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Graph theory is the principal �eld of mathematics. In this manuscript, we have discussed the toroidal polyhex graph. Some new
indices such as reduced reciprocal randic, arithmetic geometric, SK, SK1, SK2 indices, First Zagrab, the general sum-connectivity,
SCIλ, and the forgotten index have been used. We have computed the closed form of topological indices of toroidal polyhex graph
via M-Polynomial.

1. Introduction

Graph theory in mathematics means the study of graphs.
Graphs are one of the prime objects of study in discrete
mathematics. �e graph appears as a set of vertices
(nodes or points) connected by edges (arcs or lines).
Graphs are mathematical structures of the diagram
formed by using model pairwise relation between ob-
jects. �ey are found on road maps and constellations
when constructing schemes and drawing. Graphs un-
derlie many computer programs that make modern
communication and technological processes possible. A
chemical graph theory is the mixture of two subjects’
chemistry and mathematics. �e chemical graph is the
topological type of mathematical chemistry [1] which
declares in a graph to mathematical modeling of the
chemical event. Sometimes mathematical chemistry is
also called computer chemistry [2]. Chemical graph is
concerned with searching the topological indices asso-
ciated with the properties of chemical molecules [3].

A graphG(V; E) with vertex setV(G) and edge set E(G) is
connected if there exists a connection between any pair of
vertices in G. A network directly connected graph having no
multiple edges and loops. �e degree of a vertex is several
vertices that are fastened to the connected vertex by the
edges.

�e �rst topological index was used by Wiener [4].
Topological indices work for the success of the quantitative
activity and other properties of a molecule that correlate
with chemical structure. �e connection between atoms
shown by various types of topological indices give a good
guess of di�erent chemical properties of the chemical
compound such as boiling point, the heat of formation,
evaporation, surface tension, and vapor pressure.

�e �rst topological index was used by Wiener [5].
Topological indices work for the success of the quantitative
activity and other properties of a molecule that correlate
with chemical structure. �e connection between atoms
shown by various types of topological indices gives a good
guess of di�erent chemical properties of the chemical
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compound such as boiling point, the heat of formation,
evaporation, surface tension, and vapor pressure. �e to-
pological indices are computed via M-polynomial. Several
works are done in this area [6–8].

1.1. Reduced Reciprocal Randic Index

RRR(G) � 
jk∈E(G)

��������������

dj − 1  dk − 1( 



. (1)

In 2015 [9], Gutman and Furtula introduced a reduced
reciprocal index. �e reduced reciprocal randic (RRR) index
is a molecular structure descriptor (or more precisely, a
topological index), handy for a divine level of enthalpy
creation and usual boiling point of isomeric octanes.

1.2. Arithmetic Geometric Index

AG1(G) � 
jk∈E(G)

dj + dk

2
������
dj · dk

 . (2)

In 2016 [8], Deutsch and Klawzar used the arithmetic
geometric index.

SK, SK1, and SK2 indices are denied as

SK(G) � 
jk∈E(G)

dj + dk

2
,

SK1(G) � 
jk∈E(G)

dj · dk

2
,

SK2(G) � 
jk∈E(G)

dj · dk

2
 

2

.

(3)

In 2016 [10], Shegehalli and Kanabur also used SK, SK1,
and SK2 indices.

1.3. First Zagrab Index. First Zagrab index was used in 2014
[11].

EM1(G) � 
jk∈E(G)

djk 
2
. (4)

1.4. General Sum-Connectivity Index. Firstly, general sum-
connectivity index was used by Du et al. in 2011 [12].

SCI(G) � 
jk∈E(G)

1
������
dj + dk

 . (5)

1.5. SCIλ Index. Also, SCIλ was used by Du et al. in 2011
[12].

SCIλ � 
jk∈E(G)

dj + dk 
λ
. (6)

1.6. Forgotten Index. Gutman and Furtula introduced for-
gotten index in 2015 [9].

F(G) � 
jk∈E(G)

d
2
j + d

2
k .

(7)

Definition 1. �e M-polynomial is firstly used in 2015 [8]
and is determined as follows:

M(G, x, y) � 
ρ≤ j≤ k≤ ϕ

mij(G)x
j
y

k
, (8)

where ρ � max dv: v ∈ V(G) , ϕ � min dv: v ∈ V(G) , and
mjk(G) is the total number of edges vu ∈ E(G) where
dv, du  � j, k .

In last few years, M-polynomial of several graphs is
invented [5, 13–16]. In Table 1, degree-dependent topo-
logical indices via M-polynomial are provided where

Dxg(x, y)x
z(g(x, y))

zx
,

Dyg(x, y)y
z(g(x, y))

zy
,

Jg(x, y) � g(x, x),

Qx(α)g(x, y)x
α
g(x, y),

D
(1/2)
x (g(x, y)) �

�����������

x
z(g(x, y))

zx



·

������

g(x, y)



,

D
(1/2)
y (g(x, y)) �

�����������

y
z(g(x, y))

zy



·

������

g(x, y)



,

S
(1/2)
x (g(x, y)) �
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0
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t
dt
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(9)

2. Toroidal Polyhex Network

Fullerene was published in 1985. New forms of the element
carbon (C) were established by Robert C, Richard E. Smalley,
and Sir Harold W. K. Fullerene is an allotrope form of
carbon whose molecules exist in carbon atoms attached by
single and double bonds that can be the form of closed mesh
or slightly closed mesh, with a fused ring of five to seven
atoms. �ese molecules may be hollow spheres, ellipsoid,
tube, and many more shapes and sizes.

Let H m,n{ } be the toroidal polyhex as shown in Figure 1.
�e M-polynomial of H m,n{ } which have been computed in
[17] is given as M(H m,n{ }, x, y) � 3mnx3y3. �e graph of 3D
plot of M-polynomial of toroidal polyhex network m � n � 2
is shown in Figure 2.
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3. Topological Indices of Toroidal
Polyhex Network

Theorem 1. Let H m,n{ } be the toroidal polyhex.

M H m,n{ }, x, y  � 3mnx
3
y
3
. (10)

�en,

(i) RRR(H m,n{ }) � 6mn

(ii) AG1(H m,n{ }) � 3mn

(iii) SK(H m,n{ }) � 9mn

(iv) SK1(H m,n{ }) � (27/2)mn

(v) SK2(H m,n{ }) � 27mn

(vi) EM1(H m,n{ }) � 48mn

(vii) SCI(H m,n{ }) � (
�
3

√
/

�
2

√
)mn

(viii) SCIλ(H m,n{ }) � 18λmn

(ix) F(H m,n{ }) � 54mn

Proof. Let M(H m,n{ }, x, y) � 3mnx3y3.

(1) Reduced reciprocal randic index is as follows:

Qx(−1)g(x, y) � 3mnx
2
y
3
,

Qy(−1)Qx(−1)g(x, y) � 3mn
2
y
2
,

D
(1/2)
y Qy(−1)Qx(−1)g(x, y) � 3

�
2

√
mn,

D
(1/2)
x D

(1/2)
y Qy(−1)Qx(−1)g(x, y) � 6mnx

2
y
2
,

RRR H m,n{ }  � D
(1/2)
x D

(1/2)
y Qy(−1)Qx(−1)[g(x, y)]x�1 � 6mn.

(11)

Table 1: Degree-dependent topological indices via M-polynomial.

Topological index Derivation from M(G; x, y)

Reduced reciprocal randic RRR[G] � D(1/2)
x D(1/2)

y Qy(−1)Qx(−1)[g(x, y)]x�y�1

Arithmetic geometric index AG1[G] � (1/2)DxJS(1/2)
x S(1/2)

y [g(x, y)]x�1

SK index SK[G] � (1/2)(Dx + Dy)[g(x, y)]x�y�1

SK1 index SK1[G] � (1/2)(DxDy)[g(x, y)]x�y�1

SK2 index SK2[G] � (1/4)D2
xJ[g(x, y)]x�y�1

First Zagrab index EM1[G] � D2
xQx(−2)J[g(x, y)]x�1

General sum-connectivity index SCI[G] � S(1/2)
x J[g(x, y)]x�1

SCIλ index SCIλ[G] � Dλ
xJ[g(x, y)]x�1

Forgotten index F[G] � (D2
x + D2

y)[g(x, y)]x�1

Figure 1: �e toroidal polyhex.
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Figure 2: Plot of M-polynomial of toroidal polyhex.
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(2) Arithmetic geometric index is as follows:

S
(1/2)
y g(x, y) �

�
3

√
mnx

3
y
3
,

S
(1/2)
x S

(1/2)
y g(x, y) � mnx

3
y
3
,

JS
(1/2)
x S

(1/2)
y g(x, y) � mnx

6
,

DxJS
(1/2)
x S

(1/2)
y g(x, y) � 6mnx

6
,

1
2
DxJS

(1/2)
x S

(1/2)
y g(x, y) � 3mnx

6
,

AG1 H m,n{ }  �
1
2
DxJS

(1/2)
x S

(1/2)
y [g(x, y)]x�y�1

� 3mn.

(12)
(3) SK index is as follows:

Dxg(x, y) � 9mnx
3
y
3
,

Dyg(x, y) � 9mnx
3
y
3
,

Dx + Dy g(x, y) � 18mnx
3
y
3
,

1
2

Dx + Dy g(x, y) � 9mnx
3
y
3
,

SK H m,n{ }  �
1
2

Dx + Dy [g(x, y)]x�y�1 � 9mn.

(13)

(4) SK1 index is as follows:

Dyg(x, y) � 9mnx
3
y
3
,

DxDy g(x, y) � 27mnx
3
y
3
,

1
2

DxDy g(x, y) �
27
2

mnx
3
y
3
,

SK1 H m,n{ }  �
1
2

DxDy [g(x, y)]x�y�1 �
27
2

mn.

(14)

(5) SK2 index is as follows:

Jg(x, y) � 3mnx
6
,

D
2
xJg(x, y) � 108mnx

6
,

1
4
D

2
xJg(x, y) � 27mnx

6
,

SK2 H m,n{ }  �
1
4
D

2
xJ[g(x, y)]x�y�1 � 27mn.

(15)

(6) First Zagrab index is as follows:
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Figure 3: �e plot of topological indices. (a) Reduced reciprocal randic index. (b) Arithmetic geometric index. (c) SK index. (d) SK1 index.
(e) SK2 index. (f ) First Zagrab index. (g) General sum-connectivity index. (h) SCIλ index. (i) Forgotten index.
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Jg(x, y) � 3mnx
6
,

Qx(−2)Jg(x, y) � 3mnx
4
,

D
2
xQx(−2)Jg(x, y) � 48mnx

4
,

EM1 H m,n{ }  � D
2
xQx(−2)J[g(x, y)]x�1 � 48mn.

(16)

(7) General sum-connectivity index is as follows:

Jg(x, y) � 3mnx
6
,

S
(1/2)
x Jg(x, y) �

�
3

√

�
2

√ mnx
6
,

SCI H m,n{ }  � S
(1/2)
x J[g(x, y)]x�1 �

�
3

√

�
2

√ mn.

(17)

(8) SCIλ index is as follows:

Jg(x, y) � 3mnx
6
,

D
λ
xJg(x, y) � 18λmnx

6
,

SCIλ H m,n{ }  � D
λ
xJ[g(x, y)]x�1 � 18λmn.

(18)

(9) Forgotten index is as follows:

D
2
yg(x, y) � 27mnx

3
y
3
,

D
2
xg(x, y) � 27mnx

3
y
3
,

D
2
x + D

2
y g(x, y) � 54mnx

3
y
3
,

F H m,n{ }  � D
2
x + D

2
y [g(x, y)]x�1 � 54mn.

(19)

□

4. Conclusion

In this article, we assess the toroidal polyhex graph through
the degree-based topological indices. �e plot of topological
indices of toroidal polyhex is given in Figure 3. �e
M-polynomial calculated the toroidal polyhex that can help
us to understand and recover many degree-based topological
indices. �ese topological indices play a vital role.
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