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Huppert and Manz have determined the nonsolvable groups whose character degrees are products of at most two prime numbers.
In this paper, we change the condition from “degrees of a group are products of at most two prime divisors” to “degrees of all
proper groups of a group are products of at most two prime divisors” and determine the structure of finite groups with such
condition.

1. Introduction

Let

n =
Yk
i=1

paii , ð1Þ

where the pis are different prime divisors of n, and define

ω nð Þ = 〠
n

i=1
ai, ð2Þ

the number of prime divisors of n. Assume that all groups
are finite in this paper. Let IrrðGÞ denote the set of all com-
plex irreducible characters of a group G, and let LinðGÞ be
the set of the linear characters of G. Denote by cdðGÞ the
set of irreducible character degrees of a group G, i.e., cdðGÞ
= fχð1Þ: χ ∈ IrrðGÞg. Usually, a degree means a complex
irreducible character degree in this paper. Let

ω Gð Þ = max
d∈cd Gð Þ

ω dð Þ: ð3Þ

The structure of a finite group G with ωðGÞ = 1 is deter-
mined by Isaacs and Passman and Manz; see [1–3], respec-

tively. The influence of Brauer characters with prime-power
degrees on the structure of finite groups is considered in [4, 5].

Finite groups G with ωðGÞ = 2 are determined (see [6, 7]).
In particular, if G is nonabelian simple, then G is isomorphic
to A5 or A7 where An is an alternating group of degree n.
Recently, Miraali and Robati furthered Huppert’s results and
identified almost simple groups whose degrees are divisible
by at most two primes; see Theorem 3.6 of [8].

Inspired by the works of [6, 8], we change the condition
from “ωðGÞ = 2 for a group G” to “ωðHÞ ≤ 2 for each proper
subgroup H of a group G” and will determine the structure
of nonsolvable groups whose degrees of all proper subgroups
are the direct products of at most two primes. In order to
shorten arguments, we give a definition.

Definition 1. Let G be a finite group, and let ∑G be the set of
all proper subgroups of G. A group G is called a T-group if
ωðGÞ ≤ 2.

By Definition 1, we have the following definition.

Definition 2. A group G is named a TS-group if each H ∈ ∑G
is a T-group and a non-TS-group otherwise. We call an irre-
ducible character χ ∈ IrrðGÞ a T-character if ωðχð1ÞÞ ≤ 2.
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In generality, a T-group does not mean that it is a TS
-group.

Example 1. Let G = A7, where An is an alternating group of
degree n. By pp. 10 of [9], we can have cdðA7Þ = f1, 2 · 3, 2
· 5, 2 · 7, 3 · 5, 3 · 7, 5 · 7g, so A7 is a T-group. On the other
hand, A7 has a subgroup isomorphic to PSL2ð7Þ. We see that
8 ∈ cdðPSL2ð7ÞÞ, so there is an irreducible character χ ∈ Irrð
PSL2ð7ÞÞ with ωðχð1ÞÞ = 3. Now, PSL2ð7Þ is not a T-group
and so A7 is a non-TS-group.

In this paper, we prove the following result.

Theorem 3. Let G be a nonsolvable TS-group. Then, one of
the following holds:

(1) G is isomorphic to PSL2ðqÞ where q = 2rs + 1 is a
prime for some primes r, s (possibly equal)

(2) G is isomorphic to PSL2ðpmÞ where p ∈ f2, 3, 5g, and
m is a prime such that ðpm − 1Þ/ðgcd ð2, q − 1ÞÞ = rsa

for primes r, s, and a ∈ f0, 1g
(3) G is isomorphic to 2B2ð8Þ, PSL2ð24Þ
(4) G is isomorphic to S5 × A with A abelian

(5) G is isomorphic to A5 × A with cdðAÞ ⊆ f1, pg for
some prime p

(6) G has a normal abelian subgroup M such that G/M
≅ SL2ð5Þ

The structure of this paper is formed as follows. In Sec-
tion 2, some results are given which will be used in the proof
of our main theorem. In Section 3, we first give the structure
of simple TS-groups and then that of nonsolvable TS
-groups.

In a group G, we will use the notation max G to denote
the set of the maximal proper subgroups with respect to
subgroup-order divisibility from ∑G. Let Eq be an elemen-
tary abelian group of order q, denoting the extraspecial
group of order q1+2m by ESðq1+2mÞ or q1+2m. Let Cn be the
cyclic group of order n. Let MultðGÞ be the Schur multiplier
of a group G. For the other notation and notions, we can
refer to [9, 10] for instance.

2. Some Lemmas

In this section, some results about elementary number the-
ory, Frobenius groups, and also subgroup structure of a sim-
ple classical Lie group are given.

Lemma 4 [11]. The only solution of the Diophantine equa-
tion pm − qn = 1 with p and q primes and m, n > 1 is 32 − 23

= 1.

Lemma 5 [11, 12]. With the exceptions of the relations 2392

− 2 · 134 = −1 and 35 − 2 · 112 = 1, every solution of the equa-
tion pm − 2qn = ±1 with p, q prime, m, n > 1, has exponents

m = n = 2; i.e., it comes from a unit p − q · 21/2 of the qua-
dratic field ℚð21/2Þ for which the coefficients p and q are
primes.

In order to prove our main result, we need some infor-
mation about certain subgroup structure of a nonabelian
simple group.

Lemma 6 (Lemma 2 of [13]). Let q be a prime power and let
n be a positive integer.

(1) Let n ≥ 8. Then, An has a subgroup An−1

(2) Let n ≥ 4, ε = ±. Then, PSLεnðqÞ has a subgroup iso-
morphic to SL±n−1ðqÞ or PSL±n−1ðqÞ, and SLεnðqÞ has a
subgroup of the form SLεn−1ðqÞ

(3) Let n ≥ 2. Then, PSp2nðqÞ has a subgroup PSp2ðn−1ÞðqÞ
(4) Let n ≥ 3 and q odd. Then, Ω2n+1ðqÞ contains a sub-

group Ω2n−1ðqÞ
(5) Let n ≥ 4, ε = ±. Then, PΩε

2nðqÞ has a subgroup P
Ωε

2n−2ðqÞ with q odd or PSp2n−2ðqÞ with q even

The following result will be used frequently without
reference.

Lemma 7.

(1) A group is a TS-group G if and only if for every H
∈ ∑G, H is a T-subgroup

(2) Let N be a proper subgroup of a TS-group. Then, N is
a T-subgroup

(3) Let N be a nontrivial normal subgroup of a TS-group
G. Then, G/N is a T-group

Proof. ð1Þ and ð2Þ are obvious by Definition 2
As N is nontrivial, we have that N is a T-group. Assume

that G/N is a non-T-group. Then, G/N is a non-TS-group, so
G/N has a non-T-group MN/N for certain M ∈max G. If
N ≤ΦðGÞ, then N ≤M, and M/N ∩M ≅MN/N is a non-T
-group. It follows that M is a non-T-group, a contradiction.
Now, N ≰ΦðGÞ and let M be a maximal proper subgroup of
G with N ≰M. Then, M <G, G =MN , and so G/N =MN/
N ≅M/M ∩N is a non-T-group. It means that M is a non-
T-group, a contradiction to the fact M <G.

3. Nonsolvable TS-Groups
In this section, first, we determine the structure of a nonabe-
lian simple TS-group and then that of a nonsolvable TS
-group.

It is well-known that a nonabelian simple group is iso-
morphic to an alternating group An, n ≥ 5, a simple group
of Lie type, or a simple sporadic group. So we consider these
groups from now on.
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Lemma 8. Let G be an alternating group An of degree n ≥ 5.
Assuming that G is a TS-group, then G is isomorphic to A5
or A6 .

Proof. An irreducible character of Sn, the symmetric group of
degree n, is determined by the partition λ of n, and denote
such an irreducible character by χλ. Observe that the irre-
ducible characters of An are the restrictions of those of Sn
to An. If n ≥ 14 and λ = ðn − 3, 13Þ, then by Hook’s formula,
one has

χλ 1ð Þ = n!
n · n − 4ð Þ!·3! =

n − 1ð Þ n − 2ð Þ n − 3ð Þ
6

: ð4Þ

See pp. 77 of [14]. Note that for n ≥ 14, λ = ðn − 3, 13Þ is
not self-conjugate, so the character degree of Sn is the same
as that of An with respect to the partition λ. Hence, ωðχλð1
ÞÞ > 3, a contradiction.

If 7 ≤ n ≤ 13, then by [9] and Lemma 6, we have a sub-
group series:

PSL2 7ð Þ < A7 < A8 <⋯ < A13: ð5Þ

Note that 23 ∈ cdðPSL2ð7ÞÞ, so PSL2ð7Þ is not a T-group;
thus, for 13 ≥ n ≥ 7, An is a non-TS-group.

If n = 5, then max A5 = fA4,D10, S3g. Observe that cdð
A4Þ = f1, 3g, cdðD10Þ = f1, 2g, and cdðS3Þ = f1, 2g, so A5 is
a TS-group.

If n = 6, then max A6 = fA5, 32 : 4, S4g. As cdðA5Þ = f1,
3, 4, 5g, cdð32 : 4Þ = f1, 22g, and cdðS4Þ = f1, 2, 3g, we have
that A6 is also a TS-group.

It follows that G is isomorphic to A5 or A6, the desired
result.

Note that A7 is a T-group but a non-TS-group as shown
in Example 1.

Lemma 9. Let G be a nonabelian simple group of classical Lie
type. Assuming that G is a TS-group, then G is isomorphic to
one of the groups:

(1) PSL2ðqÞ where q = 2rsa + 1 with a ∈ f0, 1g is a prime
for some primes r, s (possibly equal)

(2) PSL2ðpmÞ where p ∈ f2, 3, 5g, m is a prime and ðpm
− 1Þ/ðgcd ð2, pm − 1ÞÞ = rsa for primes r, s, and a ∈ f
0, 1g

(3) PSL2ð24Þ

Proof. A simple group of classical Lie type is isomorphic to
PSLnðqÞ, n ≥ 2, PSUnðqÞ, n ≥ 3, Ω2n+1ðqÞ, n ≥ 3, PSp2nðqÞ,
or PΩ±

2nðqÞ with n ≥ 4. So these groups are considered in
what follows.

Case 1: if G is isomorphic to PSLnðqÞ, then G is isomor-
phic to one of the groups: PSL2ðqÞ where q = 2rs + 1 is a
prime for some primes r, s (possibly equal); PSL2ðpmÞ where
p ∈ f3, 5g, m is an odd prime and pm − 1 = 2rsa, a ∈ f0, 1g;

PSL2ð24Þ, PSL2ð2rÞ with r a prime such that 2r − 1 = r1r
a2
2

for primes r1, r2 and a2 ∈ f0, 1g
Let n = 2.
In Lemma 8, we have considered the groups PSL2ð4Þ ≅

PSL2ð5Þ ≅ A5 and PSL2ð9Þ ≅ A6. So q = 7 or q = 8 or q ≥ 11.
Two cases are considered now.

(a) If q is odd, then k = gcd ð2, q − 1Þ = 2, so by Table 1,
Eq : Cðq−1Þ/2 ∈maxPSL2ðqÞ and ðq − 1Þ/2 ∈ cdðEq

: Cðq−1Þ/2Þ. Hypothesis shows that ðq − 1Þ/2 = r2 for
a prime r, or ðq − 1Þ/2 = rs for different primes r, s

(i) ðq − 1Þ/2 = r2

If r = 2, then q = 9, so G is isomorphic to PSL2ð9Þ ≅ A6
which is considered in Lemma 8. So r ≥ 3.

If q is a prime, then q = 2r2 + 1 with gcd ð2, rÞ = 1. We
see from Table 1 that PSL2ðqÞ possibly contains Eq

: Cðq−1Þ/2,Dq+1,Dq+1, S4, A5, A4 as its maximal subgroups, so
every H ∈maxPSL2ðqÞ is a T-group, so PSL2ðqÞ is a TS
-group.

If q is a prime power, then by Lemma 5, q = 35, r = 11, or
q = p2 for some prime p ≥ 5. If q = p2 for some prime p ≥ 5,
we see that ðq − 1Þ/2 = ðp2 − 1Þ/2 = ðp − 1Þðp + 1Þ/2 is divisi-
ble by 4 = 22. It follows from hypothesis and Lemma 4 that
q = 9 and sop = 3≥5, a contradiction. It is easy to check that
PSL2ð35Þ is a TS-group by Table 1.

(ii) ðq − 1Þ/2 = rs for different primes r, s

Without loss of generality, we can assume that s > r. If
r = 2, then q = 4s + 1 ≥ 13.

If q is a prime power, say q = pm, then m ≥ 3 is odd (if m
is even, 8jðq − 1Þ forces 4 = rs ≥ 6, a contradiction).

If m = ra11 r
a2
2 , then PSL2ðqÞ has a subgroup of the form

PSL2ðq0Þ:gcd ð2, r1Þ with q = qr10 . Note that PSL2ðq0Þ:2 or
PSL2ðq0Þ is a subgroup of PSL2ðqÞ and that

cd PSL2 q0ð Þð Þ = 1,
q0 + −1ð Þ q−1ð Þ/2

2
, q0, q0 − 1, q0 + 1

( )
,

cd PSL2 q0ð Þ:2ð Þ = 1, q0, q0 − 1, q0 + 1f g,
ð6Þ

by [16]. As q0 > 9 is odd, one of the numbers q0 − 1 and
q0 + 1 has the form 4s for some s > 1, so PSL2ðq0Þ:2 and PS
L2ðq0Þ are not T-groups. It follows that m ≥ 3 is a prime. If
p ≥ 7, then PSL2ðpÞ is a subgroup of PSL2ðqÞ. Since PSL2ðp
Þ is not a T-group for p ≥ 7, one has that PSL2ðqÞ is not a
TS-group. Thus, p = 3, 5. Now, Table 1 shows that maxPS
L2ðpmÞ possibly contains Eq : Cðq−1Þ/2,Dq+1,Dq+1, S4, A5,A4
as its members. Thus, PSL2ðpmÞ where m is an odd prime
and p ∈ f3, 5g with pm − 1 = 2rsa, a ∈ f0, 1g, is a TS-group.

If q is a prime, then q = 2rs + 1 is a prime. By Table 1, we
get that PSL2ðqÞ is a TS-group.
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(b) If q is even, then q = 8 or q ≥ 24, say q = 2s, s ≥ 4

Let q = 8, then by [9] (pp. 6), maxPSL2ð8Þ = fE23 : C7,
D18,D14g, so PSL2ð8Þ is a TS-group.

Let s = ra11 r
a2
2 ≥ 4 with a1, a2 ≥ 1 integers and r1, r2

primes. Without loss of generality, we can assume that
r1 > r2, and then, PSL2ð2sÞ has a subgroup of the form PSL2
ð2s/ra22 Þ. We see that 2s/r

a2
2 ∈ cdðPSL2ð2s/r

a2
2 ÞÞ, so ωð2s/ra22 Þ > 3

because r1 > r2 ≥ 2 shows s/ra22 ≥ r1 > r2 ≥ 2. Thus, s≔ ra11 say.
If r1 = 2 and a1 ≥ 2, then let q0 = 22a1−1 ; we get that PSL2

ð2sÞ has a subgroup PSL2ðq0Þ. If a1 = 2, then PSL2ð24Þ is a
TS-group as PSL2ðq0Þ is a T-subgroup. If a1 > 2, then let χ
∈ IrrðPSL2ðq0ÞÞ with χð1Þ = q0, ωðχð1ÞÞ = 2a1−1 > 22−1 = 2,
so PSL2ðq0Þ is not a T-group.

If r ≔ r1 ≥ 5 is odd, then a1 ≥ 2 or a1 = 1. Note that

maxPSL2 2sð Þ = E2s : C2s−1,D2 2s−1ð Þ,D2 2s+1ð Þ

n o
, ð7Þ

and that PSL2ð2ra1 Þ has a subgroup PSL2ð2ra1−1Þ. Note that
2ra1−1 ∈ PSL2ð2r

a1−1Þ, and for a1 ≥ 2, ωð2ra1−1Þ = ra1−1 ≥ r2−1

= r ≥ 3, so PSL2ð2sÞ is not a TS-group. If a1 = 1, then PS
L2ð2sÞ with s an odd prime and 2s − 1 = rsa for a ∈ f0, 1g
is a TS-group.

Let n = 3. If q = 2, then PSL3ð2Þ ≅ PSL2ð7Þ is considered
as above. So q ≥ 3. If q = qb0 with b a prime, then PSL3ðqÞ
has PSL3ðq0Þ:gcd ðb, gcd ð3, q − 1ÞÞ as its subgroup. So PS
L3ðq0Þ ∈ ∑PSL3ðqÞ. By [17],

q0 − 1ð Þ q20 + q0 + 1
À Á

, q0 + 1ð Þ q20 + q0 + 1
À Á

∈ cd PSL3 q0ð Þð Þ:
ð8Þ

It is easy to see that for at least one of the numbers ðq0
− 1Þðq20 + q0 + 1Þ, ðq0 + 1Þðq20 + q0 + 1Þ, say d, we have ωðdÞ
> 2 if q is a prime power. Thus, q ≥ 3 is a prime. By pp.
191 of [18], SO3ðqÞ ∈maxPSL3ðqÞ. We know that SO3ðqÞ
≅ SL2ðqÞ and that

cd SL2 qð Þð Þ = 1,
q − 1
2

,
q + 1
2

, q − 1, q, q + 1
� �

, ð9Þ

by [16], so q = 3, 5 because one of the numbers q − 1 and
q + 1 with q ≥ 7 has the form 4s for some s ≥ 2. If q = 3, then
32:2:S4 ∈maxPSL3ð3Þ, so by [19], 24 ∈ cdð32:2:S4Þ; if q = 5,
then 52 : 4S5 ∈maxPSL3ð5Þ, so by [19], 25 · 3 ∈ cdð52 : 4S5Þ.
Thus, PSL3ðqÞ with q = 3, 5 is not a TS-group. Now, we have
shown that PSL3ðqÞ with q ≥ 3 is not a TS-group and so is
SL3ðqÞ as

PSL3 qð Þ = SL3 qð Þ
Z SL3 qð Þð Þ ,

cd PSL3 qð Þð Þ ⊆ cd SL3 qð Þð Þ,
ð10Þ

by [20]. In particular, neither SL3ðqÞ nor PSL3ðqÞ is a T
-group.

Let n ≥ 4. If n = 4 and q = 2, then PSL4ð2Þ ≅ A8 is consid-
ered in Lemma 8. Now, n ≥ 5, so by Lemma 6, we obtain that

either PSL3 qð Þ < PSLn qð Þ or SL3 qð Þ < PSLn qð Þ: ð11Þ

This implies that PSLnðqÞ with n ≥ 4 is not a TS-group
since PSL3ðqÞ and SL3ðqÞ are not T-groups.

Case 2: PSUnðqÞ with n ≥ 3
Let n = 3. If q = 2, then PSU3ð2Þ is solvable, so q ≥ 3. By

[9], we have that

ES 31+2
À Á

: C8 ∈maxPSU3 3ð Þ,
ES 41+2

À Á
: C15 ∈maxPSU3 4ð Þ,

ES 51+2
À Á

: C8 ∈maxPSU3 5ð Þ,
ES 71+2

À Á
: C48 ∈maxPSU3 7ð Þ,

ES 81+2
À Á

: C21 ∈maxPSU3 8ð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

so by [19], we get that PSU3ðqÞ for q ∈ f3, 4, 5, 7, 8g is
not a TS-group. Thus, we can assume that q ≥ 9; then, by
pp. 200 of [18], ESðq1+2Þ: Cðq2−1Þ/k ∈maxPSU3ðqÞ where k
= gcd ð3, q + 1Þ, and ðq2 − 1Þ/k ∈ cdðESðq1+2Þ: Cðq2−1Þ/kÞ.
Observe that ESðq1+2Þ: Cðq2−1Þ/k is a Frobenius group and
that there in G does exist an irreducible character χ ∈ Irr
ðESðq1+2ÞÞ with χð1Þ = q (note that jZðESðq1+2ÞÞj = q, and
ESðq1+2Þ/ZðESðq1+2ÞÞ is abelian, so by Theorem 2.31 of
[21], for χ ∈ IrrðGÞ, χð1Þ2 = jESðq1+2Þ: ZðESðq1+2ÞÞj = q2;
hence, χð1Þ = q).

If q is even, then ωðqÞ > 4 as q > 23. If q is odd, then q ≥ 9
and

q2 − 1
k

∈ cd ES q1+2
À Á

: C q2−1ð Þ/k
� �

: ð13Þ

Observe that ðq2 − 1Þ/k is divisible by eight and that k
∈ f1, 3g, so ωððq2 − 1Þ/kÞ ≥ 3.

It follows that PSU3ðqÞ with q ≥ 3 is a non-TS-group.

Table 1: PSL2ðqÞ, q ≥ 5 (Chap II Theorem 8.27 of [15]).

max H Condition

C1 Eq : C q−1ð Þ/k k = gcd q − 1, 2ð Þ
C2 D2 q−1ð Þ/k q∈ 5, 7, 9, 11f g
C3 D2 q+1ð Þ/k q∈ 7, 9f g
C5 PSL2 q0ð Þ: k, bð Þ q = qb0, b a prime, q0 ≠ 2

C6
S4 q = p ≡ ±1 mod 8ð Þ
A4 q = p ≡ 3, 5, 13,27,37 mod 40ð Þ

S A5 q ≡ ±1 mod 10ð Þ, Fq = Fp

ffiffiffi
5

ph i
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Let n ≥ 4. If n = 4 and q = 2, then PSU4ð2Þ has 24 : A5 as
a subgroup. As 22 · 5 ∈ cdð24 : A5Þ, 24 : A5 is not a T-group.
Now, assume that n ≥ 5; then, by Lemma 6, we have that

either PSU3 qð Þ < PSUn qð Þ or SU3 qð Þ < PSUn qð Þ: ð14Þ

For q ≥ 3, by [20], we have that SU3ðqÞ and PSU3ðqÞ are
not T-groups. It follows that PSUnðqÞ with n ≥ 4 is not a TS
-group.

Case 3: Ω2n+1ðqÞ with n ≥ 3, q odd
If n = 3, then ½q7�: ð1/2ÞðGL2ðqÞ × SO3ðqÞÞ by [18] (pp.

213). We know that ðq + 1Þ2 ∈ cdðGL2ðqÞ × SO3ðqÞÞ, so ω

ððq + 1Þ2Þ > 2 for an odd q. Thus, Ω7ðqÞ is not a TS-group.
In particular, Ω7ðqÞ is not a T-group.

Let n ≥ 4. Then, by Lemma 6, a subgroup series is
obtained:

Ω7 qð Þ <Ω9 qð Þ <⋯ <Ω2n+1 qð Þ, ð15Þ

so Ω2n+1ðqÞ is not a TS-group since Ω7ðqÞ is not a T-group.
Case 4: PSp2nðqÞ with n ≥ 2
Let n = 2. If q = 2, then PSp4ð2Þ ≅ S6 is not simple, so q

≥ 3, and by pp. 209 of [18] PSp4ðqÞ has a subgroup PS
p2ðq2Þ:2 ≅ PSL2ðq2Þ:2. We know that PSL2ðq2Þ is a normal
subgroup of PSL2ðq2Þ:2 and that q4 − 1 ∈ cdðPSL2ðq2ÞÞ, so
PSp4ðqÞ is not a TS-group; in particular, PSp4ðqÞ is not
a T-group.

Let n ≥ 3. Then from Lemma 6, PSp2nðqÞ contains a sub-
group PSp4ðqÞ, so PSp2nðqÞ is not a TS-group.

Case 5: PΩε
2nðqÞ with n ≥ 4 and ε = ±

If n = 4, then PΩε
8ðqÞ has a subgroupΩ7ðqÞ, so by Case 3,

Ω7ðqÞ is neither a T-group nor a TS-group.
If n ≥ 5, then by Lemma 6, PΩε

2nðqÞ is not a TS-group as
PΩε

2nðqÞ contains a subgroup isomorphic to either Ω7ðqÞ
with q odd or PSp4ðqÞ with q even. Note that Ω7ðqÞ with q
odd and PSp4ðqÞ with q are non-T-groups, so we rule out
this case.

Lemma 10. Let G be a simple group of exceptional Lie type.
Assuming that G is a TS-group, then G is isomorphic to 2B2
ð8Þ.

Proof. We see that G is isomorphic to 2B2ðqÞ with q =
22m+1 ≥ 8, 2G2ðqÞ with q = 32m+1, m ≥ 1, G2ðqÞ, 3D4ðqÞ, F4
ðqÞ, 2F4ðq2Þ, Eε

6ðqÞ, E7ðqÞ, or E8ðqÞ. We deal with these
case by case.

The following subgroup series are obtained from Table 2:

G2 qð Þ > SU3 q2
À Á

:2 > SL3 q2
À Á

,
2F4 q2

À Á
> SU3 q2

À Á
:2 > SU3 q2

À Á
:

ð16Þ

We know that PSLnðqÞ ≅ ðSLnðqÞÞ/ðZðSLnðqÞÞÞ and PS
UnðqÞ ≅ ðSUnðqÞÞ/ðZðSUnðqÞÞÞ, so SU3ðq2Þ and SL3ðq2Þ are
non-TS-groups since Cases 1 and 2 in Lemma 9 show that
PSU3ðq2Þ and PSL3ðq2Þ are non-T-groups. So G2ðqÞ and 2

F2ðq2Þ are not TS-groups. Note that 2F4ð2Þ′ is not a TS

-group by [9]. From Table 2, 3D4ðqÞ, F4ðqÞ, and Eε
6ðqÞ are

non-TS-groups. Now, if PΩ+
12ðqÞ is not a TS-group, then

E7ðqÞ and E8ðqÞ are not TS-groups. Now, we will show that
PΩ+

12ðqÞ is not a TS-group. In fact, PΩ+
12ðqÞ contains a sub-

group Ω7ðqÞ or PSp4ðqÞ which are not a T-group, so PΩ+
12

ðqÞ is not a TS-group.
Now, we can conclude that G is possibly isomorphic to

2B2ðqÞ with q = 22m+1 ≥ 8 or 2G2ðqÞ with q = 32m+1, m ≥ 1.
Thus, two cases are considered.

Case 1: 2B2ðqÞ with q = 22m+1 ≥ 8
We know from pp. 385 of [10] that 2B2ð22m+1Þ has a

maximal subgroup of the form Eð2m+1Þ+ð2m+1Þ
2 : C22m+1−1

which is a Frobenius group. So there is an irreducible char-

acter χ ∈ IrrðEð2m+1Þ+ð2m+1Þ
2 Þ with a maximal degree with

respect to divisibity in cdðEð2m+1Þ+ð2m+1Þ
2 Þ. Observe that if m

≥ 2, then by Theorems 13.3 and 13.8 of [24],

χ 1ð Þ 22m+1 − 1
À Á

∈ cd E 2m+1ð Þ+ 2m+1ð Þ
2

� �
, ð17Þ

so by hypothesis, 22m+1 − 1 is a prime. On the other

hand, ZðEð2m+1Þ+ð2m+1Þ
2 Þ is of order 22m+1, so Eð2m+1Þ+ð2m+1Þ

2 /
ZðEð2m+1Þ+ð2m+1Þ

2 Þ is a 2-group, so there is a nonlinear charac-
ter χ ∈ IrrðEð2m+1Þ+ð2m+1Þ

2 Þ such that χð1Þ2 divides 22m+1, i.e.,

χð1Þj2m. Notice that χð1Þ =maxcdðEð2m+1Þ+ð2m+1Þ
2 Þ. If χð1Þ

= 2 and let P = Eð2m+1Þ+ð2m+1Þ
2 , then jP/P′j = 2, and P′ =Φ

ðPÞ, so ZðPÞ = P′, P is an extraspecial 2-group, so m = 1.
(In fact, we know from (17) that for m ≥ 2, Eð2m+1Þ+ð2m+1Þ

2
: C22m+1−1 is not a T-group.) So by [9] (pp. 28), max2B2ð8Þ =
f23+3 : 7, 13 : 4, 5 : 4,D14g. By [19], we may get that the
groups 23+3 : 7, 13 : 4, 5 : 4, and D14 are T-groups, so
2B2ð8Þ is a TS-group.

Case 2: 2G2ðqÞ with q = 32m+1 ≥ 33
From [10] (pp. 398), 2G2ðqÞ has a maximal subgroup

E1+1+1
q : Cq−1 which is a Frobenius group. Let χð1Þ = k ≠ 1

for χ ∈ IrrðE1+1+1
q : Cq−1Þ. Then, by Theorems 13.3 and 13.8

of [24], kðq − 1Þ ∈ cdðE1+1+1
q : Cq−1Þ. It follows that 2G2ðqÞ

is not a TS-group.

Lemma 11. A simple group of sporadic group is not a TS
-group.

Table 2: Exceptional groups of Lie type.

G H ∈max G Reference

G2 qð Þ SL3 qð Þ:2, SU3 q2
À Á

:2 Table 1 of [22]
3D4 qð Þ G2 qð Þ Table 1 of [22]

F4 qð Þ 3D4 q3
À Á

Table 1 of [22]

Eε
6 qð Þ F4 qð Þ Table 1 of [22]

E7 qð Þ PΩ+
12 qð Þ Table 1 of [22]

E8 qð Þ E7 qð ÞÞ Table 1 of [22]
2F4 q2

À Á
SU3 q2

À Á
:2 Main theorem of [23]
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Proof. By [9] (pp. 18), PSL2ð11Þ ∈max M11 and 12 ∈ cdðPS
L2ð11ÞÞ, so PSL2ð11Þ is not a T-group. Now, [9] (pp. 238)
shows that M11 is a subgroup of these groups: M12, M23, H
S, M24, McL, Suz, ON , Co3, Co2, Fi22, HN , Ly, Fi23, Co1,
J4, Fi24, B, and M.

By checking [9] J1, M22, J2, J3, He, Ru, and Th are not
TS-groups as PSL2ð11Þ is a subgroup of J1,M22, PSL2ð9Þ is
a subgroup of J2, J3, Th, and PSL3ð2Þ ≅ PSL2ð7Þ is a sub-
group of He, Ru.

Theorem 12. Let G be a nonabelian simple TS-group. Then,
G is isomorphic to the following:

(1) PSL2ðqÞ where q = 2rsa + 1 with a ∈ f0, 1g is a prime
for some primes r, s (possibly equal)

(2) PSL2ðpmÞ where p ∈ f2, 3, 5g, m is a prime and ðpm
− 1Þ/ðgcd ð2, pm − 1ÞÞ = rsa for some primes r, s, and
a ∈ f0, 1g

(3) PSL2ð24Þ
(4) 2B2ð8Þ

Proof. We conclude the result from Lemmas 8, 10, and 11.

Theorem 13. Let G be an almost simple TS-group with socle S
, S ≤G ≤ AutðSÞ. Then, G is isomorphic to one of the groups:

(1) PSL2ðqÞ where q = 2rs + 1 is a prime for some primes
r, s (possibly equal)

(2) PSL2ðpmÞ where p ∈ f2, 3, 5g, and m is a prime such
that ðpm − 1Þ/ðgcd ð2, q − 1ÞÞ = rsa for primes r, s,
and a ∈ f0, 1g

(3) 2B2ð8Þ, PSL2ð24Þ
(4) S5

Proof. If G is simple, then by Theorem 12, we have (1)-(3).
So three cases are considered, and also, we assume that G
is nonsimple.

Case 1: PSL2ðqÞ where q = 2rsa + 1 is a prime for some
primes r, s (possibly equal) and a ∈ f0, 1g

In this case, G is possibly isomorphic to PGL2ðqÞ. Note
that PGL2ðqÞ has a normal subgroup PSL2ðqÞ with index
gcd ð2, q − 1Þ and that

cd PSL2 qð Þð Þ = 1,
q + −1ð Þ q−1ð Þ/2

2
, q − 1, q, q + 1

( )
, ð18Þ

by [16], so hypothesis shows that q + 1 = 4 or q − 1 = 4 (in
fact, if q is odd, then one of the numbers q − 1 or q − 1 can
be written by 4r for some r ≥ 1). It follows that G is isomor-
phic to S5.

Case 2: PSL2ðpmÞ where p ∈ f2, 3, 5g, m is a prime and
ðpm − 1Þ/ðgcd ð2, q − 1ÞÞ = rsa for primes r, s, and a ∈ f0, 1g

(i) Let p = 2

If m = 2, then PSL2ð4Þ ≅ PSL2ð5Þ is done in Case 1. If
m ≥ 3, then G is possibly isomorphic to PSL2ð2mÞ:m. We
see that PSL2ð2mÞ:m has PSL2ð2mÞ as its subgroup and that
2m ∈ cdðPSL2ð2mÞÞ, so hypothesis forces m ≤ 2, a contradic-
tion. It means that PSL2ð2mÞ:m is not a TS-group.

(ii) Let p = 3

If m = 2, then the order of the outer-automorphism
group of PSL2ð9Þ is 4, so by [9], G is possibly isomorphic
to PSL2ð9Þ:21, PSL2ð9Þ:22, PSL2ð9Þ:23, or PSL2ð9Þ:22. Notice
that PSL2ð9Þ is a normal subgroup of these groups
(PSL2ð9Þ:21, PSL2ð9Þ:22, PSL2ð9Þ:23, and PSL2ð9Þ:22) and
that cdðPSL2ð9ÞÞ = f1, 5, 8, 9, 10g, so PSL2ð9Þ is not a T
-group. It follows that the groups PSL2ð9Þ:21, PSL2ð9Þ:22,
PSL2ð9Þ:23, and PSL2ð9Þ:22 are non-TS-groups.

Let m ≥ 3. Then, the order of the outer-automorphism
group of PSL2ð3mÞ is 2m, and so by Corollary 6.5 of [25],
G possibly has one of the structures: PGL2ð3mÞ, PSL2ð3mÞ:
m, PGL2ð3mÞ:m, and PSL2ð3mÞ:ð2mÞ. Note that PGL2ð3mÞ,
PSL2ð3mÞ:m, PGL2ð3mÞ:m, and PSL2ð3mÞ:ð2mÞ have a sub-
group of the form PSL2ð3mÞ. We know that 3m ∈ cdðPSL2
ð3mÞÞ, so hypothesis shows that m ≤ 2. If m = 1, then PS
L2ð3Þ is solvable; if m = 2, then 8 ∈ cdðPSL2ð32ÞÞ. Thus,
PGL2ð3mÞ, PSL2ð3mÞ:m, PGL2ð3mÞ:m, and PSL2ð3mÞ:ð2mÞ
are not TS-groups.

(iii) Let p = 5

Then, we can get from Corollary 6.5 of [25] that the pos-
sible groups G are isomorphic to PSL2ð3mÞ:m, PGL2ð3mÞ,
PSL2ð3mÞ:ð2mÞ, and PGL2ð3mÞ:m. Note that these groups
always have a subgroup PSL2ð3mÞ which is not a T-group.
Thus, PSL2ð3mÞ:m, PGL2ð3mÞ, PSL2ð3mÞ:ð2mÞ, and PGL2ð
3mÞ:m are not TS-groups

Case 3: 2B2ð8Þ and PSL2ð24Þ
In this case, the outer-automorphism group of 2B2ð8Þ is

of order 3, so G is possibly isomorphic to 2B2ð8Þ:3. Now, by
[9] (pp. 28), 13 : 12 ∈max2B2ð8Þ:3, so 22 · 3 ∈ cdð13 : 12Þ. It
follows that 13 : 12 is not a T-group and so 2B2ð8Þ:3 is not a
TS-group.

We can get from [9] (pp. 12) that PSL2ð24Þ:2 and PSL2
ð24Þ:4 are not TS-groups as PSL2ð24Þ is a subgroup of both
PSL2ð24Þ:2 and PSL2ð24Þ:4.

Now, we will prove Theorem 3.

Proof. Let N be a minimal nonabelian normal subgroup of G.
Then, we get that

N = S1 × S2 ×⋯ × Sn, ð19Þ

where Si is isomorphic to a nonabelian simple group S for
each 1 ≤ i ≤ n. If n ≥ 2, we obtain by Theorem 4.21 of [21]
that for τ1 ∈ IrrðS1Þ \ LinðS1Þ, τ2 ∈ IrrðS2Þ \ LinðS2Þ and λ ∈
LinðSiÞ, for i ≥ 3,

τ1 × τ2 × λ⋯ × λ ∈ Irr Nð Þ: ð20Þ
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Thus, N is a non-T-group, a contradiction. Now, we get
that N = S is a nonabelian simple group which is isomorphic
to one of the groups satisfying Theorem 12.

We know that N is isomorphic to a subgroup of G/CGð
NÞ and that G/CGðNÞ is isomorphic to a subgroup of Autð
NÞ, the automorphism group of N ; then, G/CGðNÞ is an
almost simple group satisfying Theorem 13.

Let S be the set of the groups:

(i) PSL2ðqÞ where q = 2rs + 1 is a prime for some
primes r, s (possibly equal)

(ii) PSL2ðpmÞ where p ∈ f2, 3, 5g, and m is a prime such
that ðpm − 1Þ/ðgcd ð2, q − 1ÞÞ = rsa for primes r, s,
and a ∈ f0, 1g

(iii) 2B2ð8Þ, PSL2ð24Þ
(iv) S5

IfM ∈S \ fS5, A5g, we have that G/CGðNÞ is isomorphic
to S and that NCGðNÞ⊲G. From N ∩ CGðNÞ = 1, we con-
clude that G is isomorphic to N × CGðNÞ (if G >NCGðNÞ,
NCGðNÞ is a T-group, a contradiction). If CGðNÞ ≠ 1, one
has that N is a T-group, a contradiction. It follows that G
is isomorphic to S.

IfM = S5, we may get that G is isomorphic to S5 × CGðNÞ
as S5 ∩ CGðNÞ = 1. Notice that in this case, N is isomorphic
to PSL2ð5Þ. If CGðNÞ is nonabelian, we have from the fact,
PSL2ð5Þ ≅ A5 < S5, that PSL2ð5Þ × CGðNÞ is a T-group, a
contradiction. So CGðNÞ is abelian.

If M = A5 ≅ PSL2ð5Þ, one has that N ≅ PSL2ð5Þ and that
G′ ∩ CGðPSL2ð5ÞÞ ≤ C2 as the order of the Schur multiplier
of PSL2ð5Þ is two. If G′ ∩ CGðPSL2ð5ÞÞ = 1, we have

G′ ≅ G′
G′ ∩ CG PSL2 5ð Þð Þ

≅ G′CG PSL2 5ð Þð Þ/CG PSL2 5ð Þð Þ ≅ PSL2 5ð Þ,
ð21Þ

and so G is isomorphic to PSL2ð5Þ × CGðNÞ. By hypothesis,
CGðNÞ is a T-group. Let A = CGðNÞ. Then, we easily get that
G is a TS-group if cdðAÞ ⊆ f1, pg for some prime p and a
non-TS-group if for different primes p, r, pr ∈ cdðAÞ, or p, r
∈ cdðAÞ.

If G′ ∩ CGðPSL2ð5ÞÞ ≅ C2, we have G/K ≅ SL2ð5Þ for
some normal subgroup K of G. If K is nonabelian, we
assume that cdðKÞ = f1, pg for some prime p by above argu-
ments. Let θ ∈ IrrðKÞ with θð1Þ = p and I = IGðθÞ be the iner-
tia subgroup of θ in G. Then, I is isomorphic to K , S4K ,
Q12K , ðE5 : C4ÞK , or G by [10] (pp. 377). If I = K , we have
that IS4KðθÞ = I ∩ ðS4KÞ = I, θS4K ∈ IrrðS4KÞ by Theorem

6.16 of [21], and so θS4Kð1Þ = jS4K : Ijθð1Þ = 23 · 3 · p. Now,
by Corollary 11.29 of [21], for χ ∈ ðIrrS4KjθÞ, 23 · 3 = χð1Þ/
θð1ÞjðjS4Kj/jKjÞ. It follows that there is an irreducible char-
acter δ ∈ IrrðS4KÞ with 12jδð1Þ. Now, S4K is a non-T-group,
and so we also rule out the case I = S4K . If I =Q12K , we have
that I has a subgroup isomorphic to C6K , so hypothesis
shows that C6K is a T-group. We see that C6 ≅ C6K/K is

cyclic and so 6 ∈ cdðC6KÞ. Note that I ∩ C6K = IC6K
ðθÞ

where θ ∈ IrrðKÞ with θð1Þ = p. It follows from Corollary
6.17 of [21] that 6p ∈ cdðS4KÞ, a contradiction. Similarly,
we also rule out when I = ðE5 : C4ÞK . If I =G, we can get a
contradiction by Corollary 6.17 of [21] too. It follows that
K is abelian, the desired result.

4. Conclusion

In this paper, we change the condition from “the degrees of a
group are direct products of two prime numbers” to “the
degrees of all proper subgroups of a group are direct prod-
ucts of two prime numbers” and get that if a nonsolvable
group that all proper subgroups have degrees which are the
direct products of at most two prime numbers, then it has
a section isomorphic to 2B2ð8Þ or PSL2ðqÞ for certain q. Note
that A7 is a T-group but not a TS-group.
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