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Metric dimension is an e�ective tool to study di�erent distance-based problems in the �eld of telecommunication, robotics,
computer networking, integer programming, chemistry, and electrical networking. In this paper, we study the latest form of
metric dimension called fractional metric dimension of some connected networks such as circular diagonal ladder, double sun
�ower, and double path networks.

1. Introduction

�e resolving or locating sets were �rst introduced by Slater,
and he called order of the minimum resolving set as location
number [1]. By following the idea of locating sets, Melter and
Harary de�ned the term metric dimension (MD). Moreover,
they gave a characterization of the MD of trees [2]. Chartrand
et al. computed MD of the path and unicyclic networks, and
they also characterized all those connected networks of order q
havingMD 1, q − 1, and q − 2. Furthermore, they proposed the
solution of integer programming problem (IPP)with the help of
MD under certain conditions [3]. Constant MD of cycle-related
networks was computed by Murtaza et al. [4]. It was also
observed that problem to �nd MD of a connected network is
NP-hard [5]. Locating sets have applications in network dis-
covery [6], coinweighting, robot navigation, pattern recognition
[7], and joints in networks [8]. Some interesting results of
di�erent invariants of MD can be seen in [9–12], and recently,
Dalal et al. computed edge MD of some Toeplitz networks [13].

Currie and Oellermann found integral as well as
nonintegral solutions of IPP by using the idea of frac-
tional metric dimension (FMD) [14]. Fahr et al. presented
an optimal solution of the IPP by using concept of FMD
[15]. Later Arguman and Matthew calculated FMD of
some important networks and also de�ned speci�c
computational criteria to compute FMD of some con-
nected networks [16, 17]. FMD of vertex transitive and

hierarchical product of networks was computed by Feng
et al. Moreover, they also established bounds of FMD of
Cartesian product of networks [18,19]. For the study of
FMD of corona product, lexicographic product, and
unicyclic and generalized sunlet networks, see [20–22].
Later on Al Khalidi et al. designed computational criteria
to compute bounds of FMD of connected networks [23].
Furthermore, Javaid et al. characterized all those con-
nected networks with FMD being exactly 1 [24] and
bounds of FMD for metal organic compounds calculated
by Moshin et al. [25]. Recently, in 2021, Hassan et al.
computed the L-F metric dimension of generalized gear
networks in the form of exact value and bounds.
Moreover, they also proved that all these networks re-
main unbounded when their order approaches to in�nity
[26]. In this dissertation, we have computed exact value of
FMD of connected networks such as double sun�ower
network, circular diagonal network, and double path
network.

�e article is organized as follows: Section 2 consists of
the preliminaries, Section 3 deals with the main results, and
Section 4 contains the conclusion.

2. Preliminaries

Let T be a simple undirected network where
V(T) � a1, a2, a3, . . . , aq{ } is the vertex set and
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E(T) � e1, e2, e3, . . . , eq􏽮 􏽯 is the edge set, respectively. A
network whose vertices are ordered in a way that two
vertices are adjacent if and only if they are consecutive in the
list is called path network. For any two vertices a, b{ }⊆V(T),
the distance between any two vertices a and b denoted by
d(a, b) is the number of edges between them. A network is
connected if there exists a path between any two vertices. For
further study about these preliminary concepts, see [27].

For Z � x1, x2, x3, . . . , xq􏽮 􏽯⊆V(T) and y ∈ V(T), a
representation of the vertex y with respect to Z is
r(y|Z) � (r(y, x1), r(y, x2), r(y, x3), . . . , r(y, xq). If each
y ∈ V(T) possesses unique representation withZ, then setZ
becomes resolving set having q elements of T and the order
of minimum resolving set is called MD of T defined as
dim(T) � min |Z|: Z is resolving set of T􏼈 􏼉.

A vertex c ∈ V(T) resolves pair of vertices (a, b) if
distance from a to c is not equal to distance from c to b. For a
pair a, b{ }⊆V(T), the resolving neighbourhood set is defined
as R a, b{ } � c ∈ V(T): d(a, c)≠d(b, c){ }. A function
ϕ: V(T)⟶ [0, 1] is called resolving function if
ϕ(R a, b{ })≥ 1 for each R(a, b) of T , where
ϕ(R a, b{ }) � 􏽐c∈R(a,b)ϕ(x). (en, FMD is defined as
dimf(T) � min\{|ϕ|: ϕ is minimal resolving function of T\}.

3. Main Results

In this particular section, we present main result to compute
exact value of FMD of different connected networks such as
circular diagonal ladder networks, double sunflower net-
works, and double path networks.

3.1. Fractional Metric Dimension of Double Sunflower
Network. For 1≤ i≤ q, the double sunflower [DSDF]q is a
network of order 3q and size 5q, which is obtained from the
sunflower network by adding a new vertex ci on each edge
aiai+1 and adding edges bici for each i (see Figure 1) [28].

Lemma 1. Let [DSF]q with q≥ 3 be a double sunflower
network. 1en,

(a) |R(bici)| � 2 and |∪ q
i�1R(bici)| � 3q.

(b) |R(bici)|< |R(x, y)| and |R(x, y)∩ ∪ q
i�1R(bici)|

> |R(bici)|, where R(x, y) denotes all other possible
resolving neighbourhood sets of [DSF]q.

Proof. Let ai, bi, and ci be the vertices of [DSF]q, where
1≤ i≤ q, q + 1 � 1(mod q), and we have the following.

(a) R(bici) � bi, ci􏼈 􏼉 with |R(bici)| � 2 and |∪ q

i�1R

(bici)| � 3q.
(b) R(aibi) � V[DSF]n − ci􏼈 􏼉, R(bia(i+1)) � V(DSF)q

− ci􏼈 􏼉, R(aici) � V(DSF)q − bi􏼈 􏼉, R(ciai+1) � V

(DSF)q − bi􏼈 􏼉, R(ai, ci+1) � V(DSF)q, R(ai, bi+1)

� V(DSF)q, R(bi, bz) � V(DSF)q − ai+z+1/2􏼈 􏼉, i �

1(mod 2) and i< z. R(bi, bu) � V(DSF)q − ci+u/2􏼈 􏼉,
i � 1(mod 2) and i< u. R(bi, cz) � V[DSF]q−

ai+z+1/2􏼈 􏼉, i � 0(mod 2) and i< z. R(bi, cu) � V

[DSF]q − ci+u/2􏼈 􏼉, i � 1(mod 2) and i< z. R(bi,

cz) � V[DSF]q − ai+u+1/2􏼈 􏼉, i � 0(mod 2) and i< z.
R(bi, cu) � V[DSF]q − ai+u+1/2􏼈 􏼉, i � 0 (mod 2) and
i< z. R(bi, at) � V[DSF]q. R(bi, aq) � V[DSF]q,
R(ai, bi+1) � V[DSF]q, R(aq, ci) � V [DSF]q.

It can be observed from Table 1 that |R(bici)|<
|R(x, y)| and |R(x, y)∩ ∪ q

i�1R(bici)> |R(bici)|, where
R(x, y) are the other RN sets. □

Theorem 1. Let [DSF]q with q≥ 3 be a double sunflower
network. 1en, dimFr[DSF]q � q.

Proof. For different vertices of [DSF]q, we have following
cases. □

Case 1. For q � 3, the possible RN sets are shown in Table 2.
From above RN sets, the RN sets |R(bici)| � 2,

|R(bici)|< |R(x, y)| and R(x, y) are the other RN sets,
where 1≤ i≤ 3. Furthermore, |∪ 3i�1R(bici)| � 6 and
|R(x, y)∪ 3i�1R(bici)|≥ 2. Hence, there exists a constant
function Ψ: V(DSF)3⟶ [0, 1] defined by Ψ(v) � 1/2,
∀v ∈ ∪ 3i�1R(bici), which shows that Ψ is a resolving
function. In order to show that Ψ is a minimal resolving
function, consider Ψ′: V(DSF)3⟶ [0, 1], where |Ψ′(v)|,
<|Ψ(v)|, and henceΨ′(R(bici))< 1 which meansΨ′ is not a
resolving function. Consequently,

dimFr[DSF]3 � 􏽘
6

i�1

1
2

� 3. (1)

Case 2. For 1≤ i≤ q and q≥ 5, by Lemma 1, |R(bici)| � 2,

and |∪ q
i�1R(bici)| � 2q and |R(x.y)∩ ∪ q

i�1R(bici)|≥ 2,
∀x, y ∈ V[DSF]q. Hence, there exists a function
Ψ: V(DSF)q⟶ [0, 1] defined by Ψ(v) � 1/2:

Ψ(v) �

1
2
, ∀v ∈ ∪

n

i�1
R bici( 􏼁,

0, otherwsie,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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Figure 1: Double sunflower network [DSF]q.

2 Journal of Mathematics



such that Ψ(R(x, y))≥ 1 which shows that Ψ is a resolving
function. In order to show that Ψ is a minimal resolving
function, consider that there exists another resolving
function Ψ′: V(DSF)q⟶ [0, 1] such that |Ψ′(v)|< |Ψ(v)|,

and henceΨ′(R(x, y))≥ 1 whichmeansΨ is not a resolving
function. Consequently,

dimFr[DSF]q � 􏽘

2q

i�1

1
2

� q. (3)

3.2. FractionalMetric Dimension of Circular Diagonal Ladder
Network. A circular diagonal ladder [CDL]q of size 5q and
order 2q is obtained from a prism network Dq by adding
some double crossing edges aibi+1 and ai+1bi (see Figure 2)
(for more information about these networks, see [28]).

Lemma 2. If [CDL]q with q≥ 4 is a circular diagonal ladder
network, then

(a) |R(aibi)| � 2 and |∪ q
i�1R(aibi)| � 2q.

(b) |R(aibi)|< |R(x, y)| and |R(x, y)∩ ∪ q

i�1R(aibi)|

≥ |R(aibi)|, whereR(x, y) are all the other possible
resolving neighbourhood sets.

Proof. Consider inner (ai) and outer (bi) vertices of
(CDL)q, respectively, where q + 1 � 1(mod q), u �

(1mod 2), z � (0mod 2), and we have

(a) R(aibi) � ai, bi􏼈 􏼉 with |R(aibi)| � 2 and
|∪ q

i�1R(aibi)| � 2q.
(b) R(bibi+1) � V([CDL]q − ai, ai+1􏼈 􏼉, R(aia(i+1)) � V

(CDL)q − bi, bi+1􏼈 􏼉, R(biai−1) � V[CDL]q − ai−1,􏼈

bi+1}, R(biai+1) � V[CDL]q − bi+1, ai􏼈 􏼉, R(ai, ai+2)

� V(CDL)n− ai+1, bi+1, an+2i+2/2, bn+2i+2/2􏼈 􏼉, R(bi, bt)

� V[CDL]q, R(au, au+z) � V[CDL ]q − a2u+z/2, b2u􏼈

+z/2, a2u+q/2, b2u+q/2}, R(bu, bu+z) � V(CDL)q − {

a2u+z/2, b2u+z/2, a2u+q/2, b2u+q/2}, R(au, az) � V

[CDL]q, R(a1, aq−1) � V[CDL]q − aq, bq, aq/2,􏽮

bq/2}, R(b1, bq−1) � V[CDL]q − aq, bq, aq/2, bq/2􏽮 􏽯.

It can be observed from Table 3 that
|R(aibi)|< |R(x, y)|, ∀x, y ∈ V[CDL]q. □

Theorem 2. Let [CDL]q with q≥ 4 be a circular diagonal
ladder network. 1en,

dimFr[CDL]q � q. (4)

Proof. For different vertices of [CDL]q, we have the fol-
lowing cases. □

Case 1. In this case, we compute FMD of [CDL]q with the
help of Table 4.

For 1≤ i≤ 4, |R(aibi)| � 2 and |R(aibi)|< |R(x, y)|

where R(x, y) are the other RN sets of [CDL]4. Further-
more, |∪ 4i�1R(aibi)| � V(CDL4). Hence, we define a
function Ψ: V(CDL4)⟶ [0, 1] such that Ψ(x) � 1/2 for
each v ∈ V[CDL]4 and Ψ(x, y)≥ 1 ∀x, yV(CDL4); there-
fore, Ψ is a RF. To show that Ψ is a minimal RF, we take

Table 1: Order of each RN set of [DSF]q.

Order Comparison
|R(aibi)| � 3q − 1 2< 3q − 1
|R(biai+1)| � 3q − 1 2< 3q − 1
|R(aici)| � 3q − 1 2< 3q − 1
|R(biai+1)| � 3q − 1 2< 3q − 1
|R(ai, ci+1)| � 3q 2< 3q

|R(ai, ci+1)| � 3q 2< 3q

|R(ai, bi+1)| � 3q 2< 3q

|R(bi, aq)| � 3q 2< 3q

|R(ai, ci+1)| � 3q 2< 3q

|R(bi, bz)| � 3q − 1 2< 3q − 1
|R(aq, ci)| � 3q 2< 3q

|R(bi, bu)| � 3q − 1 2< 3q − 1
|R(bi, bu)| � 3q − 1 2< 3q − 1
|R(bi, cz)| � 3q − 1 2< 3q − 1
|R(bi, at)| � 3q 2< 3q

Table 2: RN sets and the elements of [DSF]3.

RN set Elements
R1 � R(a1, a2) V[DSF]3 − a3, b1, c1􏼈 􏼉,
R2 � R(a1, a3) V[DSF]3 − a2, b3, c3􏼈 􏼉,
R3 � R(a1, c2) V[DSF]3,
R4 � R(a1, b2) V[DSF]3,
R5 � R(b1, b2) V[DSF]3 − a2, b3, c3􏼈 􏼉,
R6 � R(b1, b3) V[DSF]3 − a3, b1, c1􏼈 􏼉,
R7 � R(b1, c2) V[DSF]3 − a2, b3, c3􏼈 􏼉,
R8 � R(b1, c3) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R9 � R(b1, a3) V[DSF]3,
R10 � R(b1, b3) V[DSF]3 − a1, b2, c2􏼈 􏼉

R11 � R(b1, b3) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R12 � R(b2, b3) V[DSF]3 − a3, b1, c1􏼈 􏼉,
R13 � R(b2, c1) V[DSF]3 − a2, b3, c3􏼈 􏼉,
R14 � R(a2, a3) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R15 � R(a2, c3) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R16 � R(a2, b3) V[DSF]3,
R17 � R(a3, c1) V[DSF]3,
R18 � R(b3, c2) V[DSF]3 − a3, b1, c2􏼈 􏼉,
R19 � R(b3, c1) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R20 � R(c1, c3) V[DSF]3 − a1, b2, c2􏼈 􏼉,
R21 � R(c1, c2) V[DSF]3 − a2, b3, c3􏼈 􏼉,
R22 � R(a1b1) V[DSF]3 − c1􏼈 􏼉,
R23 � R(a2b2) V[DSF]3 − c2􏼈 􏼉,
R24 � R(a3b3) V[DSF]3 − c3􏼈 􏼉,
R25 � R(b1a2) V[DSF]3 − c1􏼈 􏼉,
R26 � R(b2a3) V[DSF]3 − c2􏼈 􏼉,
R27 � R(b3a1) V[DSF]3 − c3􏼈 􏼉,
R28 � R(a1c1) V[DSF]3 − b1􏼈 􏼉,
R29 � R(a2c2) V[DSF]3 − b2􏼈 􏼉,
R30 � R(a3c3) V[DSF]3 − b3􏼈 􏼉,
R31 � R(c1a2) V[DSF]3 − b1􏼈 􏼉,
R32 � R(c2a3) V[DSF]3 − b2􏼈 􏼉,
R33 � R(c3a1) V[DSF]3 − b3􏼈 􏼉,
R34 � R(b1c1) b1, c1􏼈 􏼉,
R35 � R(b2c2) b2, c2􏼈 􏼉,
R36 � R(b3c3) b3, c3􏼈 􏼉.
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another RF such that |Ψ′(x, y)|< |Ψ(x, y)|; then,
Ψ′(x, y)< 1. Consequently,

dimFr[CDL]4 � 􏽘
8

i�1

1
2

� 4 (5)

Case 2. For q≥ 5, |R(aibi)| � 2 and |R(aibi)|< |R(x, y)|

where R(x, y) are the other RN sets of [C DL]q. Fur-
thermore, |∪ 2q

i�1R(aibi)| � V[CDL]q. Hence, we define a
function Ψ: V(CDLq)⟶ [0, 1] such that Ψ(x) � 1/2 for
each v ∈ V[CDL]q and Ψ(x, y)≥ 1 ∀x, y ∈ V[CDL]4;
therefore,Ψ is a RF. To show thatΨ is a minimal RF, we take
another RF such that |Ψ′(x, y)|< |Ψ′(x, y)|; then,
Ψ′(x, y)< 1 which shows that Ψ is a minimal resolving
function. Consequently,

dimFr[CDL]q � 􏽘

2q

i�1

1
2

� q. (6)

3.3. FMDofDouble PathNetwork. In this section, our aim is
to compute FMD of double path network. (e double path
network P2

q is obtained from path network Pq by taking two
copies of Pq by taking every vertex ai in one copy with the
open neighbourhood N(ai) of the correspondence vertex of
its second copy. Furthermore, |V([P2

q]| � 2q and |E[P2
q]| �

2q + 6 (for details, see Figure 3) [29].

Lemma 3. Let P2
q with q≥ 3 be a double path network. 1en,

(a) |R(aibi)| � 2 and ∪ q
i�1R(ai, bi) � V[P2

q].
(b) |R(ai, bi)|< |R(x, y)| and |R(x, y)∩ ∪ q

i�1R(ai,

bi)| ≥ 2, where R(x, y) are all the possible resolving
neighbourhood sets of P2

q.

Proof. Let ai, bi be the vertices of P2
q, where 1≤ i≤ q,

q � 1(mod 2), j � 0(mod 2), p � 0(mod 2), and
q + 1 � 1(mod q).

(a) Since R(ai, bi) � ai, bi􏼈 􏼉, |R(ai, bi)| � 2 and
|∪ q

i�1R(aibi)| � V[P2
q] � 2q.

(b) R(ai, bq) � V(P2
q) − bi+q/2, ai+q/2􏽮 􏽯, R(ai, aq) �

V(P2
q) − bi+q/2, ai+q/2􏽮 􏽯, R(bi, bq) � V(P2

q) − bi+q/2,􏽮

ai+q/2}, R(aj, aq) � V(P2
q) − aj+p/2, aj+p/2􏽮 􏽯, R(bj,

bp) � V(P2
q) − bj+p/2, bj+p/2􏽮 􏽯,R(aj, bp) � V(P2

q) −

aj+p/2,􏽮 bj+p/2}. Now with the help of Table 5, we
compare the cardinalities of each RN set.

From Table 5, it is observed that |R(ai, bi)|< |R(x, y)|.
Since ∪ n

i�1R(ai, bi) � V[P2
q], |R(x, y)∩ ∪ q

i�1R

(ai, bi)|≥ 2. □

Theorem 3. Let [P2
q] be a double path network with q≥ 3.

1en,

dimFr P
2
q􏽨 􏽩 � q. (7)

Proof. For different vertices of P2
q, we have the following

cases. □

Case 1. In this case, we compute all the RN sets of [P2
q] and

their cardinalities with the help of Table 6.
Since |R(e)| � |R(a1,b1)| � |R(a2,b2)| � |R(a3,b3)| �

|R(a1,a3)| � |R(b1,b3)| � 2 and |R(e)|< |R(x,y)| of [P2
3],

|∪3i�1R(ei)| � 6 and |R(x,y)∩⋃R(e)|≥2. Furthermore,
the RN setsR(e) are not pairwise disjoint. Hence, we define
a functionΨ: V((P2

3)⟶ [0,1] such thatΨ(v) � 1/2 for each
v ∈V[P2

3] and Ψ(x,y)≥1 ∀x,yV[P2
3]; therefore, Ψ is a RF.

To show that Ψ is a minimal RF, we take another RF such
that |Ψ′(x,y)|< |Ψ(x,y)|; then, |Ψ(x,y)|<1. Hence, Ψ is a
minimal RF. Consequently,

dimFr P
2
3􏽨 􏽩 � 􏽘

6

i�1

1
2

� 3. (8)

Case 2. For q≥ 4, by Lemma 3, |R(ai, bi)| � 2 and
|∪ q

i�1R(ai, bi)| � |V[P2
q]| where the elements ofR(a,bi) are

pairwise disjoint. Hence, we define a constant function
Ψ: V((P2

q)⟶ [0, 1] such that Ψ(v) � 1/2 for each
v ∈ V[P2

3] and Ψ(x, y)≥ 1 ∀x, yV[P2
3]; therefore, Ψ is a RF.

To show that Ψ is a minimal RF, we take another RF such
that |Ψ′(x, y)|< |Ψ(x, y)|; then, Ψ′(x, y)< 1 which shows
that Ψ is a minimal resolving function, ∀x, y ∈ V[P2

3].
Consequently,

Table 3: RN sets and the elements of [CDL]q.

Order of each RN set of [CDL]q Comparison

|R(aiai+1)| � 2q − 2 2< 2q − 2
|R(bibi+1)| � 2q − 2 2< 2n − 2
|R(biai−1)| � 2q − 2 2< 2q − 2
|R(biai+1)| � 2q − 2 2< 2q − 2
|R(au, au+z)| � 2q − 4 2< 2q − 4
|R(bu, bu+z)| � 2q − 1 2< 2q − 4
|R(au, az)| � 2q 2< 2q

|R(a1, aq−1)| � 2q − 4 2< 2q − 4
|R(b1, bq−1)| � 2q − 4 2< 2q − 4

b1

b2

b3

b4

b5

b6

b7

bq

aq

a7

a6
a5

a4

a3

a2

a1

Figure 2: Circular diagonal ladder [CDL]q.
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Table 4: Cardinality of each RN set.

Cardinality Comparison
R1 � R(b1b2) V[CDL]4 − a1, a2􏼈 􏼉,
R2 � R(b2b3) V[CDL]4 − a2, a3􏼈 􏼉,
R3 � R(b3b4) V[CDL]4 − a3, a4􏼈 􏼉,
R4 � R(b4b1) V[CDL]4 − a4, a1􏼈 􏼉,
R5 � R(a1a2) V[CDL]4 − b1, b2􏼈 􏼉,
R6 � R(a2a3) V[CDL]4 − b2, b3􏼈 􏼉,
R7 � R(a3a4) V[CDL]4 − a1, a2􏼈 􏼉,
R8 � R(a4a1) V[CDL]4 − b4, b1􏼈 􏼉,
R9 � R(a1b2) V[CDL]4 − a2, b1􏼈 􏼉,
R10 � R(a2b3) V[CDL]4 − a3, b2􏼈 􏼉,
R11 � R(a3b4) V[CDL]4 − a4, b3􏼈 􏼉,
R12 � R(a4b1) V[CDL]4 − a4, b3􏼈 􏼉,
R13 � R(a1b4) V[CDL]4 − a4, b1􏼈 􏼉,
R14 � R(b1a2) V[CDL]4 − b2, a1􏼈 􏼉,
R15 � R(b2, a3) V[CDL]4 − b3, a2􏼈 􏼉,
R16 � R(b3, a4) V[CDL]4 − b4, a3􏼈 􏼉,
R17 � R(b4, a1) V[CDL]4 − b1, a4􏼈 􏼉,
R18 � R(a1b1) a1, b1􏼈 􏼉,
R19 � R(a2b2) a2, b2􏼈 􏼉,
R20 � R(a3b3) a3, b3􏼈 􏼉,
R21 � R(a4b4) a4, b4􏼈 􏼉,
R22 � R(a1, a3) a1, a3, b1, b3􏼈 􏼉,
R23 � R(a1, b3) a1, a3, b1, b3􏼈 􏼉,
R24 � R(b1, a3) a1, a3, b1, b3􏼈 􏼉,
R25 � R(b1, b3) a1, a3, b1, b3􏼈 􏼉,
R26 � R(a2, a4) a2, a4, b2, b4􏼈 􏼉,
R27 � R(a2, b4) a2, a4, b2, b4􏼈 􏼉.

a1 a2 a3 aq–2 aq
aq–1

b1 b2 b3 bq–2 bqbq–1

Figure 3: Double path network [P2
q].

Table 5: (e possible resolving neighbourhood sets of P2
q.

|R(ai, aq)| � 2q − 2 2< 2q − 2
|R(ai, bq)| � 2q − 2 2< 2q − 2
|R(bi, bq)| � 2q − 2 2< 2q − 2
|R(aj, ap)| � 2q − 2 2< 2q − 2
|R(bj, bp)| � 2q − 2 2< 2q − 2
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dimFr P
2
q􏽨 􏽩 � 􏽘

2q

i�1

1
2

� q. (9)

4. Conclusion

(is paper deals with the latest invariant of metric dimension
called fractional metric dimension, and we have computed
exact value of fractional metric dimension of different con-
nected networks like double sunflower network, circular di-
agonal ladder network, and double path network. Furthermore,
it is also proved that the fractional metric dimension of these
networks depends on their order. Now, we close our discussion
with the following open problem.

Characterization of the connected works attaining the
exact value of fractional metric dimension is still an open
problem under the condition that the cardinality of the
minimum resolving neighborhood sets is greater than 2.
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