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In a molecular network, molecules are correlated with numerical values, which are referred to as topological indices.�e chemical
and physical properties of chemical substances can be determined using topological indices. Mathematicians frequently use
topological indices to calculate the strain energy, melting point, boiling temperature, distortion, and stability of chemical
compounds. Topological indices also serve as a connection between a compound’s biological activity and its physical properties. In
this research paper, we have computed degree-based topological descriptors and polynomials to analyze the structure of
antimony telluride.

1. Introduction

Graph theory is the mathematical theory of the properties
and applications of networks or structures that are very
useful to help de�ne and visualize relationships between
various components. Basically, the graph is a composition of
points of departure known as nodes V(G) and the lines
formed by joining these vertices called edges E(G) [1]. Each
vertex’s degree, de�ned as the number of edges that enter or
leave it, is a key parameter. Graphs serve as a model for a
broad range of systems whose function and structure are
determined by the component elements’ connection model.
�e connectedness of the graphs may be used to �lter and
condense knowledge [2]. �e ideas and concepts of graph
theory are widely used in various branches of study. �e
major role of graph theory in chemical graphs is the
mathematical modeling of chemical phenomena. We can
generalize the model of a molecule where each vertex
represents an atom, and the edges connecting the relevant
vertices indicate covalent connections between atoms [3, 4].
Chemists can easily gather details buried in the balance of

the subatomic diagram and anticipate attributes of com-
pounds by assigning numbers and polynomials to chemical
compounds. Topological indices have a wide range of ap-
plications in theoretical chemistry, particularly in QSPR/
QSAR research [5]. Many properties of a molecule are
known to be closely linked to its graphical structure, in-
cluding heat of formation, boiling temperature, potential
energy, and sti�ness. Researchers can use topological indices
de�ned on chemical molecule architectures to better un-
derstand physical features, chemical reactivity, and biolog-
ical activity [6, 7].

In the current era, research in degree-based topo-
logical indices has been rising thoroughly. In recent years,
several research papers have been published considering
topological indices [8]. Chemical tests are useful to
predict the power of topological indices for analyzing the
physiochemical properties of molecular structures [9].
While researching on boiling point in 1947, Wiener was
the �rst to develop the notion of the topological index in
chemical graph theory [10, 11]. In this research, the
structure of antimony telluride is formulated in which a
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single atom of antimony makes a bond with six atoms of
tellurium, and every tellurium makes a bond with three
antimony atoms and three tellurium atoms that make a
compound crystallizing in a hexagonal lattice it creates a
closed packed structure. We have computed the atom-
bond connectivity index, hyper-Zagreb index, geometric
arithmetic indexes, redefined first, second, and third
Zagreb index, and Randic index of the chemical graph of
antimony telluride.

2. Preliminaries

Topological indices are graph invariant, which means they
remain the same regardless of how the graph is constructed
or named. Giving chemical compound numbers and poly-
nomials makes it easier to explain their physical charac-
teristics [12, 13]. Let G denote a (molecular) graph, with
V(G) and E(G) as vertex and edge sets, respectively. &e
number of edges incident with a vertex p is called the degree
of that vertex and denoted by Γ(p).

Gutman et al. [14, 15] presented the first Zagreb index
(M1) and second Zagreb index (M2) almost four decades
ago as

M1(G) � 
pt∈E(G)

[Γ(p) + Γ(t)],

M2(G) � 
pt∈E(G)

[Γ(p) × Γ(t)].
(1)

Shirdel et al. [16] established the “hyper-Zagreb index” as
follows:

HM(G) � 
pt∈E(G)

[Γ(p) + Γ(t)]
2
.

(2)

Estrada et al. [17] established the ABC (atom-bond
connectivity index), which is extremely important. It is
described as

ABC(G) � 
pt∈E(G)

�������������
Γ(p) + Γ(t) − 2
Γ(p) × Γ(t)



. (3)

Vukicevic and Furtula [18] proposed the geometric
arithmetic index GA, which is defined as

GA(G) � 
pt∈E(G)

2
����������
Γ(p) × Γ(t)



Γ(p) + Γ(t)
. (4)

&e Randi index, created by Randić in 1975 [19], was the
first-degree-based topological index, which is written as

Rα(G) � 
pt∈E(G)

[Γ(p) × Γ(t)]
α
, α � 1, −1,

1
2
,
−1
2

. (5)

&e forgotten topological index was introduced by
Gutman et al. [20] and was defined as

F(G) � 
pt∈E(G)

Γ(p)
2

+ Γ(t)
2

 .
(6)

Furtula et al. [21] offered the following improved Zagreb
index:

AZI(G) � 
pt∈E(G)

Γ(p) × Γ(t)

Γ(p) + Γ(t) − 2
 

3

. (7)

&e redefined 1st, 2nd, and 3rd Zagreb indices for the
graph G were established by Ranjini et al. [22]as follows:

ReZG1(G) � 
pt∈E(G)

Γ(p) + Γ(t)

Γ(p) × Γ(t)
,

ReZG2(G) � 
pt∈E(G)

Γ(p) × Γ(t)

Γ(p) + Γ(t)
,

ReZG3(G) � 
pt∈E(G)

[Γ(p) × Γ(t)][Γ(p) + Γ(t)].

(8)

3. Main Results

Antimony telluride is an inorganic chemical compound with
molecular formula (Sb2Te3) in which a single atom of
antimony makes a bond with six atoms of tellurium, and
every tellurium makes a bond with three antimony atoms
and three tellurium atoms that make a compound crystal-
lizing in a hexagonal lattice it creates a closed packed
structure [23]. &e 2D molecular structure of antimony
telluride (Sb2Te3) is given in the figure below. We used the
following configuration to characterize its molecular graph:
the number of unit cells in a row that is linked is denoted by
“m”, whereas the total number of linked rows withm cells is
denoted by “n”. In Figure 1, we showed how cells in a row
connect to one another and how one row relates to another.

For the calculation of antimony telluride formulae, we
utilize a unit cell initially and then combine it with another
unit cell in a horizontal manner, and so on up to m unit cells
to compute antimony telluride formulae [23]. After that, we
connect the first unit cell with another unit cell in a vertical
orientation, and so on up to n unit cells, resulting in the
antimony telluride structure shown in Figure 2.

3.1. Antimony Telluride Sb2Te3[m, n]

Theorem 1. Let G represent the structure of antimony tel-
luride Sb2Te3[m, n] for m, n≥ 2, then,
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F(G) � 11664mn − 6012m − 6012n + 2790,

AZI(G) �
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19
11

−
47
22

m −
47
22

n + 27mn,

ReZG3(G) � 3888mn − 1536m − 1536n + 480,

R1(G) � 6 − 84m − 84n + 324mn,

R−1(G) �
3
20

+
3
10

m +
3
10

n +
1
4

mn,

R1/2(G) � m(4
��
15

√
+ 6

�
2

√
+ 6

��
30

√
− 60) + n(4

��
15

√
+ 6

�
2

√
+ 6

��
30

√
− 60) + 54mn +(84 − 8

��
15

√
+ 6

�
2

√
− 12

��
30

√
),

R−1/2(G) � m
4
��
15

√ +
2

3
�
2

√ +
6
��
30

√ −
5
3

  + n
4
��
15

√ +
2

3
�
2

√ +
6
��
30

√ −
5
3

  + mn
3
2

  +
23
6

−
8
��
15

√ +
2

3
�
2

√ −
12
��
30

√ ,

M1(G) � 108mn − 4m − 4n − 10,

M2(G) � 6 − 84m − 84n + 324mn,

HM(G) � −2 − 296m − 296n + 1296mn,

M1(G, x) � (6)x
6

+(4m + 4n − 8)x
8

+(2m + 2n + 2)x
9

+(6m + 6n − 12)x
11

+(9mn − 10m − 10n + 11)x
12

,

M2(G, x) � (6)x
9

+(4m + 4n − 8)x
15

+(2m + 2n + 2)x
18
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30
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(9)

(a) (b)

Figure 1: Structure of antimony telluride (Sb2Te3[m, n]). (a) Unit cell of antimony telluride Sb2Te3[m, n]. (b) Sb2Te3[2, 2]. Two rows are
being connected each with two unit cells. Antimony atoms are red, and telluride atoms are black [23].
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To compute vertices formulae, we now use Table 1. V3
signifies the set of vertices of degree 3, V5 the number of

vertices of degree 5, and V6 the number of vertices of degree
6 in Table 1.

Finally, we discovered that set of vertices of degree 3 are
(2m + 2n + 2), set of vertices of degree 5 are (2m + 2n − 4),
and set of vertices of degree 6 are (3mn − 2m − 2n + 2).
Using the same technique, we will split the Sb2Te3 edges to
get the abstracted indices. &e first edge pack has six edges
pt, where Γ(p) � 3 and Γ(t) � 3. &e second edge pack has
(4m + 4n − 8) edges pt, where Γ(p) � 3 and Γ(t) � 5. &e
third edge pack has (2m + 2n + 2) edges pt, where Γ(p) � 3
and Γ(t) � 6.&e fourth edge pack has (6m + 6n − 12) edges
pt, where Γ(p) � 5 and Γ(t) � 6. &e fifth edge pack has
(9mn − 10m − 10n + 11) edges pt, where Γ(p) � 6 and
Γ(t) � 6. In Table 2, edge partition of Sb2Te3[m, n] with
m, n≥ 2 is shown.

(i) Atom-bond connectivity index

ABC(G) � 
pt∈E(G)

�������������
Γ(p) + Γ(t) − 2
Γ(p) × Γ(t)



� (6)

�������
3 + 3 − 2
3 × 3



+(4m + 4n − 8)

�������
3 + 5 − 2
3 × 5



+(2m + 2n + 2)

�������
3 + 6 − 2
3 × 6



+(6m + 6n − 12)

�������
5 + 6 − 2
5 × 6



+(9mn − 10m − 10n + 11)

��������
6 + 6 − 2
6 × 6

,
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(10)

(ii) Geometric arithmetic index

GA(G) � 
pt∈E(G)

2
����������
Γ(p) × Γ(t)



Γ(p) + Γ(t)
� (6)

2
����
3 × 3

√

3 + 3
  +(4m + 4n − 8)

2
����
3 × 5

√

3 + 5
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2
����
3 × 6

√
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+(6m + 6n − 12)
2

����
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√
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2
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√
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(11)

&e connection between ABC and GA is shown in
Table 3 and Figure 3

(iii) Forgotten topological index

F(G) � 
pt∈E(G)

Γ(p)
2

+ Γ(t)
2

 

� (6) 32 × 32  +(4m + 4n − 8) 32 × 52  +(2m + 2n + 2) 32 × 62  +(6m + 6n − 12) 52 × 62 

+(9mn − 10m − 10n + 11) 62 × 62 ,

F(G) � 11664mn − 6012m − 6012n + 2790.

(12)

Figure 2: Structure of antimony telluride Sb2Te3[m, n],
Sb2Te3[3, 2], two rows are being connected each with three-unit
cells [23].
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(iv) Augmented Zagreb index

AZI(G) � 
pt∈E(G)

Γ(p) × Γ(t)

Γ(p) + Γ(t) − 2
 

3

� (6)
3 × 3

3 + 3 − 2
 

3
+(4m + 4n − 8)

3 × 5
3 + 5 − 2

 
3

+(2m + 2n + 2)
3 × 6

3 + 6 − 2
 

3

+(6m + 6n − 12)
5 × 6

5 + 6 − 2
 

3
+(9mn − 10m − 10n + 11)

6 × 6
6 + 6 − 2

 
3
,

AZI(G) �
569503793
12348000

−
22817861
154350

m −
22817861
154350

n +
52488
125

mn.

(13)

&e connection between F and AZI is shown in
Table 4 and Figure 4.

(v) Redefined 1st Zagreb index

ReZG1(G) � 
pt∈E(G)

Γ(p) + Γ(t)

Γ(p) × Γ(t)
� (6)

3 + 3
3 × 3

  +(4m + 4n − 8)
3 + 5
3 × 5

  +(2m + 2n + 2)
3 + 6
3 × 6

 

+(6m + 6n − 12)
5 + 6
5 × 6

  +(9mn − 10m − 10n + 11)
6 + 6
6 × 6

 ,

ReZG1(G) � 2m + 2n + 3mn.

(14)

(vi) Redefined 2nd Zagreb index

ReZG2(G) � 
pt∈E(G)

Γ(p) × Γ(t)

Γ(p) + Γ(t)
� (6)

3 × 3
3 + 3

  +(4m + 4n − 8)
3 × 5
3 + 5

  +(2m + 2n + 2)
3 × 6
3 + 6

 

+(6m + 6n − 12)
5 × 6
5 + 6

  +(9mn − 10m − 10n + 11)
6 × 6
6 + 6

 ,

ReZG2(G) � −
19
11

−
47
22

m −
47
22

n + 27mn.

(15)

Table 1: Vertex partition of Sb2Te3[m, n].

[m, n] [2, 2] [2, 3] [2, 4] [3, 2] [3, 3] [3, 4] [4, 2] [4, 3] [4, 4]

V3 10 12 14 12 14 16 14 16 18
V5 4 6 8 6 8 10 8 10 12
V6 6 10 14 10 17 24 14 24 34
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(vii) Redefined 3rd Zagreb index

ReZG3(G) � 
pt∈E(G)

[Γ(p) × Γ(t)][Γ(t) + Γ(h)] � (6)[(3 × 3)(3 + 3)] +(4m + 4n − 8)[(3 × 5)(3 + 5)]

+(2m + 2n + 2)[(3 × 6)(3 + 6)]

+(6m + 6n − 12)[(5 × 6)(5 + 6)] +(9mn − 10m − 10n + 11)[(6 × 6)(6 + 6)],

ReZG3(G) � 3888mn − 1536m − 1536n + 480.

(16)

&e connection between ReZG1, ReZG2, and
ReZG3 is shown in Table 5 and Figure 5.

(viii) General Randic index

For α � 1,

R1(G) � 
pt∈E(G)

[Γ(p) × Γ(t)]
1

� (6)(3 × 3) +(4m + 4n − 8)(3 × 5) +(2m + 2n + 2)(3 × 6)

+(6m + 6n − 12)(5 × 6) +(9mn − 10m − 10n + 11)(6 × 6),

R1(G) � 6 − 84m − 84n + 324mn.

(17)

For α � −1,
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− 1
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1
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For α � −1/2,
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&e connection between the R1(G), R−1(G),
R1/2(G), and R−1/2(G) is shown in Table 6 and
Figure 6.

(ix) First Zagreb index

M1(G) � 
pt∈E(G)

[Γ(p) + Γ(t)] � (6)(6) +(4m + 4n − 8)(8) +(2m + 2n + 2)(9) +(6m + 6n − 12)(11)

+(9mn − 10m − 10n + 11)(12),

M1(G) � 108mn − 4m − 4n − 10.

(21)

(x) Second Zagreb index

M2(G) � 
pt∈E(G)

[Γ(p) × Γ(t)] � (6)(3 × 3) +(4m + 4n − 8)(3 × 5) +(2m + 2n + 2)(3 × 6)

+(6m + 6n − 12)(5 × 6) +(9mn − 10m − 10n + 11)(6 × 6),

M2(G) � 6 − 84m − 84n + 324mn.

(22)

(xi) Hyper-Zagreb index
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2
,

HM(G) � −2 − 296m − 296n + 1296mn.

(23)

&e connection between M1(G), M2(G), and
HM(G) is shown in Table 7 and Figure 7.

(xii) First Zagreb polynomial

M1(G, x) � 
pt∈E(G)
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(xiii) Second Zagreb polynomial
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&e connection between the M1(G, x) and
M2(G, x) is shown in Table 8 and Figure 8.

4. Conclusion

In this study, the researcher has computed some topological
indices and polynomials of the structure of antimony tel-
luride including the atom-bond connectivity index, hyper-
Zagreb index, geometric arithmetic indexes, redefined 1st,
2nd, and 3rd Zagreb index, and Randic index of the chemical
graph of antimony telluride. &e numerical and visual
representations of these indices are also provided. Another
intriguing issue for further research is the calculation of
various distance-based topological indices and the reverse
topological of antimony telluride.

Table 7: Connection between M1(G), M2(G), and HM(G).

(m, n) M1(G) M2(G) HM(G)

(1, 1) 90 162 702
(2, 2) 406 966 3998
(3, 3) 938 2418 9886
(4, 4) 1686 4518 18366
(5, 5) 2650 7266 29438
(6, 6) 3830 10662 43102
(7, 7) 5226 14706 59358
(8, 8) 6838 19398 78206
(9, 9) 8666 24738 99646
(10, 10) 10710 30726 123678

Table 2: Edge partition of Sb2Te3[m, n].

[Γ(p), Γ(t)] Frequency
(3, 3) 6
(3, 5) 4m + 4n − 8
(3, 6) 2m + 2n + 2
(5, 6) 6m + 6n − 12
(6, 6) 9mn − 10m − 10n + 11

Table 3: Connection between ABC and GA.

(m, n) ABC(G) GA(G)

(1, 1) 7.7416 11.6569
(2, 2) 25.5576 42.1245
(3, 3) 52.8604 90.5921
(4, 4) 89.65 157.0597
(5, 5) 135.9264 241.5273
(6, 6) 191.6896 343.9949
(7, 7) 256.9396 464.4625
(8, 8) 331.6764 602.9301
(9, 9) 415.9 759.3977
(10, 10) 509.6104 933.8653

Table 4: Connection between F and AZI.

(m, n) F(G) AZI(G)

(1, 1) 2430 170.3612
(2, 2) 25398 1134.409
(3, 3) 71694 2938.265
(4, 4) 141318 5581.93
(5, 5) 234270 9065.402
(6, 6) 350550 13388.68
(7, 7) 490158 18551.77
(8, 8) 653094 24554.67
(9, 9) 839358 31397.37
(10, 10) 1048950 39079.88

Table 5: Connection between ReZG1, ReZG2, and ReZG3.

(m, n) ReZG1(G) ReZG2(G) ReZG3(G)

(1, 1) 7 21 1296
(2, 2) 20 97.72727 9888
(3, 3) 39 228.4545 26256
(4, 4) 64 413.1818 50400
(5, 5) 95 651.9091 82320
(6, 6) 132 944.6364 122016
(7, 7) 175 1291.364 169488
(8, 8) 224 1692.091 224736
(9, 9) 279 2146.818 287760
(10, 10) 340 2655.545 358560

Table 6: Connection between the R1(G), R−1(G), R1/2(G), and
R−1/2(G).

(m, n) R1(G) R−1(G) R1/2(G) R−1/2(G)

(1, 1) 162 1 43.4559 1.5483
(2, 2) 966 2.35 199.1371 6.0483
(3, 3) 2418 4.2 462.8183 13.5483
(4, 4) 4518 6.55 834.4995 24.0483
(5, 5) 7266 9.4 1314.181 37.5483
(6, 6) 10662 12.75 1901.862 54.0483
(7, 7) 14706 16.6 2597.543 73.5483
(8, 8) 19398 20.95 3401.224 96.0483
(9, 9) 24738 25.8 4312.906 121.5483
(10, 10) 30726 31.15 5332.587 150.0483

Table 8: Connection between the M1(G, x) and M2(G, x).

(m, n) x M1(G, x) M2(G, x)

(1, 1) 1 12 12
(2, 2) 2 43 43
(3, 3) 3 92 92
(4, 4) 4 159 159
(5, 5) 5 244 244
(6, 6) 6 347 347
(7, 7) 7 468 468
(8, 8) 8 607 607
(9, 9) 9 764 764
(10, 10) 10 939 939
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