Research Article

New Degree-Based Topological Indices of Toroidal Polyhex Graph by Means of M-Polynomial

Farkhanda Afzal 1, Mohammad Zeeshan 2, Deeba Afzal 2, Sufian Munawar 3, Dhan Kumari Thapa 4, and Alina Mirza 1

1. MCS, National University of Sciences and Technology, Islamabad 44000, Pakistan
2. Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan
3. Department of Quantitative Methods, College of Business Administration, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
4. Department of Mathematics and Statistics, Padmakanya Campus, Tribhuvan University, Kirtipur, Nepal

Correspondence should be addressed to Dhan Kumari Thapa; dhankumari.thapa@pkmc.tu.edu.np

Received 23 January 2022; Accepted 18 April 2022; Published 11 May 2022

Academic Editor: Gohar Ali

Copyright © 2022 Farkhanda Afzal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Graph theory is the principal field of mathematics. In this manuscript, we have discussed the toroidal polyhex graph. Some new indices such as reduced reciprocal randic, arithmetic geometric, SK, SK1, SK2 indices, First Zagrab, the general sum-connectivity, SCIλ, and the forgotten index have been used. We have computed the closed form of topological indices of toroidal polyhex graph via M-Polynomial.

1. Introduction

Graph theory in mathematics means the study of graphs. Graphs are one of the prime objects of study in discrete mathematics. The graph appears as a set of vertices (nodes or points) connected by edges (arcs or lines). Graphs are mathematical structures of the diagram formed by using model pairwise relation between objects. They are found on road maps and constellations when constructing schemes and drawing. Graphs underlie many computer programs that make modern communication and technological processes possible. A chemical graph theory is the mixture of two subjects’ chemistry and mathematics. The chemical graph is the topological type of mathematical chemistry [1] which declares in a graph to mathematical modeling of the chemical event. Sometimes mathematical chemistry is also called computer chemistry [2]. Chemical graph is concerned with searching the topological indices associated with the properties of chemical molecules [3].

A graph $G(V; E)$ with vertex set $V(G)$ and edge set $E(G)$ is connected if there exists a connection between any pair of vertices in G. A network directly connected graph having no multiple edges and loops. The degree of a vertex is several vertices that are fastened to the connected vertex by the edges.

The first topological index was used by Wiener [4]. Topological indices work for the success of the quantitative activity and other properties of a molecule that correlate with chemical structure. The connection between atoms shown by various types of topological indices give a good guess of different chemical properties of the chemical compound such as boiling point, the heat of formation, evaporation, surface tension, and vapor pressure.

The first topological index was used by Wiener [5]. Topological indices work for the success of the quantitative activity and other properties of a molecule that correlate with chemical structure. The connection between atoms shown by various types of topological indices give a good guess of different chemical properties of the chemical
1.1. Reduced Reciprocal Randic Index

\[\text{RRR}(G) = \sum_{j,k \in E(G)} \sqrt{(d_j - 1)(d_k - 1)}. \]

In 2015 [9], Gutman and Furtula introduced a reduced reciprocal index. The reduced reciprocal randic (RRR) index is a molecular structure descriptor (or more precisely, a topological index), handy for a diverse level of enthalpy creation and usual boiling point of isomeric octanes.

1.2. Arithmetic Geometric Index

\[AG_1(G) = \sum_{j,k \in E(G)} \frac{d_j + d_k}{2\sqrt{d_j \cdot d_k}}. \]

In 2016 [8], Deutsch and Klawzar used the arithmetic geometric index. \(SK, SK_1, \) and \(SK_2 \) indices are denied as

\[SK(G) = \sum_{j,k \in E(G)} \frac{d_j + d_k}{2}, \]
\[SK_1(G) = \sum_{j,k \in E(G)} \frac{d_j \cdot d_k}{2}, \]
\[SK_2(G) = \sum_{j,k \in E(G)} \left(\frac{d_j \cdot d_k}{2} \right)^2. \]

In 2016 [10], Shegahalli and Kanabur also used \(SK, SK_1, \) and \(SK_2 \) indices.

1.3. First Zagrab Index. First Zagrab index was used in 2014 [11].

\[EM_1(G) = \sum_{j,k \in E(G)} (d_{jk})^2. \]

1.4. General Sum-Connectivity Index. Firstly, general sum-connectivity index was used by Du et al. in 2011 [12].

\[SCI(G) = \sum_{j,k \in E(G)} \frac{1}{\sqrt{d_j + d_k}}. \]

1.5. SCI_\lambda Index. Also, SCI_\lambda was used by Du et al. in 2011 [12].

\[SCI_\lambda = \sum_{j,k \in E(G)} (d_j + d_k)^\lambda. \]

1.6. Forgotten Index. Gutman and Furtula introduced forgotten index in 2015 [9].

\[F(G) = \sum_{j,k \in E(G)} (d_j^2 + d_k^2). \]

\textit{Definition 1.} The M-polynomial is firstly used in 2015 [8] and is determined as follows:

\[M(G, x, y) = \sum_{\rho \leq j \leq k \leq \phi} m_{j,k}(G)x^j y^k, \]

where \(\rho = \max[d_\cdot \cdot \cdot v \in V(G)], \phi = \min[d_\cdot \cdot \cdot v \in V(G)], \) and \(m_{j,k}(G) \) is the total number of edges \(vu \in E(G) \) where \(\{d_\cdot \cdot \cdot d_\cdot \} = \{j,k\}. \)

In last few years, M-polynomial of several graphs is invented [5, 13–16]. In Table 1, degree-dependent topological indices via M-polynomial are provided where

\[D_x g(x, y)x \frac{\partial (g(x, y))}{\partial x}, \]
\[D_y g(x, y)y \frac{\partial (g(x, y))}{\partial y}, \]
\[J g(x, y) = g(x, x), \]
\[Q_{x(a)}g(x, y)x^a g(x, y), \]
\[D_x^{1/2} \left(g(x, y) \right) = \sqrt{x \frac{\partial (g(x, y))}{\partial x}} \cdot \sqrt{g(x, y)}, \]
\[D_y^{1/2} \left(g(x, y) \right) = \sqrt{y \frac{\partial (g(x, y))}{\partial y}} \cdot \sqrt{g(x, y)}, \]
\[S_x^{1/2} \left(g(x, y) \right) = \int_0^x \frac{g(t, y)}{t} dt \cdot \sqrt{g(x, y)}, \]
\[S_y^{1/2} \left(g(x, y) \right) = \int_0^y \frac{g(x, t)}{t} dt \cdot \sqrt{g(x, y)}. \]

2. Toroidal Polyhex Network

Fullerene was published in 1985. New forms of the element carbon (C) were established by Robert C, Richard E. Smalley, and Sir Harold W. K. Fullerene is an allotrope form of carbon whose molecules exist in carbon atoms attached by single and double bonds that can be the form of closed mesh or slightly closed mesh, with a fused ring of five to seven atoms. These molecules may be hollow spheres, ellipsoid, tube, and many more shapes and sizes.

Let \(H_{[m,n]} \) be the toroidal polyhex as shown in Figure 1. The M-polynomial of \(H_{[m,n]} \) which have been computed in [17] is given as \(M(H_{[m,n]}, x, y) = 3mnx^y y^3. \) The graph of 3D plot of M-polynomial of toroidal polyhex network \(m = n = 2 \) is shown in Figure 2.
3. Topological Indices of Toroidal Polyhex Network

Theorem 1. Let $H_{m,n}$ be the toroidal polyhex.

$$M(H_{m,n}, x, y) = 3mnx^3y^3.$$ \hspace{1cm} (10)

Then,

(i) $\text{RRR}(H_{m,n}) = 6mn$

(ii) $\text{AG}_1(H_{m,n}) = 3mn$

(iii) $\text{SK}(H_{m,n}) = 9mn$

Proof. Let $M(H_{m,n}, x, y) = 3mnx^3y^3$.

(i) Reduced reciprocal randic index is as follows:

$$Q_x(-1)g(x, y) = 3mnx^2y^3, \quad Q_y(-1)Q_x(-1)g(x, y) = 3mn^2y^2,$$

$$D_y^{(1/2)}Q_y(-1)Q_x(-1)g(x, y) = 3\sqrt{2}mn,$$

$$D_x^{(1/2)}D_y^{(1/2)}Q_y(-1)Q_x(-1)g(x, y) = 6mnx^2y^3,$$

$$\text{RRR}(H_{m,n}) = D_x^{(1/2)}D_y^{(1/2)}Q_y(-1)Q_x(-1)g(x, y)_{x=1} = 6mn.$$ \hspace{1cm} (11)
Arithmetic geometric index is as follows:

\[S_{\frac{1}{2}}(x, y) = \sqrt{3}mnx^3y^3, \]
\[S_x^{(1/2)}S_y^{(1/2)}g(x, y) = mnx^3y^3, \]
\[JS_x^{(1/2)}S_y^{(1/2)}g(x, y) = mnx^6, \]
\[D_xJS_x^{(1/2)}S_y^{(1/2)}g(x, y) = 6mnx^6, \]
\[\frac{1}{2}D_xJS_x^{(1/2)}S_y^{(1/2)}g(x, y) = 3mnx^6, \]
\[AG_I(H_{(m,n)}) = \frac{1}{2}D_xJS_x^{(1/2)}S_y^{(1/2)}[g(x, y)]_{x=y=1} = 3mn. \]

(12)

SK index is as follows:

\[D_xg(x, y) = 9mnx^3y^3, \]
\[D_yg(x, y) = 9mnx^3y^3, \]
\[(D_x + D_y)g(x, y) = 18mnx^3y^3, \]
\[\frac{1}{2}(D_x + D_y)g(x, y) = 9mnx^3y^3, \]
\[SK(H_{(m,n)}) = \frac{1}{2}(D_x + D_y)[g(x, y)]_{x=y=1} = 9mn. \]

(13)

SK\(_1\) index is as follows:

\[D_yg(x, y) = 9mnx^3y^3, \]
\[(D_xD_y)g(x, y) = 27mnx^3y^3, \]
\[\frac{1}{2}(D_xD_y)g(x, y) = \frac{27}{2}mnx^3y^3, \]
\[SK_1(H_{(m,n)}) = \frac{1}{2}(D_xD_y)[g(x, y)]_{x=y=1} = \frac{27}{2}mn. \]

(14)

SK\(_2\) index is as follows:

\[Jg(x, y) = 3mnx^6, \]
\[D_xJg(x, y) = 108mnx^6, \]
\[\frac{1}{4}D_x^2Jg(x, y) = 27mnx^6, \]
\[SK_2(H_{(m,n)}) = \frac{1}{4}D_x^2J[g(x, y)]_{x=y=1} = 27mn. \]

(15)

First Zagrab index is as follows:

\[Jg(x, y) = 3mnx^6, \]
\[D_xJg(x, y) = 108mnx^6, \]
\[\frac{1}{4}D_x^2Jg(x, y) = 27mnx^6, \]
\[SK_2(H_{(m,n)}) = \frac{1}{4}D_x^2J[g(x, y)]_{x=y=1} = 27mn. \]

(16)
The authors declare that they have no conflicts of interest.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Data Availability

No data were used to support this study.

References

