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In this study, a new class that generates optimal univariate models called a new exponentiated-G class of distributions is de-
veloped. Numerous complementary statistical properties are derived and discussed in detail for the newly exponentiated power
function (EPF) distribution. All possible shapes of the probability density and hazard rate functions are sketched for selected
values of parameters. Six accredited estimation methods are discussed, and their performance is assessed and compared by a
simulation study. )e applicability of the new class is evaluated by analyzing the automotive engineering sector data.

1. Introduction

Modeling complicated problems is an enigma for applied
researchers and practitioners.)ey seem to be worried about
dealing with a variety of lifetime datasets that particularly
follows physical and natural sciences. For this, they are
searching for simple and efficient models. Consequently, a
power function (PF) distribution is explored. It is a simple
lifetime model as exponential and Pareto distributions. )e
PF distribution is a special case of the beta distribution. For
more details about the classical work of the PF distribution,
see Dallas [1] who developed a relationship between the
Pareto and PF variables through an inverse transformation.
Furthermore, for a deep understanding of the character-
ization of the PF distribution, see some credible work of
Meniconi and Barry [2], Saran and Pandey [3], Chang [4],
Tavangar [5], and Ahsanullah et al. [6].

In the most recent times, attention towards the gener-
alization of probability distributions has grown phenome-
nally high. For more insight, see the trustworthy work of
Cordeiro and Brito [7], Zaka and Akhter [8], Al Mutairi et al.
[9], Tahir et al. [10], Shahzad et al. [11], Ahsan-ul-Haq et al.
[12], Okorie et al. [13], Abdul-Moniem [14], Hassan et al.

[15], Zaka et al. [16], Arshad et al. [17], Arshad et al. [18, 19],
Al-Mutairi [20], Alzaatreh et al. [21], Gleaton and Lynch
[22], Bourguignon et al. [23], Afify et al. [24], Tahir et al.
[25], Aldahlan et al. [26], Aslam et al. [27], Balogun et al.
[28], Afify et al. [29], Mansour et al. [30], Mahdavi and
Kundu [31], Nassar et al. [32], Ijaz et al. [33], Klakattawi and
Aljuhani [34], Afify et al. [35], Alsubie et al. [36], Ahmad
et al. [37], and Nofal et al. [38].

To the best of our knowledge, the new class has not been
discussed before, and it is the first time to explore the
scenario particularly observed in the automobile sector. We
develop a new class of distributions called the new expo-
nentiated-G (NE-G) family and study one of its special
submodels using the PF distributions as a baseline model.
)e studied model is called the exponentiated power
function (EPF) distribution. )e present study has some
motivations as follows: (a) to develop new optimal models;
(b) to advance the characteristics of the baseline models; (c)
the density and hazard rate functions possess unimodal and
bathtub-shaped curves, respectively; (d) to model the real-
time scenario in the automobile sector.

)is paper is outlined in the following sections. )e
development of the new class is presented in Section 2. A
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comprehensive discussion on mathematical and reli-
ability measures is completed in Sections 3 and 4, re-
spectively. Miscellaneous measures are discussed in
Section 5. Six accredited estimation methods are dis-
cussed in Section 6. Simulation results are presented in
Section 7. A lifetime application of the EPF distribution is
discussed in Section 8, and finally, some conclusions are
reported in Section 9.

2. The New Exponentiated-G Class

Tahir and Cordeiro [39] (Remarks 2 (ii)) developed the
exponentiated generalized negative binomial G class which
is defined by the CDF:

F(x;ℶ) �
1 − 1 + ηcG(x;ℶ)

β
􏼐 􏼑

− (1/α)

1 − (1 + ηc)
−(1/α)

. (1)

Chesneau et al. [40] reparameterized the parameters of
(1) and provided the following CDF:

F(x;ℶ) �
(1 + ηG(x;ℶ))

1+(1/η)
− 1

(1 + η)
1+(1/η)

− 1
. (2)

In this section, we provide a new generator of distri-
butions that is very simple and capable of generating optimal
alternative models. )e new generator is called the new
exponentiated-G class, and it is specified by the CDF:

F(x;ℶ) �
(1 + G(x;ℶ))

α
− 1

2α − 1
, x ∈ R, (3)

where G(x;ℶ) ϵ (0, 1) is a CDF of any baseline (parent)
distribution. It is based on a parametric vector ℶ> 0
depending on (r × 1), α> 0 is a shape parameter, and
(1/2α − 1) is a normalizing constant. F(0;ℶ) � 0, and
F(∞;ℶ) � 1. It is noted that the new class reduces to the
baseline model with α � 1.

)e probability density function (PDF) (f(x)) and the
hazard rate function (HRF) (h(x)) of the new class reduce to

f(x;ℶ) �
αg(x;ℶ)(1 + G(x;ℶ))

α− 1

2α − 1
, x ∈ R, (4)

h(x;ℶ) �
αg(x;ℶ)(1 + G(x;ℶ))

α− 1

2α − (1 + G(x;ℶ))
α− 1 , x ∈ R, (5)

where g(x;ℶ) � dG(x;ℶ)/dx.

)e quantile function (QF) (Q(x)) of the new class takes
the form.

Q(x) � G
− 1 1 + 2α − 1( 􏼁p( 􏼁

1
α − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, p ∈ (0, 1). (6)

2.1. EPFDistribution. In this section, we discuss some useful
characteristics of the EPF distribution.)e PF distribution is
specified by the following CDF and PDF:

G(x) �
x

g0
􏼠 􏼡

β

, β> 0, 0< x≤ g0, (7)

and

g(x) �
β
g0( 􏼁

βx
β− 1

, β> 0, 0<x≤ g0. (8)

To this end, we define the analytical expressions of CDF
and PDF of the new EPF distribution with two shape pa-
rameters α and β. )e CDF of the EPF distribution has the
form (for 0< x≤ g0)

F(x) �
1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1

2α − 1
, α, β> 0. (9)

Its PDF reduces to

f(x) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

1
x
1− β􏼠 􏼡

1 +
x

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠

− (1− α)

, α, β> 0,

(10)

where (1/2α − 1) is the normalizing constant and g0 is a
possible maximum assured life of a component.

)e EPF distribution brings an additional shape pa-
rameter (α> 0) that modulates the skewness and kurtosis tail
weights of the baseline model. We note that a new parameter
may offer a better fit to the unimodal, increasing, U-shaped,
and bathtub-shaped failure rate data. )e EPF distribution
reduces to the baseline model (power function) for α � 1.

2.2. Asymptotic Properties of PDF and CDF. Asymptotes of
the CDF and PDF at x ⟶ 0 are given by

F(x)|x⟶0 ∼ 0 andf(x)|x⟶0 ∼ 0. (11)

Asymptotes of the CDF and PDF at x ⟶ g are given by

F(x)|x⟶g0 ∼ 1 andf(x)|x⟶g0 ∼
αβ(2)

α− 1

g0 2α − 1( 􏼁
. (12)

)e derived expressions explore a dynamic effect of α on
the asymptotes of F(x) and f(x).

2.3. Shapes of PDF. Here, we discuss different shapes of the
PDF of the EPF distribution. Figure 1 presents some different
curves of the PDF for various choices of EPF parameters. We
note that these curves can be decreasing, decreasing-in-
creasing, and can be upside-down bathtub for g0 � 2.

3. Moments and Related Measures

Theorem 1. LetX follow the EPF distribution with two shape
parameters (α, β> 0); then, the r-th ordinary moment (μ’r ) of
X has the form
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μ’r �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
. (13)

Proof. )e following expression follows using (6) as

μ’r �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽚

g0

0

x
r
x
β− 1 1 +

x

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠

α− 1

dx . (14)

)e prior expression can be rewritten by simplifying the
expression (1 + (x/g0)

β)α− 1 as follows:

μ’r �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0

α − 1

j

⎛⎝ ⎞⎠
1

g0( 􏼁
β(j+1)

􏽚

g0

0

x
r+β(j+1)− 1

dx .

(15)

After some algebra, the r-th ordinary moment of X
reduces to

μ’r �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
, (16)

where ψj �
α − 1

j
􏼠 􏼡(1/(g0)

β(j+1)),Λr,j,β � r + β(j + 1).

Table 1 presents some numerical results for the first-four
ordinary moments (μ1′, μ2′, μ3′, μ4′), variance� σ2, skewness�

c1, and kurtosis� c2 for different values of the EPF
parameters.

Table 1 shows flexible and versatile behavior for mo-
ments, variance and alongside the skewness and kurtosis.
)e results indicate that the EPF distribution can be dis-
cussed for leptokurtic and skewed datasets. □

Corollary 1. <e first and second ordinary moments and the
inverse moment (μ’− w ) can be obtained by substituting r �

1, 2, and –w, in (7), respectively.<e analytical expressions of
mean, variance, and inverse moment are given, respectively,
by

E(X) � μ’1 �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

g0( 􏼁
Λ1,j,β

Λ1,j,β
,

Var(X) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

g0( 􏼁
Λ2,j,β

Λ2,j,β
−

αβ
g0( 􏼁

β 2α − 1( 􏼁

⎛⎝

􏽘

∞

j�0
ψj

g0( 􏼁
Λ1,j,β

Λ1,j,β

⎛⎝ ⎞⎠⎞⎠,

(17)

and

μ − w / �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

g0( 􏼁
Λ− w,j,β

Λ− w,j,β
. (18)

Corollary 2. <e factorial generating function is obtained
directly followed by Fx(s) � E(1 + s)x � E(ex ln(1+s))

� 􏽐
∞
r�0((ln(1 + s))r/r!)μr

′, and it can be written for X as
follows:

Fx(s) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

r�0

(ln(1 + s))
r

r!
􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
. (19)

Theorem 2. If X∼ EPF (α, β), then the moment generating
function (MGF) (MX(s)) of X is given by

MX(s) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

r�0

s
r

r!
􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
, r � 1, 2, . . . ..

(20)

Proof. )e MGF MX(s) is defined as

MX(s) � 􏽚

g0

0

e
sx

f(x)dx . (21)
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Figure 1: Some curves of PDF for EPF distribution.
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Also, esx � 􏽐
∞
r�0((sx)r/r!).

Hence, the MGF of X is obtained as

MX(s) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

r�0

s
r

r!
􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
. (22)

□

Theorem 3. .
If X∼ EPF (α, β), then the characteristic function (φX(s))

of X is given by

φX(s) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

r�0

(is)
r

r!

􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
; r � 1, 2, . . . an d i �

���
− 1

√
.

(23)

Proof. )e characteristic function φX(s) is defined as

φX(s) � 􏽚

g0

0

e
isx

f(x)dx . (24)

Hence, the characteristic function of X is obtained as

φX(s) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

r�0

(is)
r

r!
􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β

Λr,j,β
. (25)

Vitality function is defined as

V(x) �
1

S(x)
􏽚

g0

x

xf(x)dx . (26)

It is obtained for X as

V(x) �
1

1 − F(x)

αβ
g0( 􏼁

β 2α − 1( 􏼁
􏽘

∞

j�0
ψj

g0( 􏼁
Λ1,j,β − (x)

Λ1,j,β

Λ1,j,β

⎛⎝ ⎞⎠.

(27)

)e conditional moments are defined as

E x
r
|X> t( 􏼁 �

1
F(t)

􏽚

g0

t

x
r
f(x)dx . (28)

It is obtained for X as

E x
r
|X> t( 􏼁 �

1
1 − F(t)

αβ
g0( 􏼁

β 2α − 1( 􏼁
􏽘

∞

j�0
ψj

g0( 􏼁
Λr,j,β − t

Λr,j,β

Λr,j,β

⎛⎝ ⎞⎠.

(29)□

3.1. Incomplete Moments and Associated Measures

Theorem 4. If X∼ EPF (α, β), then the r-th lower incomplete
moments of X are

Φr (t) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

t
Λr,j,β

Λr,j,β
. (30)

Proof. )e r-th incomplete moments Φr(t) are defined as

Φr(t) � 􏽚

t

0

x
r
f(x)dx . (31)

It is obtained for X as

Φr(t) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0

α − 1

j

⎛⎝ ⎞⎠
1

g0( 􏼁
β(j+1)

􏽚

t

0

x
r+β(j+1)− 1

dx .

(32)

Hence, Φr(t) of X reduces to

Φr (t) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

t
Λr,j,β

Λr,j,β
. (33)

□

Corollary 3. <e first incomplete moment is obtained by
substituting r� 1 in equation (33) as

Φ1(t) �
αβ

g0( 􏼁
β 2α − 1( 􏼁

􏽘

∞

j�0
ψj

t
Λ1,j,β

Λ1,j,β
. (34)

<e residual life function is defined as

Rt(x) �
S(x + t)

S(t)
. (35)

Table 1: Numerical analysis for moments, variance, skewness, and kurtosis.

Parameters μ′1 μ′2 μ′3 μ′4 σ2 c1 c2

g0 � 2 α� 1.5

β� 1.9 1.3586 2.0621 3.3315 5.5933 0.3245 0.0011 0.0340
β� 0.9 1.0044 1.3503 2.0370 3.2723 0.6662 0.0001 0.2197
β� 0.1 0.3096 0.4915 1.0025 2.2783 0.4591 6.0526 7.7215
β� 0.2 0.5586 0.9290 1.9286 4.4235 0.8209 2.4066 3.4680
β� 0.3 0.7638 1.3215 2.7872 6.4478 1.1123 1.2730 2.0790

β� 0.3 α� 0.5 0.6226 1.0334 2.1415 4.9061 0.8990 1.9872 2.9723

g0 � 3

α� 0.1 0.5687 0.9272 1.9070 4.3511 0.8164 2.3676 3.4399
β� 0.3 α� 1.1 0.7064 1.2029 2.5196 5.8065 1.0265 1.5233 2.3952
β� 0.09 α� 1.1 0.2282 0.3561 0.7221 1.6358 0.3387 9.0647 11.1686
β� 0.08 α� 0.01 0.1667 0.2553 0.5141 1.1608 0.2460 13.3676 16.0774
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Hence, the residual life function (RLF) and its associated
CDF of X are given by

Rt(x) �
2α − 1 +(x + t/g)

β
􏼐 􏼑

α

2α − 1 + t/ g0( 􏼁( 􏼁
β

􏼐 􏼑
α , (36)

and

FR(t) �
1 +(x + t/g)

β
􏼐 􏼑

α
− 1 +(t/g)

β
􏼐 􏼑

α

2α − 1 + t/ g0( 􏼁( 􏼁
β

􏼐 􏼑
α , (37)

respectively.
Furthermore, the reversed RLF is defined as

Rt(x) � (S(x − t)/S(t)). Hence, reversed RLF and its asso-
ciated CDF of X take the forms:

Rt(x) �
2α − 1 + x − t/ g0( 􏼁( 􏼁

β
􏼐 􏼑

α

2α − 1 + t/ g0( 􏼁( 􏼁
β

􏼐 􏼑
α ,

FR(t) �
1 + x − t/ g0( 􏼁( 􏼁

β
􏼐 􏼑

α
− 1 + t/ g0( 􏼁( 􏼁

β
􏼐 􏼑

α

2α − 1 + t/ g0( 􏼁( 􏼁
β

􏼐 􏼑
α .

(38)

<e mean RLF is defined as MRL � (1 − Φ1(t)/S(t) − t).
It is obtained for X as

MRL �
1

S(t) − t
1 −

αβ
g0( 􏼁

β 2α − 1( 􏼁
􏽘

∞

j�0
ψj

t
Λ1,j,β

Λ1,j,β

⎛⎝ ⎞⎠. (39)

<e mean inactivity time (MIT) is defined as MIT � t −

(Φ1(t)/F(t)). It is obtained for X as

MIT � t −
αβ􏽐
∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

g0( 􏼁
β 1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1

. (40)

<e strong mean inactivity time (SMIT) of a device is
defined as SMIT � t2 − (Φ2(t)/F(t)). It is obtained for X as

MIT � t
2

−
αβ􏽐
∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

g0( 􏼁
β 1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1

. (41)

<e mean past lifetime (MPL) of a device is defined as
MPL� x − (􏽒

x

0 tf(t)dt/F(x)). It is obtained for X as

MPL �
x 1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1􏼒 􏼓 − 2α − 1( 􏼁 αβ/ g0( 􏼁

β 2α − 1( 􏼁 􏽐
∞
j�0 ψj x

Λ1,j,β /Λ1,j,β􏼐 􏼑􏼐 􏼑

1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1
. (42)

Furthermore, the Lorenz (t), Bonferroni B(t), and Zenga
Z(t) inequality curves have a significant role not only in the
study of economics, the distribution of income, poverty, or
wealth, but also they have a vital role in the fields of insurance,
demography, medicine, and reliability engineering.

Theorem 5. If X ∼ EPF(α, β), then the Lorenz inequality
curve of X is

L(t) �
􏽐
∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑
. (43)

Proof. Lorenz inequality curve is defined as

L(t) �
Φ1(t)

μ1′
. (44)

It is obtained for X, using equations (17) and (34), as

L(t) �
􏽐
∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑
. (45)

□

Theorem 6. If X ∼ EPF(α, β), then the Bonferroni in-
equality curve of X is as follows:

B(t) �
2α − 1( 􏼁 􏽐

∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑 1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1􏼒 􏼓

. (46)

Proof. )e Bonferroni inequality curve is defined as

B(x) �
L(t)

F(x)
. (47)

It is obtained for X, using L(t) and the CDF of the EPF
model, as

B(t) �
2α − 1( 􏼁 􏽐

∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑

􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑 1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1􏼒 􏼓

. (48)

□

Theorem 7. If X ∼ EPF(α, β), then the Zenga inequality
curve of X reduces to

Z(t) �
􏽐
∞
j�0 ψj t

Λ1,j,β/Λ1,j,β􏼐 􏼑 − t 􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑

t 􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑 − 􏽐
∞
j�0 ψj t

Λ1,j,β/Λ1,j,β􏼐 􏼑􏼐 􏼑
. (49)

Proof. Zenga inequality curve is defined as

Z(t) �
L(t) − t

t(1 − L(t))
. (50)

It is obtained for X as
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Z(t) �
􏽐
∞
j�0 ψj t

Λ1,j,β/Λ1,j,β􏼐 􏼑 − t 􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β/Λ1,j,β􏼐 􏼑

t 􏽐
∞
j�0 ψj g0( 􏼁

Λ1,j,β /Λ1,j,β􏼐 􏼑 − 􏽐
∞
j�0 ψj t

Λ1,j,β /Λ1,j,β􏼐 􏼑􏼐 􏼑
. (51)

□

4. Reliability Function andAssociatedMeasures

Probability distributions consider as a backbone for reli-
ability engineering to analyze and predict the lifetime of a
component/device. In this section, numerous notable reli-
ability measures are discussed.

4.1. Survival Function. )e survival function of X takes the
form:

S(x) �
2α − 1 + x/g0( 􏼁( 􏼁

β
􏼐 􏼑

α

2α − 1
. (52)

4.2. Hazard Rate Function. )e HRF (in demography),
failure rate function (in engineering), and sometimes it is
called the force of mortality (in economics). )e HRF of X is

h(x) �
αβx

β− 1 1 + x/g0( 􏼁
β

􏼐 􏼑
α− 1

g0( 􏼁
β 2α − 1 + x/g0( 􏼁

β
􏼐 􏼑

α
􏼒 􏼓

. (53)

4.3. Mean Time between Failures. Mean time between fail-
ures (MTBF) is defined as (− t/log(S(x))) Hence, it is ob-
tained for X as

MTBF �
− t

log 2α − 1( 􏼁
− 1 2α − 1 + x/g0( 􏼁

β
􏼐 􏼑

α
􏼒 􏼓􏼒 􏼓

.
(54)

4.4. Cumulative HRF. )e cumulative HRF is defined as
hc(x) � − log(S(x)). Hence, the cumulative HRF of X has
the form:

hc(x) � − log
2α − 1 + x/g0( 􏼁

β
􏼐 􏼑

α

2α − 1
⎛⎝ ⎞⎠. (55)

Figure 2 presents the different curves of the EPF of HRF
for various choices of its parameters. We note that it possesses
increasing U-shaped and bathtub shape curves for g0 � 3.

4.5. Reverse HRF. )e reverse HRF is defined as hr(x) �

f(x)/S(x). It is obtained for X as

hr(x) �
αβx

β− 1 1 + x/g0( 􏼁
β

􏼐 􏼑
α− 1

g0( 􏼁
β 2α − 1 + x/g0( 􏼁

β
􏼐 􏼑

α
􏼒 􏼓

. (56)

4.6. Odds Ratio. )e odds ratio is defined as
O(x) � F(x)/f(x). Hence, the odds ratio of X is given by

O(x) �
g0( 􏼁

β 1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1􏼒 􏼓

αβx
β− 1 1 + x/g0( 􏼁

β
􏼐 􏼑

α− 1 . (57)

4.7. Mills Ratio. )e mill’s ratio is defined as
M(x) � S(x)/f(x). Hence, the mill’s ratio of X is

M(x) �
g0( 􏼁

β 2α − 1 + x/g0( 􏼁
β

􏼐 􏼑
α

􏼒 􏼓

αβx
β− 1 1 + x/g0( 􏼁

β
􏼐 􏼑

α− 1 . (58)

5. Miscellaneous Measures

5.1. Quantile Function

Theorem 8. If X ∼ EPF(α, β), then the QF of X is given by

QF � g0 2α − 1( 􏼁p + 1( 􏼁
1/α

− 1􏼐 􏼑
1/β

. (59)

Proof. )e QF is defined by

QF � F
− 1

xp􏼐 􏼑 � P X≤ xp􏼐 􏼑, p ∈ (0, 1). (60)

)e p-th QF of X is obtained, by inverting the CDF (7),
as

QF � g0 2α − 1( 􏼁p + 1( 􏼁
(1/α)

− 1􏼐 􏼑
1/β

. (61)
□

Corollary 4. <e 1st quartile (Q1), median (Q2), and 3rd
quartile (Q3) of X are obtained by substituting p� 0.25, 0.5,
and 0.75 in (61), respectively. <e analytical expressions are

QFQ1 � g0 2α − 1( 􏼁(0.25) + 1( 􏼁
(1/α)

− 1􏼐 􏼑
1/β

,

QFQ2 � g0 2α − 1( 􏼁(0.50) + 1( 􏼁
(1/α)

− 1􏼐 􏼑
1/β

,

(62)

and

QFQ3 � g0 2α − 1( 􏼁(0.75) + 1( 􏼁
(1/α)

− 1􏼐 􏼑
1/β

, (63)

respectively.

5.2. Skewness and Kurtosis. Bowley’s [41] and Moors’s [42]
coefficients of skewness and kurtosis can be calculated by the
following two equations:

Bsk �
Q0.75 + Q0.25 − 2Q0.50

Q0.75 − Q0.25
,

Mkr �
Q0.375 − Q0.125 − Q0.625 + Q0.875

Q0.75 − Q0.25
.

(64)

Quartiles and octiles based on these descriptive measures
provide more robust estimates than the traditional skewness
and kurtosis measures. We note that these measures are
almost less reactive to outliers and work more effectively for
the distributions, deficient in moments. Figure 3 illustrates
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the skewness and kurtosis curves for the EPF distribution.
We note that skewness and kurtosis are expressed as a
function of β. Figure 3 illustrates a positive to negative trend
of skewness, and an increasing trend in kurtosis can be
observed with the increase of α.

Iδ(X) �
1

1 − δ
log􏽚

go

0

f
δ
(x)dx , δ > 0 an d δ ≠ 1. (65)

5.3. EntropyMeasures. Kurtosis and entropy measures have
the same role in comparing the shapes and tail weights of
various density functions. )e entropy of a random variable
X is defined as a measure of uncertainty.

In this section, we have developed numerous well-
known entropy measures including Rényi [43], Havrda and
Charvat [44], and Mathai and Haubold [45]. For more
details, see some promising work of Basit et al. [46], Dey
et al. [47], and Ijaz et al. [48].

Theorem 9. If X ∼ EPF(α, β), then the Rényi entropy of X is

1
1 − δ

log
αβ

2α − 1( )
􏼠 􏼡

δ

􏽘

∞

i�0

δ(α − 1)

i

⎛⎝ ⎞⎠g
− β(i+1)
0

go( 􏼁
βi+δ(β− 1)+1

βi + δ(β − 1) + 1
; δ > 0 an d δ ≠ 1.

(66)

Proof. )e Rényi entropy for X is defined by
Using Equation (10), we can write

f
δ
(x) �

αβ
g0( 􏼁

β 2α − 1( )

⎛⎝ ⎞⎠

δ

x
δ(β− 1) 1 +

x

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠

δ(α− 1)

.

(67)

)en, integration fδ(x) gives
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􏽚

go

0

f
δ
(x)dx �

αβ
2α − 1( )

􏼠 􏼡

δ

􏽘

∞

i�0

δ(α − 1)

i

⎛⎝ ⎞⎠ go( 􏼁
− β(i+1)

go( 􏼁
βi+δ(β− 1)+1

βi + δ(β − 1) + 1
.

(68)

Hence, the Rényi entropy reduces to

Iδ(X) �
1

1 − δ
log

αβ
2α − 1( )

􏼠 􏼡

δ

􏽘

∞

i�0

δ(α − 1)

i

⎛⎝ ⎞⎠g
− β(i+1)
0

go( 􏼁
βi+δ(β− 1)+1

βi + δ(β − 1) + 1
.

(69)

)e expression developed in (68) is quite helpful in the
further computation of entropy measures of Havrda and
Charvat, and Mathai and Haubold. )e final expressions of
Havrda and Charvat, and Mathai and Haubold entropy
measures are presented in Table 2.

Table 3 presents the results of Rényi, Havrda and
Charvat, and Mathai and Haubold entropy measures for
some choices of model parameters for (go � 3), Set-I
(α � 1.1, β � 2.1), Set -II (α � 2.1, β � 2.5), Set –III
(α � 0.1, β � 0.6), and Set-IV (α � 0.01, β � 1.1).

A wide range of positive and negative values of entropy
measures makes the EPF distribution more flexible and
versatile. □

5.4. Distribution of Order Statistics. Let X1, . . . , Xn be a
random sample of size n and their corresponding order
statistics (OS) X(1) < ...<X(n) from the EPF distribution.
)e PDF of the i-th OS is
f(i: n)(x) � 1/B(i, n − i + 1)!(F(x))i− 1(1 − F(x))n− if(x),

i� 1, 2, 3, . . ., n.
)e i-th OS density is obtained by incorporating

Equations (6) and (8) in the last equation.

f(i: n)(x) �
1

B(i, n − i + 1)!

1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1
2α − 1

⎛⎝ ⎞⎠

i− 1

2α − 1 + x/g0( 􏼁
β

􏼐 􏼑
α

2α − 1
⎛⎝ ⎞⎠

n− i

αβ
g0( 􏼁

β 2α − 1( 􏼁
x
β− 1 1 + x/g0( 􏼁

β
􏼐 􏼑

α− 1
.

(70)

)eminimum and maximum OS densities are obtained,
respectively, by substituting i � 1, n in (70).

)e i-th OS CDF is defined by

G(x) � 􏽘
n

r�i

n

r
􏼠 􏼡(1 − F(x))

n− r
F

r
(x). (71)

)e i-th OS CDF of the EPF distribution reduces to

G(x) � 􏽘
n

r�1

n

r

⎛⎝ ⎞⎠
1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1

2α − 1
⎛⎝ ⎞⎠

r

1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1
2α − 1

⎛⎝ ⎞⎠

n− r

.

(72)

)e median i-th OS PDF is

f(m+1: n)(x) �
(2m + 1)!

(m!)
2 f(x)(F(x))

m
(1 − F(x))

m
. (73)

)eXm+1median OS PDF of the EPF distribution has the
form:

f(m+1: n)(x) �
(2m + 1)!

(m!)
2

αβ
g0( 􏼁

β 2α − 1( 􏼁
x
β− 1 1 +

x

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠

α− 1

1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1
2α − 1

⎛⎝ ⎞⎠

m
2α − 1 + x/g0( 􏼁

β
􏼐 􏼑

α

2α − 1
⎛⎝ ⎞⎠

m

.

(74)

)e i-th and j-th OS joint distribution is defined by

f xi, xj􏼐 􏼑 � C F xi( 􏼁( 􏼁
i− 1

F xj􏼐 􏼑 − F xi( 􏼁􏼐 􏼑
j− i− 1

1 − F xj􏼐 􏼑􏼐 􏼑
n− j

f xi( 􏼁f xj􏼐 􏼑.

(75)

For the i-th and j-th OS joint distribution of the EPF
model is as follows:

f xi, xj􏼐 􏼑 �
C (αβ)

2
xixj􏼐 􏼑

β− 1

g0( 􏼁
2β 2α − 1( 􏼁

2 1 +
xi

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠ 1 +

xj

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

α− 1

1 + x/g0( 􏼁
β

􏼐 􏼑
α

− 1
2α − 1

⎡⎢⎢⎣ ⎤⎥⎥⎦

i− 1

1 −
1 + x/g0( 􏼁

β
􏼐 􏼑

α
− 1

2α − 1
⎡⎢⎢⎣ ⎤⎥⎥⎦

n− j

1 + xj/g0􏼐 􏼑
β

􏼒 􏼓
α

− 1 + xi/g0( 􏼁
β

􏼐 􏼑
α

2α − 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j− i− 1

.

(76)

5.5. Bivariate and Multivariate Extensions. In this section,
we develop the bivariate and multivariate extensions for the
EPF distribution by following the Morgenstern family and
the Clayton family

)e CDF of the bivariate EPF distribution followed by
the Clayton family for the random vector (X, Y) is

F V1, V2( 􏼁 � 1 + η 1 − Z1 v1( 􏼁( 􏼁 1 − Z2 v2( 􏼁( 􏼁( 􏼁Z1 v1( 􏼁Z2 v2( 􏼁,

(77)

where |η|≤ 1, Z1(v1) � ((1 + (x1/g0)
β1)α1 − 1/2α1 − 1)

and Z2(v2) � ((1 + (x2/g0)
β2)α2 − 1/2α2 − 1).

)e CDF of the bivariate EPF distribution followed by
the Morgenstern family for the random vector (V1, V2) is
defined as
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C(x, y) � x
− τ 1+τ 2( ) + y

− τ 1+τ 2( ) − 1􏼒 􏼓
− 1/ τ 1+τ 2( )

; τ 1 + τ 2 ≥ 0.

(78)

Let v1 ∼ EPF (α1, β1), and v2 ∼ EPF (α2, β2). )en, we set
x � Z1(v1) � ((1 + (x1/g0)

β1)α1 − 1/2α1 − 1), and y � Z2
(v2) � ((1 + (x2/g0)

β2)α2 − 1/2α2 − 1).

)e CDF of the bivariate EPF distribution followed by
the Clayton family for the random vector (V1, V2) is

G v1, v2( 􏼁 �
1 + x1/g0( 􏼁

β1􏼐 􏼑
α1

− 1
2α1 − 1

⎛⎝ ⎞⎠

τ 1+τ 2( )

+
1 + x2/g0( 􏼁

β2􏼐 􏼑
α2

− 1
2α2 − 1

⎛⎝ ⎞⎠

τ 1+τ 2( )

− 1⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− 1/ τ 1+τ 2( )( )

. (79)

A simple n-dimensional extension of the last version for
EPF distribution has the form:

H x1, x2, x3, . . . , xn( 􏼁 � 􏽘
n

j�1
1

1 + x1/g0( 􏼁
βj􏼐 􏼑

αj

− 1
2αj − 1

⎛⎝ ⎞⎠

τ 1+τ 2( )
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ + 1 − n
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

− 1/ τ 1+τ 2( )( )

. (80)

6. Statistical Inference

In this section, we discuss six estimation techniques for the
EPF parameters as follows: maximum likelihood estimators
(MLEs), maximum product of spacing estimators (MPSEs),
percentile estimators (PCEs), Cramér von–Mise distance
estimators (CVMEs), Anderson–Darling estimators (ADEs),
and right-tail Anderson–Darling estimators (RTADEs).

6.1. Maximum Likelihood Estimators. Let x1, . . . , xn be a
random sample of size n from the EPF model; then, the
likelihood function of L(ϕ) � 􏽑

n
j�1 f(xj) is given by

L(ϕ) �
αβ

g0( 􏼁 2α − 1( )
􏼠 􏼡

n

􏽙

n

j�1

xj

g0
􏼠 􏼡

β− 1

􏽙

n

j�1
1 +

xj

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠

α− 1

. (81)

)e log L(ϕ) � l(ϕ) takes the form:

Table 2: )e final expressions for Havrda and Charvat, and Mathai and Haubold entropy measures.

Entropy/Support Measure Expression

Havrda and Charvat
ω> 0, ω≠ 1 (1/1 − ω)(􏽒

go

0 fω(x)dx − 1) 1
1− ω (

αβ
(2α − 1)

)
ω

􏽘

∞

i�0

ω(α − 1)

i
⎛⎝ ⎞⎠g− β(i+1)

0 ×
(go)

βi+ω(β− 1)+1

βi + ω(β − 1) + 1
⎛⎝ ⎞⎠ − 1⎛⎝ ⎞⎠

Mathai and Haubold
ϑ> 0, ϑ≠ 1 (1/ϑ − 1)(􏽒

go

0 f2− ϑ(x)dx − 1) 1
ϑ− 1 (

αβ
(2α − 1)

)
2− ϑ

􏽘

∞

i�0

(2 − ϑ)(α − 1)

i
⎛⎝ ⎞⎠g

− β(i+1)
0 ×

(go)
βi+(2− ϑ)(β− 1)+1

βi + (2 − ϑ)(β − 1) + 1
⎛⎝ ⎞⎠ − 1⎛⎝ ⎞⎠

Table 3: Numerical analysis for Rényi, Havrda and Charvat, and Mathai and Haubold entropy measures.

Entropy Int. Set -I Set -II Set -III Set-IV

Rényi

δ � 1.1 48.5073 45.5568 42.9999 36.4934
δ � 1.5 13.2292 12.4246 11.7272 9.9527
δ � 1.7 10.7094 10.0580 9.4934 8.0570
δ � 1.9 9.3094 8.7432 8.2525 7.0038

Havrda and Charvat

ω � 1.1 20.8214 20.9130 20.7450 21.0333
ω � 1.5 4.6657 4.7472 4.4961 4.8391
ω � 1.7 3.4637 3.5389 3.2307 3.6180
ω � 1.9 2.7785 2.8473 2.4510 2.9149

Mathai and Haubold

ℶ � 1.1 − 19.0736 − 18.9800 − 19.1095 − 18.8459
ℶ � 1.5 − 2.7702 − 2.6883 − 2.7356 − 2.5421
ℶ � 1.7 − 1.3975 − 1.3360 − 1.3444 − 1.2080
ℶ � 1.9 − 0.4388 − 0.4138 − 0.4027 − 0.3487
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l(ϕ) � nlog(α) + nlog(β) − nlog g0( 􏼁 − nlog 2α − 1( 􏼁

+(β − 1) 􏽘
n

j�1
log

xj

g0
􏼠 􏼡 +(α − 1) 􏽘

n

j�1
log 1 +

xj

g0
􏼠 􏼡

β
⎛⎝ ⎞⎠.

(82)

Let yj � (xj/g0). )e partial derivatives for the pa-
rameters α and β are

zl(ϕ)

zα
�

n

α
−

n 2αlog 2( 􏼁

2α − 1
+ 􏽘

n

j�1
log 1 + y

β
j􏼐 􏼑, (83)

and

zl(ϕ)

zβ
�

n

β
+ 􏽘

n

j�1
log yj +(α − 1) 􏽘

n

j�1

y
βlog yj

1 + y
β
j􏼐 􏼑

. (84)

)emaximum likelihood estimates (􏽢ϕ � 􏽣α, 􏽢β) of the EPF
parameters can be obtained by maximizing (82) or by
solving the above nonlinear equations simultaneously.)ese
nonlinear equations although do not provide an analytical
solution for the MLEs and the optimum values of α, and β.
Consequently, the Newton–Raphson type algorithm is an
appropriate choice to obtain the MLEs.

6.2. Maximum Product of Spacing Estimators. )e MPSEs
are alternatives to the MLEs, and they are introduced by
Cheng and Amin [49, 50]. Let x1, . . . , xn be a uniform
spacing of a random sample taken from the EPF distri-
bution is defined by Dj � F(xj: n) − F(x(j− 1: n)),

j � 1, 2, 3, . . . , n, where Dj denotes the uniform spacing, xj

is j-th order statistics, and (x0: n) � 0, F(xn+1: n) � 1, and
􏽐

n+1
j�1Dj � 1 , and the MPSEs of the EPF parameters are

obtained by maximizing

P(α, β) �
1

n + 1
􏽘

n+1

j�1
log Dj. (85)

)ese estimators can also be obtained by solving

1
n + 1

􏽘

n+1

j�1

1
Dj

∇t xj: n􏼐 􏼑 − ∇t x(j− 1: n)􏼐 􏼑􏼐 􏼑 � 0, (86)

where

∇1 xj: n􏼐 􏼑 �
z

zα
F xj: n􏼐 􏼑,

∇2 xj: n􏼐 􏼑 �
z

zβ
F xj: n􏼐 􏼑.

(87)

6.3. Percentile Estimators. )e percentile method was in-
troduced by Kao [51]. )is method allows estimating the
unknown parameters if the distribution function has a
closed-form expression. Suppose uj � j/(n + 1) be an un-
biased estimator of F(xj: n).)e PCEs of the EPF parameters
are obtained by minimizing

P(α, β) � 􏽘
n

j�1
xj: n − g0 2α − 1( 􏼁uj + 1􏼐 􏼑

(1/α)
− 1􏼒 􏼓

(1/β)

􏼠 􏼡

2

, (88)

with respect to α and β, respectively.

6.4. Cramér von–Mise Estimators. Cramér [52] and Von
Mises [53] introduced a relatively less-biased minimum
distance estimator called the CVMEs. It can be obtained by
making a difference between the estimates of the CDF and
empirical CDF. )e CVMEs of the EPF parameters are
obtained by minimizing

C(α, β) �
1
12n

+ 􏽘

n

j�1
F xj: n􏼐 􏼑 −

2j − 1
2n

􏼒 􏼓, (89)

with respect to α and β. Furthermore, the CVMEs follow by
solving the nonlinear equations as

C(α, β) �
1
12n

+ 􏽘

n

j�1
F xj: n􏼐 􏼑 −

2j − 1
2n

􏼒 􏼓∇t xj: n􏼐 􏼑 � 0, (90)

where ∇t(xj: n) � 0 for t� 1, 2 is defined by (87).

6.5. Anderson–Darling and Right-Tail Anderson–Darling
Estimators. Another type of minimum distance estimators
is the ADEs. )e ADEs of the EPF parameters are obtained
by minimizing

A(α, β) � − n −
1
n

+ 􏽘
n

j�1
(2j − 1) log F xj: n􏼐 􏼑􏼐 􏼑 + log S xj: n􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(91)

with respect to α and β, respectively. )e ADEs are also
obtained by solving the following nonlinear equation as

􏽘

n

j�1
(2j − 1)

∇t xj: n􏼐 􏼑

F xj: n􏼐 􏼑
+
∇t x(n+1− j: n)􏼐 􏼑

S xn+1− j: n􏼐 􏼑
⎛⎝ ⎞⎠, (92)

where ∇t(xj: n) � 0 (for t� 1, 2) is defined by (87).
)e RTADEs of the EPF parameters can be determined

by minimizing

A(α, β) �
n

2
− 2 + 􏽘

n

j�1
F xj: n􏼐 􏼑􏼐 􏼑 −

1
n

􏽘

n

j�1
(2j − 1)log S xj: n􏼐 􏼑􏼐 􏼑,

(93)

with respect to α and β.

7. Simulation Experiment

In this section, we perform a simulation study to assess the
behavior of different estimators in estimating the EPF pa-
rameters. We generate N� 1,000 replicates using (61) for
several sample sizes n� 25, 50, and 100 with different
combinations of the parameters. We calculate the average
values of the estimates (AEs):
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AE(􏽢φ) �
1
N

􏽘

N

i�1
􏽢φ, (94)

and the mean square errors (MSEs):

MSE(􏽢φ) �
1
N

􏽘

N

i�1
􏽢φi − φ( 􏼁

2
, (95)

where φ � (α, β).
)e selection of the best estimation method will be made

having a minimum value of MSEs.)e R software (DEoptim
package) is adopted to obtain the simulation results. )e
results of AEs and MSEs (in parenthesis) for the MLEs,
MPSEs, PCEs, CVMEs, ADEs, and RTADEs are presented in
Tables 4–7. It is noted that the AEs tend to their true pa-
rameter values, and the MSEs decrease with the increase in
the sample size. )is evidence is enough to favor that the
estimators are unbiased asymptotically. All estimation
methods perform efficiently for different combinations.

8. Application in Automobile Engineering

In this section, we analyze automobile engineering data. )e
data represent the time to failure (103 h) of turbocharger of
one type of engine discussed by Xu et al. [54]. )e

observations are as follows: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6,
4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0,
7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7,
8.8, 9.0. )is dataset is analyzed by Afify et al. [55] and
Nassar et al. [56].

)e EPF distribution is compared with some well-
known competitors, namely, the Weibull power function
(W-PF) and the zero-truncated Poisson power function
(ZTP-PF). )eir CDFs are presented in Table 8. )e cri-
terion -log-likelihood (-LL), Akaike information criterion
(AIC), along with the goodness-of-fit statistics such as
Kolmogorov –Smirnov (KS) with its p-value, are adopted.
Some descriptive statistics are presented in Table 9. Ta-
ble 10 presents the estimates and standard errors (SEs)
alongside the goodness-of-fit statistics as well. Based on
the results in Table 10, we conclude that the EPF distri-
bution provide better fit among all well-established
competitors.

Furthermore, the empirical fitted density (i), estimated
CDF (ii), probability-probability (PP) (iii), Kaplan–Meier
survival (iv), along with the TTT plot (v), and box plot (vi)
are illustrated in Figure 4, respectively. All the estimates
and numerical results are calculated using the statistical
software R, package adequacy model developed by Rafael
et al. [57].

Table 4: )e AEs and MSEs for (α � 1.5 and β � 2.0)T.

n Par. Est. MLEs MPSEs PCEs CVMEs ADEs RTADEs

25
􏽢α AE 1.5430 (0.0808) 1.5267 (0.0701) 1.5072 (0.0624) 2.1794 (0.0910) 1.5603 (0.0910) 1.5871 (0.1243)MSE
􏽢β AE 2.0408 (0.3065) 2.0101 (0.2620) 2.7331 (2.0871) 2.2208 (0.2764) 2.0208 (0.2764) 2.0156 (0.2693)MSE

50
􏽢α AE 1.5380 (0.0658) 1.5225 (0.0631) 1.5051 (0.0615) 1.7521 (0.0739) 1.5474 (0.0704) 1.6042 (0.0988)MSE
􏽢β AE 2.0080 (0.2592) 2.0020 (0.2522) 2.8602 (2.2141) 2.1503 (0.2278) 2.0027 (0.2530) 2.0026 (0.2529)MSE

100
􏽢α AE 1.5048 (0.0609) 1.5037 (0.0610) 1.5001 (0.0575) 1.5407 (0.0086) 1.5053 (0.0610) 1.5179 (0.0597)MSE
􏽢β AE 2.0009 (0.2509) 2.0005 (0.2505) 2.6984 (1.6397) 2.0602 (0.0541) 2.0006 (0.2506) 2.0011 (0.2511)MSE

Table 5: )e AEs and MSEs for (α � 2.5 and β � 1.5)T.

n Par. Est. MLEs MPSEs PCEs CVMEs ADEs RTADEs

25
􏽢α AE 2.5273 (0.6168) 2.5153 (0.5912) 2.5001 (0.5627) 2.7881 (1.6927) 2.5425 (0.6557) 2.5900 (0.8361)MSE
􏽢β AE 1.5308 (0.0105) 1.5100 (0.0024) 2.1981 (0.8746) 1.8852 (1.3466) 1.5182 (0.0051) 1.5156 (0.0031)MSE

50
􏽢α AE 2.5270 (0.6001) 2.5394 (0.5378) 2.5001 (0.5627) 2.6770 (1.2651) 2.5448 (0.6367) 2.5675 (0.7333)MSE
􏽢β AE 1.5188 (0.0055) 1.5047 (0.0008) 2.2336 (0.7808) 1.7453 (0.8573) 1.5088 (0.0024) 1.5088 (0.0025)MSE

100
􏽢α AE 2.5249 (0.5734) 2.5197 (0.4719) 2.5000 (0.5626) 2.5033 (0.5659) 2.5241 (0.6150) 2.5281 (0.6267)MSE
􏽢β AE 1.5032 (0.0001) 1.5006 (0.0000) 2.2794 (0.7528) 1.5003 (0.0000) 1.5018 (0.0001) 1.5018 (0.0001)MSE
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Table 7: )e AEs and MSEs for (α � 2.5 and β � 3.5)T.

n Par. Est. MLEs MPSEs PCEs CVMEs ADEs RTADEs

25
􏽢α AE 2.5676 (0.2944) 2.5444 (0.2493) 3.1695 (2.0854) 2.7040 (0.7616) 2.5868 (0.3311) 2.6072 (0.3467)MSE
􏽢β AE 3.5951 (0.3132) 3.5293 (0.1982) 4.6798 (2.7572) 3.5902 (0.3670) 3.5542 (0.2382) 3.5717 (0.2741)MSE

50
􏽢α AE 2.5186 (0.1813) 2.5082 (0.1685) 2.9012 (1.1522) 2.5475 (0.2712) 2.5375 (0.2088) 2.5907 (0.3245)MSE
􏽢β AE 3.5207 (0.1824) 3.5049 (0.1645) 3.7910 (1.9981) 3.5154 (0.1948) 3.5075 (0.1674) 3.5087 (0.1688)MSE

100
􏽢α AE 2.5035 (0.1636) 2.5025 (0.1623) 2.7081 (0.8632) 2.5011 (0.1609) 2.5018 (0.1616) 2.5035 (0.1636)MSE
􏽢β AE 3.5035 (0.1633) 3.5009 (0.1608) 3.5679 (1.6502) 3.5003 (0.1602) 3.5020 (0.1618) 3.5020 (0.1618)MSE

Table 8: List of some competitive models of CDFs.

Model CDFs of model Author (s)

W-PF GI(x) � 1 − e
− α(xβ/βg0 − xβ)c

, α, β, c> 0, 0<x< g0 Tahir et al. [10]
ZTP-PF GII(x) � 1− e− α(x/g0 )β

1− e− α , α, β> 0, 0<x< g0 Okorie et al. [58]

Table 9: Descriptive statistics for turbocharger data.

Nature Min. Q1 Median Mean Q3 Max. Sk. Kur.
Turbocharger 1.600 5.075 6.500 6.253 7.825 9.000 − 0.638 2.641

Table 10: Parameter estimates, SEs, and goodness-of-fit statistics for turbocharger data.

Parameter estimates (SEs) Statistics
Model 􏽢α 􏽢β 􏽢c -LL AIC KS p value (KS)
EPF 0.2516 (0.6067) 2.6418 (0.7979) − 76.9082 157.8166 0.0496 1.0000
W-PF 1.2327 (0.7999) 3.1875 (1.7180) 0.7639 (0.2057) 77.6748 161.4164 0.0515 0.9999
ZTP-PF 2.7724 (0.5035) 3.8728 (0.5176) − 82.4755 168.9510 0.1253 0.5555

Table 6: )e AEs and MSEs for (α � 0.8 and β � 0.5)T.

n Par. Est. MLEs MPSEs PCEs CVMEs ADEs RTADEs

25
􏽢α AE 0.8861 (0.5333) 0.8802 (0.5386) 0.8022 (0.3627) 0.8902 (0.6356) 0.8968 (0.5663) 0.9439 (0.6981)MSE
􏽢β AE 0.5156 (0.0019) 0.5026 (0.0003) 0.5355 (0.0107) 0.5325 (0.0015) 0.5105 (0.0018) 0.5125 (0.0021)MSE

50
􏽢α AE 0.8229 (0.4093) 0.8267 (0.4108) 0.8026 (0.3531) 0.8377 (0.5548) 0.8238 (0.4121) 0.8348 (0.4369)MSE
􏽢β AE 0.5083 (0.0007) 0.5036 (0.0002) 0.5074 (0.0016) 0.5234 (0.0007) 0.5049 (0.0005) 0.5039 (0.0004)MSE

100
􏽢α AE 0.8076 (0.3702) 0.8061 (0.3677) 0.8023 (0.3227) 0.8089 (0.4527) 0.8089 (0.3721) 0.8243 (0.3958)MSE
􏽢β AE 0.5021 (0.0000) 0.5008 (0.0000) 0.5006 (0.0000) 0.5110 (0.0001) 0.5008 (0.0000) 0.5005 (0.0000)MSE
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9. Conclusions

In this paper, we develop a new class that generates optimal
univariate continuous models called the new expo-
nentiated-G class. A special member of the proposed family
called the exponentiated power function (EPF) distribution
is studied in detail. Numerous statistical and reliability
characteristics are discussed. Furthermore, the EPF dis-
tribution has flexible shapes for its density and hazard
functions. For the estimation of EPF parameters, we fol-
lowed the six accredited techniques named, MLEs, MPSEs,
PCEs, CVMEs, ADEs, and RTADEs. A simulation exper-
iment is performed to compare the performance of dif-
ferent estimation techniques. Our results show that the
estimation techniques perform very well. )e applicability
of the EPF distribution is addressed using real-life data
form the engineering field. )e results show that the EPF
distribution provides better fit as compared to other well-
known competitors.

For some possible future studies, the EPF distribution
can be adopted to analyze entropy measures following the
works of Siddiqui et al. [59] and Rashid et al. [60].

Data Availability
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provided.
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