of truthness ηjk ≥ 0.5
(7) Investigate the out-degrees of all alternatives Ej in partial influenced network
(8) Rank each of the alternative on the basis of out-degrees ηj

Output: the alternative having maximum out-degree is selected as the best one

ALGORITHM 1

Specified alternatives choosed for ranking

Input Particular criterias preferred by decision makers

Weight vector of criterias assigned by decision makers

Aggregate all CuPFPR matrices using CuPFWA
operator and CuPFWG operator

Draw influenced graphs of aggregated CuPFPRs Calculate the out-degree of each alternative

Rank each alternative by applying constraint having degree of
truthness ≥ 0.5

Select the best alternative having highest degree of truthness

Output

Figure 12: Flowchart of the purposed work.
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Obviously, the method presented in this paper is more
accurate, flexible, and generalized. $e existing method in
Pythagorean fuzzy environment is a special case of the
proposed method. $e originality of this decision-making
approach is that we have described cubic Pythagorean fuzzy
preference relations among the alternatives and developed
MADM model with the interrelated alternatives by oper-
ating the corresponding graphical structures with cubic
Pythagorean fuzzy information.

4. Conclusion

Fuzzy graph theory has effectively operated to solve a
variety of issues, where information is uncertain or vague,
such as producing, social networking, man-made rea-
soning, image processing, and network security. Several
types of graphs were introduced in the past few years to
model the vagueness and uncertainties in information:
cubic fuzzy graphs is one of them where the data are in the
form of intervals as well as simple fuzzy numbers. $is
research paper proposes the novel concept of CuPFGs,
where the flexibility of information is increased within the
fuzzy environment. Furthermore, we present several
terms related to CuPFGs and develop certain operations
including semistrong product, lexicographical product,
and symmetric difference of two CuPFGs. In addition,
some essential and mandatory constraints are illustrated.
Lastly, the term CuPFPR is defined, and to show the
validity of our proposed work, an application in a cubic
Pythagorean fuzzy environment is solved. $e presented
work is more suitable to handle different issues, but it has
certain limitations. In coming years, one can further
extend the concept of CuPFGs to cubic Fermatean fuzzy
graphs.
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