
Research Article
Särndal Approach and Separate Type Quantile Robust Regression
TypeMean Estimators for Nonsensitive and Sensitive Variables in
Stratified Random Sampling

Usman Shahzad ,1,2 Ishfaq Ahmad,1 Nadia H. Al-Noor ,3 Soofa Iftikhar,4

A. H. Abd Ellah,5 and Troon J. Benedict 6

1Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
2Department of Mathematics and Statistics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
3Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
4Department of Statistics, Shaheed Benazir Bhutto Women University, Peshawar, KP, Pakistan
5Department of Mathematics, College of Science, Al-Baha University, Al-Baha, Saudi Arabia
6Department of Economics, Maasai Mara University, Narok, Kenya

Correspondence should be addressed to Troon J. Benedict; troon@mmarau.ac.ke

Received 11 September 2022; Revised 17 November 2022; Accepted 18 November 2022; Published 6 December 2022

Academic Editor: Ali Sajid

Copyright © 2022 Usman Shahzad et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Surprising perceptions may happen in survey sampling. Te arithmetic mean estimator is touchy to extremely enormous or
potentially small observations, whenever selected in a sample. It can give one-sided (biased) results and eventually, enticed to erase
from the selected sample. Tese extremely enormous or potentially small observations, whenever known, can be held in the
sample and utilized as supplementary information to expand the exactness of estimates. Also, a supplementary variable is
consistently a well-spring of progress in the exactness of estimates. A suitable conversion/transformation can be utilized for
getting muchmore precise estimates. In the current study, regarding population mean, we proposed a robust class of separate type
quantile regression estimators under stratifed random sampling design. Te proposed class is based on extremely enormous or
potentially small observations and robust regression tools, under the framework of Särndal. Te class is at frst defned for the
situation when the nature of the study variable is nonsensitive, implying that it bargains with subjects that do not create hu-
miliation when respondents are straightforwardly interrogated regarding them. Further, the class is stretched out to the situation
when the study variable has a sensitive nature or theme. Sensitive and stigmatizing themes are hard to explore by utilizing standard
information assortment procedures since respondents are commonly hesitant to discharge data concerning their own circle. Te
issues of a population related to these themes (for example homeless and nonregular workers, heavy drinkers, assault and rape
unfortunate casualties, and drug users) contain estimation errors ascribable to nonresponses as well as untruthful revealing.Tese
issues might be diminished by upgrading respondent participation by scrambled response devices/techniques that cover the
genuine value of the sensitive variable. Tus, three techniques (namely additive, mixed, and Bar-Lev) are incorporated for the
purposes of the article. Te productivity of the proposed class is also assessed in light of real-life dataset. Lastly, a simulation study
is also done to determine the performance of estimators.

1. Introduction

For future development, each community needs careful
planning to manage its afairs efciently. Successful planning
requires many types of data that are reasonably accurate.

Everything is changing rapidly in this modem environment,
requiring the regular collection of up-to-date information. It
is possible to collect data in two ways, which are a complete
survey of the enumeration and a sample survey. Since data
collection is subject to time and cost constraints, regular data
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collection by full enumeration is typically not feasible. Te
only solution then is sample surveys.Trough surveying part
of a population as a sample, more efort can be made to
gather more accurate data through hiring better-trained
workers, better organization, better monitoring, etc.

Furthermore, in survey sampling, it is regular to make
utilization of supplementary (auxiliary) information to ac-
quire enhanced designs and more efective estimators. Tis
information might be utilized at the planning phase of the
study, in the estimation methodology, or at the two phases.
Te huge amount of sampling literature portrays an as-
sortment of methods for using supplementary information,
for example, see [1–4].

At the estimation stage, in many sampling situations of
the survey, estimators of ratio and regression are commonly
used when using supplementary information. It moves
through the part of the origin, and the variance of the study
variable is proportional to the auxiliary variable(s) when the
relationship between the study and auxiliary variable(s) is a
straight line, and the efciencies of these estimators are
practically equivalent. In reality, if this condition is not ful-
flled, at that point usual ratio estimators are less productive
than regression estimators. In order to overthrow this cir-
cumstance in this literature, huge research has been carried
out to better the ratio estimators by providing diferent ad-
justed/modifed ratio-type estimators. In addition, the ratio
estimator is used quite efectively in case of a positive cor-
relation between the study and the auxiliary variable(s).Tere
are numerous practical circumstances (medical, biological,
economical, and industrial sectors) when a positive corre-
lation between the two or more variables (one is a study
variable and the other are auxiliary variables) exists.ion are as
follows: (i) the sale of a particular commodity rises/increases
with the increase in the region’s population and average per
capita income; (ii) the productivity of the employee improves/
increases with both his previous experience and his educa-
tional or intelligence level; (iii) the human body’s immunity
increases from the risk of certain diseases by following healthy
diets and paying attention to ftness, etc.

A vast amount of literature is available on ratio-type
estimators for mean estimation. Such literature studies [3–5]
have developed some classes of estimators utilizing sup-
plementary information under a simple random sampling
scheme. However, for positive correlation, the traditional
regression-ratio-type estimator is better for the estimation of
population parameters [6]. It is noted that traditional re-
gression-type-ratio estimators are based on conventional
regression coefcient which becomes inappropriate when
data are contaminated by outliers and hence mean esti-
mation too. For solving this issue, there are some modif-
cations available in the literature under a simple random
sampling scheme (see, for example, [7–11]). In light of these
developments [12], Zaman and Bulut frst time introduced
robust regression type mean estimators under stratifed
random sampling. To the best of our knowledge, utilization
of quantile robust regression with Särndal approach [13] in
the mean estimation does not discuss yet in mean estimation
under stratifed random sampling. Tus, drawing on these
encounters and following a plan based methodology, in the

framework of [13], we propose in the current paper a new
class of estimators for the mean of a study variable under
stratifed random sampling. Te comparison is based on the
real-life application and various simulation experiments
which clearly indicates that the planned class outperforms
the various estimators remembered for the highly sensitive
and quickly investigated in the paper. At frst, we accept that
the examination/study variable is nonsensitive and, in this
manner, a standard estimation setting is implemented. After
that, we stretch out the outcomes to the instance of a
sensitive, highly personal, stigmatizing, or in any event
threatening variable, which is thought to be observed on
sampled units by utilizing nonstandard surveymethods so as
to increase respondent collaboration. Current methods are
preferable as randomized response theory proposed by [14]
and well-demonstrated in the monographs via [15] and
numerous other scholars. Furthermore, for the sensitive
variable, mathematical design is conceded out to examine
the behavior of the planned class on the origin of distressed
values of the study variable attained by scrambling the
factual values conferring to the directions given by a number
of randomized response models.

Te other main parts of this paper are structured into
following sections. Section 2 documented some existing ro-
bust estimators of the population mean of the study variable
under a stratifed random sampling scheme. In Section 3, the
proposed family of estimators has been determined and the
expressions for its mean square error (MSE) have been
attained to frst order of approximation. We theoretically
explained, in Section 4, the sensitive and nonsensitive re-
sponses of mean estimation. Section 5 enfolds the numerical
illustration of the existing and proposed family. Finally, in
Section 6, the article leads up to concluding remarks.

2. Robust Regression and Mean Estimators

Te most well-known traditional regression technique is
ordinary least squares (OLS). It depends upon limiting
(minimizing) the aggregate of the squares of the residuals
(ri). Due to computational efortlessness, OLS mostly uti-
lized for parameter estimation. Te OLS strategy gives the
best estimation results of the straight-line regression under
the perfect conditions portrayed by the OLS. It is noted that
the estimates of parameters are based on OLS, infuenced by
outliers, and subsequently have not given signifcantly
productive outcomes. According to [16], the threshold point
of the OLS ftting is 1/n or 0%, which infers that it tends to be
efectively infuenced by even a single outlier. Hence, the
mean estimation based on OLS in presence of outliers is also
afected [9]. To overcome this issue in mean estimation,
many robust regression tools and robust covariance matrices
are utilized by authors. For the purposes of the article, the
precise description of some of these tools and matrices is
provided in upcoming lines.

Te least absolute deviation (LAD) is based upon the
minimization of the sum of absolute squared errors (SEs).
Te least median of squares (LMS) is based upon the
minimization of the median of SE. Te least trimmed
squares (LTS) is another robust regression tool. In LTS, SEs
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are sorted after that OLS is applied on initial Z observations.
Hence, computations are not afected by extreme values in
LTS. Another unique kind of robust regression tool is based
on three steps, namely MM-estimation is also utilized in the
presence of outliers, for details see [17]. TeM-estimation is
based upon minimization of the function ∅(.). Some of the
designed formulae for the objective function are as follows:

Huber-M estimator [18] considered the objective
function with u� 4.685 or 6, as

∅ ri( 􏼁 �
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2
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2
i , for ri
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Hampel-M estimator [19] considered the objective
function with k� 1.7, g � 3.4, and u� 8.5, as
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Tukey-M estimator [20] considered the objective func-
tion with u� 4.685 or 6, as
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Furthermore, [21] constructed two robust covariance
matrices. Te frst is the minimum covariance determinant
(MCD) estimator, i.e. T(x) � average of the gth point of X

where determinant of covariance matrix provides minimum
value. It is noted that g � n(1 − αt) where αt is representing
the ratio of trimming. Moreover, the threshold point of
MCD is equivalent to αt [22]. Te second is the minimum
volume ellipsoid (MVE) estimator, i.e. T(x) � center/av-
erage of an ellipsoid with min-volume spanned by the gth

point X. It is noted that g � [0.5] + 1 and[.] used for
rounding the number to an integer. For more details about
robust regression tools, MCD and MVE, see [9, 12, 23].

In light of the abovementioned robust regression tools
and covariance matrices, literature [12] defned some separate
type robust regression estimators in stratifed random sam-
pling. We are providing their generalized form as follows:

yslr(i) � 􏽘
L

h�1
Ωh yh + βh.xy robi( ) Xh − xh( 􏼁􏼔 􏼕, for i � 1, 2, . . . , 21.

(4)

MSE of separate robust regression estimator

MSE yslr(i)( ) � 􏽘
L

h�1
Ω2hθh S

2
h.y + β2h.xy robi( )S

2
h.x − 2βh.xy robi( )Sh.xy􏼔 􏼕,

(5)

with
(yh, S2h.y, xh, S2h.x, Shxy) representingmeans variances and

covariances of (Y, X), computed from traditional method in
hth stratum for i � 1, 2, . . . , 7.

(yh, S2h.y, xh, S2h.x, Sh.xy) computed fromMCD covariance
matrix in hth stratum for i � 8, 9, . . . , 14.

(yh, S2h.y, xh, S2h.x, Shxy) computed from MVE covariance
matrix in hth stratum for i � 15, 16, . . . , 21.

(βh.xy(robi)
) computed from robust regression tools (i.e.

LAD, LMS, LTS, Huber-MM (HMM), Huber-M (HM),
Hample-M (HPL), and Tukey-M (TK)) for i � 1, 2, . . . , 21.

3. QuantileRobust-Regression-TypeEstimators
Using Särndal Approach

Much of the time, genuine information contains extremely
enormous or potentially small observations. Diferent cross
breed seed creation organizations present new assortments
of seeds and furthermore indicate the scope of generation
per section of land that rancher would proft by. Extremely
enormous or potentially small observations can without
much of a stretch be perused from the predetermined ex-
tents. For evaluating average pay of families, pay of the most
extravagant people (greatest) in the general public is notable,
and that of least fortunate (least) can without much of a
stretch be surveyed. Correspondingly in diferent studies
that are directed consistently after an explicit interim of
time, data about extremely enormous or potentially small
observations can undoubtedly be obtained. Mean per unit
estimator for population mean is delicate to uncommon
observations. In such circumstance, this estimator can de-
liver deceiving results if any of the extremely enormous or
potentially small observations is chosen in the sample. As
indicated by [24], when the outliers or extreme values are
substantial, it can give new bits of knowledge about the
nature of the data. Keeping this fact in mind, we shed light
on [13] estimator for Y and X under stratifed random
sampling as

yh.sr �

yh + η1h, if selected sample containYh.mbut notYh.M,

yh − η1h, if selected sample containYh.Mbut notYh.m,

yh, for rest of the samples.

⎧⎪⎪⎨

⎪⎪⎩

(6)

Similarly,
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xh.sr �

xh + η2h, if selected sample containYh.m but notYh.M,

xh − η2h, if selected sample containYh.M but notYh.m,

yh, for rest of the samples,

⎧⎪⎪⎨

⎪⎪⎩

(7)
where ηh, h � 1, 2, . . . , L{ } are wisely chosen constants with
respect to (xh, yh). Further, (Xh.m, Yh.m) representing the
minimum values and (Xh.M, Yh.M) representing the maxi-
mum values with respect to (xh, yh). So, utilizing [13]
technique and extending the idea of [12], we propose the
following separate type robust regression estimators.

Te variance of [13] estimator under stratifed random
sampling can be written as

var yc.st(sr)􏼐 􏼑 � var 􏽘
L

h�1
Ωhyh.sr

⎛⎝ ⎞⎠

� 􏽘
L

h�1
Ω2hvar yh.sr( 􏼁

� 􏽘
L

h�1
Ω2hθh S

2
h.y −

2nhηh

Nh − 1
Yh.M − Yh.m − nhηh( 􏼁􏼢 􏼣.

(8)

By substituting ηopth � (Yh.M − Yh.m/2nh) in the above
expression, we get

var yc.st(sr)􏼐 􏼑min

� 􏽘
L

h�1
Ω2hθh S

2
h.y −

1
2 Nh − 1( 􏼁

Yh.M − Yh.m( 􏼁
2

􏼢 􏼣.

(9)

In light of [13], we propose separate type robust quantile
regression estimator:

yslr.sr(pj) � 􏽘
L

h�1
Ωh yh.sr + β

h.xy qj( 􏼁
Xh − xh.sr( 􏼁􏼔 􏼕,

for i � 1, 2, . . . , 7.

(10)

yh.sr and xh.sr are mean estimators based on Särndal
technique. For theoretical MSE expressions, let us defne the
notations in light of [13], as follows:

ζy.h �
yh.sr

Yh

− 1,

ζx.h �
xh.sr

Xh

− 1,
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E ζ2y.h􏼐 􏼑 �
θh

Y
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h

S
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2nhη1h

Nh − 1
Yh.d − nhη1h( 􏼁􏼢 􏼣,
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θh

X
2
h

S
2
h.x −

2nhη2h

Nh − 1
Xh.d − nhη2h( 􏼁􏼢 􏼣,

E ζy.hζx.h􏼐 􏼑 �
θh

YhXh

Sh.xy −
nh

Nh − 1
􏼢

η2hYh.d + η1hXh.d − 2nhη1hη2h( 􏼁􏼃.

(11)

Now, let we expand the right-hand side of equation (10),
as follows:

yslr.sr(pj) − Y � 􏽘
L

h�1
Ωh Yh 1 + ζy.h􏼐 􏼑 − β

h.xy qj( 􏼁
Xζx.h − Yh􏼔 􏼕.

(12)

Squaring both sides of equation (8) and disregarding
terms of ζs having a power higher than two, we get the MSE
of yslr.sr(pj) as

MSE yslr.sr(pj)􏼐 􏼑 � MSE ysqlr(j)􏼐 􏼑 − y, (13)

where

MSE ysqlr(j)􏼐 􏼑 � 􏽘

L

h�1
Ω2hθh S

2
h.y + β2

h.xy qj( 􏼁
S
2
h.x − 2β

h.xy qj( 􏼁
Sh.xy􏼒 􏼓,

for j � 1, 2, . . . , 7.

(14)

and

Υ � 􏽘
L

h�1

2Ω2hθhnh

Nh − 1
η1h − β

h.xy robj( 􏼁
η2h􏼒 􏼓 Yh.dβh.xy robj( 􏼁

Xh.d􏼔

−nh η1h − β
h.xy robj( 􏼁

η2h􏼒 􏼓􏼕.

(15)

Each and every notation in MSE(ysqlr.sr(j)) viably de-
lineated in previous lines. Further, the proposed class can be
planned in the structure of [13]. Nonetheless, we are exe-
cuting their proposition in stratifed random sampling with
a robust quantile regression tool. Along these lines,
exploiting of known results, with some direct numerical
computations, keeping up a vital distance from dull or in-
consequential algebra, we give the optimal values of
(η1h, η2h) and subsequently, minimumMSE(ysqlr.sr(j)) of the
estimators ysqlr.sr(j) as pursues:

ηopt1h �
Yh.M − Yh.m

2nh

�
Yh.d

2nh

,

ηopt2h �
Xh.M − Xh.m

2nh

�
Xh.d

2nh

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

MSEmin ysqlr.sr(pj)􏼐 􏼑 � MSE ysqlr(j)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁

Yh.d − β
h.xy robj( 􏼁

Xh.d􏼔 􏼕
2
,

for j � 1, 2, . . . 7.

(16)

Note that any quantile can be used here. However, some
of them which are (q15th, q25th, q35th, q45th, q55th, q65th, q75th)

quantiles are considered in this article. In light of these seven
referenced quantiles, the new class consists of seven
members. For the sake of readability, let us provide seven
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members of the new class with their min-MSE in compact
form, as follows:

ysqlr·sr(pj) �

􏽘

L

h�1
Ωh yh·sr + βh·xy(0.15) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.15) for j � 1,

􏽘

L

h�1
Ωh yh·sr + βh·xy(0.25) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.25)for j � 2,

􏽘

L

h�1
Ωh yh·sr + βh·xy(0.35) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.35) for j � 3,

􏽘

L

h�1
Ωh yh·sr + βh·xy(0.45) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.45) for j � 4,

􏽘

L

h�1
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􏽘

L
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Ωh yh·sr + βh·xy(0.65) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.65) for j � 6,

􏽘

L

h�1
Ωh yh·sr + βh·xy(0.75) Xh − Xh·sr( 􏼁􏽨 􏽩, qj � (0.75) for j � 7,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2 Nh − 1( 􏼁
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2
, qj � (0.15) for j � 1,

MSE ysqlr(2)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
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2
, qj � (0.25) for j � 2,

MSE ysqlr(3)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Yh.d − βh.xy(0.35)Xh.d􏽨 􏽩

2
, qj � (0.35) for j � 3,

MSE ysqlr(4)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Yh.d − βh.xy(0.45)Xh.d􏽨 􏽩

2
, qj � (0.45) for j � 4,

MSE ysqlr(5)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Yh.d − βh.xy(0.55)Xh.d􏽨 􏽩

2
, qj � (0.55) for j � 5,

MSE ysqlr(6)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Yh.d − βh.xy(0.65)Xh.d􏽨 􏽩

2
, qj � (0.65) for j � 6,

MSE ysqlr(7)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Yh.d − βh.xy(0.75)Xh.d􏽨 􏽩

2
, qj � (0.75) for j � 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)
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4. Estimation in Sensitive Research

Frequently in biomedical studies and socioeconomic, nor-
mally the researcher has to collect information concerning
embarrassing, threatening issues, or even highly sensitive.
When exploiting sensitive inquiry, posing straight questions
to the respondents by means of a customary collection of data
approaches (for example, self-administered surveys with
pencil and paper, computer-supported telephone interro-
gating, computer-supported self-interrogating, audio com-
puter-supported self-interrogating, or by computer-
supported Web-interrogating) may acquire refuse to respond
or even untruthful responses as of social disgrace or distress
about the threat of exposing. Such methodical nonsampling
response errors lead to social allure inclination in the esti-
mates of sensitive qualities. Social desirability bias happens
when respondents will, in general, present themselves in a
positive light, implying that they overreport socially adequate
perspectives which adjust to accepted practices (for example
providing for a noble cause, having confdence in God, voting,
good dieting, accomplishing deliberate work) and underre-
port socially objected, bothersome practices, which digress
from social standards (for example xenophobia, hostile to
Semitism, gambling, utilization of alcohol, premature birth,
sexual brutality, drug and upgrading substances, and tax
avoidance). Te impact is to imperfect the nature of the
gathered information and produces an unreliable analysis of
the sensitive behavior under scrutiny.

To restrict unsatisfactory paces of nonresponse and get
more solid information, indirect questioning approaches
(more details in [25]), for example, randomized response
technique (RR) and (RRT), might be utilized. Te RRT was
begun by [14] who proposed an information assortment
technique that permits researchers to acquire more de-
pendable sensitive data by expanding respondents partici-
pation without endangering security insurance to ensure
classifcation to the respondents, and a randomization gadget
(decks of cards, dice, coins, colored numbered balls, spinners,
irregular number generators, and so forth) is utilized to hide
the appropriate responses as in the respondents answer to one
of at least two chosen questions relying upon the result of the
device. Private information (privacy) is endangered since
respondents do not expose to anyone the question that has
been nominated and unknown, excluding the respondent,
knows the result generated by the randomization stratagem.
Since privacy is completely endangered, the method should,
as in our opinion, promote greater collaboration between
respondents and diminish their incentive to incorrectly reveal
their arrogance. Terefore, it is expected that study partici-
pants are acquiescent with the rules arranged by the assumed
randomization instrument and are completely truthful in
releasing their answers. Te gadget for randomization pro-
duces a probabilistic connection between respondent’s an-
swers and the genuine sensitive status, which is utilized to
make inferences about an obscure sensitive population, for
example, the commonness of a slandering characteristic, the
mean/complete of a quantitative sensitive variable, or its
probability function.

Standard RR techniques have been essentially considered
to be utilized in studies that require a binary response (i.e.
yes or no) to a sensitive inquiry, and look to appraise the
extent of individuals introducing a given sensitive property.
However, experimental examinations may address cir-
cumstances in which the reaction to a sensitive inquiry
brings about a quantitative variable and the enthusiasm of
the researcher depends, in the least demanding case, on the
estimation of the mean or the all out of the sensitive variable
under investigation. To manage such circumstances,
Warner’s thought has been immediately stretched out to
delicate quantitative factors by [26, 27]. After that many
authors developed several RR devices. Furthermore, for the
goals behind this paper, two scrambling factors, V1 and V2,
are considered. Likewise, the i respondent is approached to
produce an incentive from V1, say vi1, and a value from V2,
say vi2, and afterward to deliver the scrambled value zi �

φ(yi, vi1, vi2), where φ presents a scrambling capacity that
permits respondents to veil the genuine sensitive value. Te
φ closed form comes from the scrambled reaction device that
might be one of the four models talked about underneath.

Since it is expected that the respondent does not uncover
to anybody the created values vi1 and vi2, the value esti-
mation of yi stays uncertain to the researcher, and, con-
sequently, security is not imperiled. In any case, in spite of
the fact that the individual values yi cannot be determined, it
is conceivable to get dependable estimates of specifc at-
tributes of Y (i.e. the sensitive variable) by choosing an
example of n units and utilizing the scrambled reactions
acquired from all the units having a sample, say z1, . . . , zn.

Here, we consider three scrambling models: (i) the
additive model Z � Y + V1 [28], (ii) the mixed model Z �

(Y + V1)V2 [29], and (iii) the Bar–Lev model
Z � ϕ(Y + V1) + (1 − ϕ)YV2. An unbiased estimator of the
unknown sensitive mean in light of the mixed values zi,
through these three scrambling models, can be efortlessly
determined in not many advances along with the variance of
estimator. For example, assume that the additive model is
utilized to bother the genuine responses and to create a
gauge based on n units chosen from the population as in-
dicated by SRSWOR (i.e. simple random sampling without
replacement). Accept a scrambling variable V1 > 0 with
mean V1 and variance S2v1 , individually. Since the distri-
bution of V1 is known, likewise V1 and S2v1 will be known
ahead of time.

Assume that the ith sampled respondent, i � 1, . . . , n, is
directed to create a number vi1 from V1, however, by uti-
lizing a PC or a smartphone application, and to include the
arbitrary number with his (her) actual worth yi. Te re-
spondent, at a second subsequent step, is approached to
deliver the scrambled response device zi � yi + vi1 without
uncovering to anybody the created value vi1. After zi � yi +

vi1, it surveys that 􏽢yi � zi − vi1, vi1 is an unbiased estimator of
the unidentifed yi, where the unbiasedness is estimated with
esteem to the scrambling stratagem. In other words, if E

signifes the expectancy operator, we have

E 􏽢yi( 􏼁 � E zi( 􏼁 − V1 � yi + V1( 􏼁 − V1 � yi. (18)
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Terefore, by exhausting the same representation pre-
sented in Section 2, it is at once deceptive that

􏽢yAM � z − V1. (19)

with z � 􏽐
n
i�1 zi/n, is a design-impartial estimator of Y with

variance Var(􏽢yAM) � c(S2y − S2v1).
Likewise, we can continue in the same way for the as-

sorted model and for the Bar–Lev model [30]. However, for
the sake of shortness, the details are mislaid and attentive
readers are mentioned to [4, 11]. Improvements in the
randomized response method allow supplementary infor-
mation to be used to increase the competence of the

estimation method (see [4, 11]). In doing so, we present
below reviewed and proposed classes of estimators when the
study variable belongs to sensitive nature, and data are
composed using the four beforehand stated scrambling
approaches.

Let (z1, . . . , zn) denote the responses observed on a
sample selected from the study population according to
stratifed random sampling, and let z � 􏽐

n
i�1 zi/n repre-

senting the mean of sensitive study variable in hth stratum.
Ten, the reviewed and proposed classes of estimators are as
follows:

zslr(i) � 􏽘
L

h�1
Ωh zh + βh.xz robi( ) Xh − xh( 􏼁􏼔 􏼕, for i � 1, 2, . . . , 21,

zslr.sr(pj) � 􏽘
L

h�1
Ωh zh.sr + β

h.xz qj( 􏼁
Xh − xh.sr( 􏼁􏼔 􏼕, for i � 1, 2, . . . , 7.

(20)

with the MSE

MSE zslr(i)( ) � 􏽘
L

h�1
Ω2hθh S

2
h.z + β2h.xz robi( )S

2
h.x − 2βh.xz robi( )Sh.xz􏼔 􏼕, for i � 1, 2, . . . , 21,

MSEmin zsqlr.sr(pj)􏼐 􏼑 � MSE zsqlr(j)􏼐 􏼑 − 􏽘
L

h�1

Ω2hθh

2 Nh − 1( 􏼁
Zh.d − β

h.xz robj( 􏼁
Xh.d􏼔 􏼕

2
, for j � 1, 2, . . . 7.

(21)

Note that these expressions promptly obtained by ex-
changing the population parameter for Y with the corre-
sponding population parameters for Z. In order to make the
paper slim, we intentionally avoid reporting detailed deri-
vations of MSE because the modifed formulas easily derived
without any further eforts.

5. Numerical Illustration

5.1. Real-Life Application (Population-1). We consider the
dataset of 80 factories, available in [31], where

X �Data on the number of workers
Y �Output for 80 factories in a region

Te dataset is converted into four strata as follows:
Stratum-I: x< 100, Stratum-II: 100≤ x< 200, Stratum-

III: 200≤x< 500, and
Stratum-IV: x≥ 500.
Note that the dataset was free from outliers, so for the

purposes of the article, we replace some values of (x, y) as an
outlier. After that, we draw the scatter plot for each stratum,
see Figures 1–4. Tese fgures clearly show that each stratum
contains outliers so suitable for robust regression tools.
Some statistical descriptions of the dataset along with robust
and quantile regression coefcients are provided in Tables 1

and 2. For more details about that data, see [12, 32].TeMSE
of proposed and existing estimators is given in Table 3.

5.2. Monte-Carlo Simulation (Population-2). While evalu-
ating the exhibition of new suggested estimators, it is cus-
tomary to derive the MSE-based theoretical conditions
under which an estimator is more productive than reviewed
ones. Nonetheless, these MSE-based conditions are com-
monly difcult to afrm. Consequently, we skipped these
conditions and move towards a Monte-Carlo simulation
experiment, in the current section.

For Monte-Carlo simulation experiment, let we generate
the stratifed population from the following regression
model:

yi � m ui( 􏼁 + ∈i, for i � 1, 2, 3, 4. (22)

where

Stratum-I:
x1 � m(u1) � 2(x − 0.6) + exp(−400(x − 0.5)2.5) + 10,

Stratum-II:
x2 � m(u2) � 2(x − 0.5) + exp(−200(x − 0.5)2) + 1,

Stratum-III:
x3 � m(u3) � 2(x − 0.6) + exp(−200(x − 0.5)3.5) + 3,

Journal of Mathematics 7



6000

5000

4000

3000

2000

1000
100 200 300 400

X1

Y1

Figure 1: Stratum-I (population-1).
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Figure 2: Stratum-II (population-1).
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Figure 3: Stratum-III (population-1).
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Figure 4: Stratum-IV (population-1).

Table 1: Population-1 characteristics.

Stratum-I Stratum-II
Classical MCD MVE Classical MCD MVE

Sx 77.33154 164.1495 164.1400 101.2934 483.4461 483.4420
Sy 865.4893 11.15646 11.15599 1396.477 21.56164 21.56149
Sxy 47736.96 1784 1782 138369.9 10056.53 10056.47
Y 3316.64 78.25 78.19 5070.565 135.1765 135.1761
X 87 3550 3551 162.4348 4675.176 4675.169

Stratum-III Stratum-IV
Classical MCD Classical MCD Classical MCD

Sx 237.0494 184.4691 184.4687 480.3166 585.9681 585.9677
Sy 2158.906 55.76827 55.76819 3142.285 158.2194 158.2171
Syx 83703.39 9307.089 9307.080 1489313 92319.03 92319.01
Y 6896.688 421.1 421.11 8607.812 759.1818 759.1815
X 425.4375 6690.2 6690.0 874.5 7818.364 7818.357

Table 2: Population-1 regression coefcients.

Stratum-I Stratum-II
Robust Quantile Robust Quantile
β(LAD) � 6.298699 β(0.15) � 8.0875 β(LAD) � 13.35679 β(0.15) � 13.99598
β(LMS) � 15.22727 β(0.25) � 7.417722 β(LMS) � 25.90323 β(0.25) � 13.83027
β(LTS) � 14.62162 β(0.35) � 6.403141 β(LTS) � 24.79245 β(0.35) � 13.74534
β(HMM) � 15.88883 β(0.45) � 6.362205 β(HMM) � 16.95204 β(0.45) � 13.50478
β(HM) � 7.022836 β(0.55) � 6.256065 β(HM) � 13.56174 β(0.55) � 13.31106
β(HPL) � 7.275141 β(0.65) � 6.172872 β(HPL) � 13.50247 β(0.65) � 13.14189
β(TK) � 6.596983 β(0.75) � 11.2963 β(TK) � 13.54156 β(0.75) � 12.97162

Stratum-III Stratum-IV
Robust Quantile Robust Quantile
β(LAD) � 1.367647 β(0.15) � 0.05182342 β(LAD) � 4.350333 β(0.15) � 4.630435
β(LMS) � 2.192982 β(0.25) � 0.2513312 β(LMS) � 3.752212 β(0.25) � 4.630303
β(LTS) � 2.433962 β(0.35) � 0.6873638 β(LTS) � 3.681193 β(0.35) � 4.702564
β(HMM) � 5.043875 β(0.45) � 1.005695 β(HMM) � 3.787253 β(0.45) � 4.380074
β(HM) � 0.2671355 β(0.55) � 2.120879 β(HM) � 6.463582 β(0.55) � 4.625954
β(HPL) � 0.08898551 β(0.65) � 0.5189873 β(HPL) � 6.455515 β(0.65) � 6.651899
β(TK) � 0.1068723 β(0.75) � 1.12766 β(TK) � 6.461783 β(0.75) � 6.583715
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Stratum-IV: x4 � m(u4) � sin(2xπ) + 2.

Note that the errors (∈i) are normally distributed with
zero mean and 1 variance in all the strata (xi, yi) for i �

1, . . . , 4, (see [33]). Te graphical representation is provided
in Figures 5–8. Each stratum contains N � 1000 observa-
tions and 20% values selected as sample randomly. Graphical
representations of the generated population are also avail-
able in Figures 5–8. We add noise in (X, Y) and guaranteed
at least one outlier in each considered sample of the sim-
ulated population (see [10, 11]).

For the simulation design:

(1) 20% sample is selected from each stratum and the
mean of each estimator Ai (say) is calculated.

(2) Te above step is repeated G′ � 8000 times and got
G′ values of each estimator

(3) Te empirical MSE is calculated for each up-to G′
and then averaged as MSE � (􏽐

G′
i�1(MSE(Ai))/G′).

Te MSE of proposed and existing estimators is
provided in Table 4.

5.3. Assessment of Estimators regarding Scrambled Response.
In this section, we are assessing the performance of esti-
mators regarding scrambled response. A similar strategy is
repeated like the previous two sections for the sensitive
setup. For this particular situation, the observations of the
theme vitiate are nervous by the three scrambling strategies
accessible in the previous section V1 and V2 re-expected to

be distributed normally with mean 0 and standard deviation
10 percent of the supplementary variate [4]. Te MSE cal-
culations regarding population-1 are given in Tables 5 and 6.
Te MSE calculations regarding simulation (population-2)
are given in Tables 7 and 8.

5.4. ResultsDiscussion. On the basis of the MSE values of the
estimators, as shown in Tables 3–8, it has been observed as
follows:

(i) Te MSE values associated with the estimators can
be stated as follows: MSE (Quantile)<MSE
(Robust)<MSE (MCD,MVE) and this indicates the
superior performance of the proposed class com-
pared to the other relevant existing estimators.

(ii) Both MCD and MVE performed similarly for most
of the studied cases

(iii) Regarding population-1, increasing the values of
P from 0.3 up to 0.8, Table 6, has a good efect on
the performance of all estimators. Tis is also true
with all estimators in population-2, Table 8, ex-
cept estimators that listed in the ffth and seventh
rows.

Overall, under a stratifed random sampling scheme, the
results of MSE support the use of the proposed separate type
quantile robust regression type mean estimators when
supplementary information is available in addition to
considering the nonsensitive and sensitive responses.

Table 3: MSE for population-1 (nonsensitive).
􏽢θ Robust 􏽢θ MCD 􏽢θ MVE 􏽢θ Quantile
yslr(1) 13619.864 yslr(8) 128940.600 yslr(15) 128940.605 yslr.sr(p1) 7062.325
yslr(2) 20784.061 yslr(9) 459435.717 yslr(16) 459435.699 yslr.sr(p2) 4911.081
yslr(3) 20257.062 yslr(10) 421364.287 yslr(17) 421364.266 yslr.sr(p3) 5304.399
yslr(4) 10867.667 yslr(11) 147722.188 yslr(18) 147722.175 yslr.sr(p4) 6637.387
yslr(5) 10910.820 yslr(12) 146907.268 yslr(19) 146907.231 yslr.sr(p5) 7861.139
yslr(6) 10931.530 yslr(13) 146870.215 yslr(20) 146870.203 yslr.sr(p6) 5313.883
yslr(7) 20033.187 yslr(14) 215206.282 yslr(21) 215206.251 yslr.sr(p7) 8445.901
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Figure 5: Stratum-I (population-2).
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Figure 6: Stratum-II (population-2).
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Figure 8: Stratum-IV (population-2).
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Table 4: MSE for population-2 (nonsensitive).
􏽢θ Robust 􏽢θ MCD 􏽢θ MVE 􏽢θ Quantile
yslr(1) 567.3355 yslr(8) 707.1264 yslr(15) 707.1281 yslr·sr(p1) 466.8649
yslr(2) 567.3321 yslr(9) 707.1254 yslr(16) 707.1269 yslr·sr(p2) 466.8655
yslr(3) 567.3294 yslr(10) 707.1230 yslr(17) 707.1249 yslr·sr(p3) 466.8651
yslr(4) 567.3338 yslr(11) 707.1262 yslr(18) 707.1291 yslr·sr(p4) 466.8643
yslr(5) 567.3313 yslr(12) 707.1239 yslr(19) 707.1265 yslr·sr(p5) 466.8640
yslr(6) 567.3286 yslr(13) 707.1219 yslr(20) 707.1252 yslr·sr(p6) 466.8671
yslr(7) 567.3303 yslr(14) 707.1248 yslr(21) 707.1292 yslr·sr(p7) 466.8643

Table 5: Population-1 MSE for the mean estimators of the sensitive variable through using the additive and mixed models.
􏽢θ Robust 􏽢θ MCD 􏽢θ MVE 􏽢θ Quantile

Additive model
yslr(1) 106.77184 yslr(8) 347.05782 yslr(15) 347.01028 yslr.sr(p1) 81.04381
yslr(2) 138.05336 yslr(9) 683.58398 yslr(16) 683.52247 yslr.sr(p2) 70.37243
yslr(3) 134.8567 yslr(10) 651.9963 yslr(17) 651.9319 yslr.sr(p3) 73.7262
yslr(4) 102.6549 yslr(11) 352.8103 yslr(18) 352.7633 yslr.sr(p4) 66.3055
yslr(5) 102.87412 yslr(12) 351.85693 yslr(19) 351.80910 yslr.sr(p5) 79.03844
yslr(6) 103.0261 yslr(13) 351.3355 yslr(20) 351.2872 yslr.sr(p6) 75.2371
yslr(7) 132.3506 yslr(14) 459.8484 yslr(21) 459.7547 yslr.sr(p7) 99.8949

Mixed model
yslr(1) 22481.64 yslr(8) 4114956.29 yslr(15) 4111091.46 yslr.sr(p1) 15882.62
yslr(2) 22656.38 yslr(9) 2677711.85 yslr(16) 2672062.41 yslr.sr(p2) 16326.12
yslr(3) 22550.77 yslr(10) 3888537.46 yslr(17) 3886490.29 yslr.sr(p3) 14940.19
yslr(4) 22388.19 yslr(11) 5878210.18 yslr(18) 5874635.39 yslr.sr(p4) 13224.75
yslr(5) 22387.98 yslr(12) 5966204.91 yslr(19) 5962651.91 yslr.sr(p5) 12995.10
yslr(6) 22388.78 yslr(13) 5800679.41 yslr(20) 5797209.91 yslr.sr(p6) 13161.28
yslr(7) 22388.47 yslr(14) 5863638.13 yslr(21) 5860530.57 yslr.sr(p7) 13610.96

Table 6: Population-1 MSE for the mean estimators of the sensitive variable through using the Bar–Lev model.
􏽢θ Robust 􏽢θ MCD 􏽢θ MVE 􏽢θ Quantile

P � 0.3
yslr(1) 12401.41 yslr(8) 1522958.14 yslr(15) 1271257.30 yslr.sr(p1) 7446.61
yslr(2) 23240.06 yslr(9) 9383508.77 yslr(16) 7783502.65 yslr.sr(p2) 10988.80
yslr(3) 12524.82 yslr(10) 969493.32 yslr(17) 825098.75 yslr.sr(p3) 8323.80
yslr(4) 12381.39 yslr(11) 1812632.22 yslr(18) 1508669.09 yslr.sr(p4) 6760.45
yslr(5) 12381.09 yslr(12) 1839191.58 yslr(19) 1529956.53 yslr.sr(p5) 6463.86
yslr(6) 12382.54 yslr(13) 1745061.82 yslr(20) 1453002.05 yslr.sr(p6) 6690.41
yslr(7) 12382.21 yslr(14) 1755391.42 yslr(21) 1461339.73 yslr.sr(p7) 7011.66

P � 0.8
yslr(1) 4121.82 yslr(8) 232495.73 yslr(15) 232454.011 yslr.sr(p1) 3815.53
yslrs(2) 4605.74 yslr(9) 300460.47 yslr(16) 300412.58 yslr.sr(p2) 4006.40
yslr(3) 4390.20 yslr(10) 287290.96 yslr(17) 287274.49 yslr.sr(p3) 3961.16
yslr(4) 4089.90 yslr(11) 160720.80 yslr(18) 160672.10 yslr.sr(p4) 3511.96
yslr(5) 4088.11 yslr(12) 144396.23 yslr(19) 144341.39 yslr.sr(p5) 3396.34
yslr(6) 4089.55 yslr(13) 155541.14 yslr(20) 155489.83 yslr.sr(p6) 3468.02
yslr(7) 4088.86 yslr(14) 153434.14 yslr(21) 153382.08 yslr.sr(p7) 3490.03
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6. Conclusion

In this paper taking motivation from [12], we propose
separate type quantile robust regression type mean esti-
mators. We also compare these estimators with reviewed
estimators under stratifed random sampling scheme when
supplementary information is available alongside consid-
ering the nonsensitive and sensitive responses. We deter-
mine the MSE of the proposed class of estimators. In the
article, two populations are presented. Te outcomes ob-
tained from the proposed class providing us reasonable
suggestion that the quantile robust regression estimators
perform better under randomized response as compared to
the reviewed estimators based on regular strategy. To ex-
amine the MSE of the proposed classes, we consider three
scrambling response models. Numerical results of proposed
separate type quantile robust regression type and existing
estimators of the mean (Tables 3–8) confrm the superiority
of the proposed class of estimators, even in both presence or
absence of nonresponses. Tis superiority reveals the utility

of the proposed class in practice and will perform very well
in practical surveys. In future studies, the work can be ex-
tended in light of [34–36].
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[22] H. Bulut and Y. Öner, “Te evaluation of socio-economic
development of development agency regions in Turkey using
classical and robust principal component analyses,” Journal of
Applied Statistics, vol. 44, no. 16, pp. 2936–2948, 2017.

[23] N. H. Al-Noor and A. A. Mohammad, “Model of robust
regression with parametric and non-parametric methods,”
Mathematical Teory and Modeling, vol. 3, no. 5, pp. 27–39,
2013.

[24] E. J. Pedhazur, Multiple Regression in Behavioral Research:
Explanation and Prediction, Tompson Learning, Chicago,
Illinois, 1997.

[25] A. Chaudhuri and T. Christofdes, Indirect Questioning in
Sample Surveys, Springer, Berlin, Germany, 2013.

[26] B. G. Greenberg, R. R. Kuebler, J. R. Abernathy, and
D. G. Horvitz, “Application of the randomized response
technique in obtaining quantitative data,” Journal of the
American Statistical Association, vol. 66, no. 334, pp. 243–250,
1971.

[27] S. A. Eriksson, “A new model for randomized response,”
International Statistical Review/Revue Internationale de Sta-
tistique, vol. 41, no. 1, pp. 101–113, 1973.

[28] K. H. Pollock and Y. Bek, “A comparison of three randomized
response models for quantitative data,” Journal of the
American Statistical Association, vol. 71, no. 356, pp. 884–886,
1976.

[29] A. Saha, “A randomized response technique for quantitative
data under unequal probability sampling,” Journal of Statis-
tical Teory and Practice, vol. 2, no. 4, pp. 589–596, 2008.

[30] S. K. Bar-Lev, E. Bobovitch, and B. Boukai, “A note on
randomized response models for quantitative data,” Metrika,
vol. 60, no. 3, pp. 255–260, 2004.

[31] M. N. Murthy, Sampling Teory and Methods, Statistical
Publishing Society, a, 1967.

[32] U. Shahzad, M. Hanif, and N. Koyuncu, “A new estimator for
mean under stratifed random samplingfed random sam-
pling,” Mathematical Sciences, vol. 12, no. 3, pp. 163–169,
2018.
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