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Rough sets are a key tool to model uncertainty and vagueness using upper and lower approximations without predefined functions
and additional suppositions. Rough graphs cannot be studied more effectively when the inexact and approximate relations among
more than two objects are to be discussed. In this research paper, the notion of a rough set is applied to hypergraphs to introduce
the novel concept of rough hypergraphs based on rough relations. (e notions of isomorphism, conformality, linearity, duality,
associativity, commutativity, distributivity, Helly property, and intersecting families are illustrated in rough hypergraphs. (e
formulae of 2-section, L2-section, covering, coloring, rank, and antirank are established for certain types of rough hypergraphs.
(e relations among certain types of products of rough hypergraphs are studied in detail.

1. Introduction

In graphical networks, usually pairwise relations are dis-
cussedmissing some information that more than two objects
may satisfy common characteristics. Hypergraphs intro-
duced by Berge [1] as a generalization of graphs tackle the
difficulty to study relations and common characteristics of
any set of objects. A lot of work has been done on hyper-
graphs due to their applications in various domains of bi-
ological and computer sciences including properties and
algorithms of the Cartesian product of hypergraphs [2], the
direct product of hypergraphs [3], and hamiltonicity of
certain products of hypergraphs [4]. Hammack et al. [5]
studied distance measures, isometries, factorization, chro-
maticity, and various other properties of graph products
which is a strong framework to generalize all the results for
hypergraphs.

Hypergraphs are the key tool to study real-world
problems in a more generalized and efficient way as com-
pared to graphs and their extensions but are unable to study
uncertainty and vagueness occurring in data and incomplete
information. Kaufmann [6] extended the concept of
hypergraphs to fuzzy hypergraphs by applying fuzzy sets [7]
on hypergraphs. Lee-Kwang and Lee [8] proved that there

are some flaws in Kaufmann’s definition of a fuzzy hyper-
graph and redefined that concept. Radhamani and Radhika
[9] added fuzzy relations in fuzzy hypergraphs and initiated
the edited concept of fuzzy hypergraphs with certain iso-
morphism properties. Researchers are continuously working
on the properties of fuzzy hypergraphs and their extensions
including Hebbian structures of fuzzy hypergraphs [10],
fuzzy coloring in fuzzy hypergraphs [11], transversals of
fuzzy hypergraphs [12], certain properties of fuzzy hyper-
graphs [13], intuitionistic fuzzy hypergraphs [14, 15], bipolar
fuzzy hypergraphs [16], various extensions of hypergraphs to
deal with uncertainty [17], m− polar fuzzy hypergraphs
[18, 19], and bipolar fuzzy soft hypergraphs [20].

All the existing approaches of hypergraphs based on
fuzzy sets and their extensions can be applied using
membership functions and parameterization tools. But, in
some situations, when we have no additional information,
membership functions, or parametric properties, the
existing models based on hypergraphs are difficult to apply.
Rough sets, introduced by Pawlak [21], are a key tool to
handle such situations and study uncertain information
without membership functions using upper and lower ap-
proximations. Rough sets are becoming a wide domain of
research to study hybrid models based on graphs, relations,
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decision making problems, and fuzzy models, for instance,
rough relations [22], rough graphs [23], rough fuzzy di-
graphs [24], fuzzy rough graphs [25], hybrid models based
on rough sets, soft sets, and graphs [26], soft rough sets and
rough soft sets [27], soft rough fuzzy sets [28], fuzzy sets
combined with rough sets [29], rough set approximations for
big data systems [30], hypergroups based on upper and
lower approximations [31], modeling similarities in rough
set theories [32], properties of certain types of rough rela-
tions [33], image classification based on rough sets [34],
fuzzy rough feature selection based on graphs [35], risk
minimization based in rough sets [36], fuzzy FCA (formal
concept analysis) based on rough sets [37], applications of
rough sets to graphs [38], l2− hypergraphs [39], vertex rough
graphs [40], FCA based on hypergraphs and rough sets [41],
weak chromatic number of random hypergraphs [42],
properties of totally balanced hypergraphs [43], Boolean
operators based on rough sets [44], boundary optimization
for rough sets [45] and connection between hypergroups,
rough sets and hypergraphs [46], domination based rough
sets [47], relationships between rough sets and topologies
[48], planarity of product graphs in bipolar fuzzy envi-
ronment [49], bipolar soft sets based on rough multipolar
fuzzy approximations [50], and bipolar soft sets under rough
Pythagorean fuzzy environment [51].

1.1.MotivationandContribution. (emotives of the present
study are summarized as follows:

(1) Graph theory has a wide range of applications in
different domains to study pairwise relations among
objects. But, in graphical models, usually certain
information is ignored that two or more objects may
satisfy common properties or characteristics.
Hypergraph theory as a generalization of graph
theory tackles this difficulty to study common
characteristics of any collection of objects in a more
efficient way.

(2) In a hypergraph, binary values 0 and 1 are used to
identify whether certain objects satisfy a common
characteristic or not. Hypergraphs cannot study
uncertain properties or partial belongingness of
objects and their relations. Fuzzy hypergraphs and
their extensions have been applied successfully to
deal with uncertain information in hypergraphical
models. But, all these existing approaches are based
on additional suppositions and membership func-
tions to compute the vagueness of objects. Rough sets
are a power tool to discuss uncertainty using upper
and lower approximations without any additional
assumptions and predefined functions. Rough
hypergraphs as an extension of hypergraphs can
study incomplete information in hypergraphical
models using given information, that is, no need for
additional assumptions, which is the main focus of
the present study.

(3) Various hypergraphical structures have applications
for map learning, link prediction, information

entropy, etc. Hypergraphs are usually used to rep-
resent relations among social objects. Rough
hypergraphs can be used to cope with uncertain
relations among objects in social networks without
suppositions of arbitrary membership values and
functions unlike fuzzy hypergraphs and their ex-
tensions. Rough hypergraphs can be used in decision
analysis for the grouping of different teams, storage
of incompatible and flammable substances, and
route-finding problems using distance measures.

(e main contribution of this research paper is as
follows:

(1) (is study proposes the novel concept of rough
hypergraph using rough relations. A rough hyper-
graph is constructed on a set using equivalence
relations.

(2) (e properties of isomorphism, conformality, line-
arity, duality, associativity, commutativity, distrib-
utivity, Helly property, and intersecting families in
rough hypergraphs are studied in detail.

(3) Certain operations on rough hypergraphs are dis-
cussed. (e formulae for 2-section, L2-section,
covering, coloring, rank, and antirank are established
using approximation techniques.

1.2. Framework of the Paper. (is paper is organized as
follows:

(1) Section 1 is based on the literature review and
motives of the given study

(2) Section 2 contains basic ideas, definitions, and ter-
minologies from already existing articles that are
used in the paper

(3) Section 3 is the main focus of this research paper
which contains novel concepts of certain types of
rough hypergraphs and their interesting properties

2. Preliminaries

A hypergraph [1] on a nonempty set Q is written as a pair
H � (Q, D), where D � D1, D2, . . . , Dr􏼈 􏼉 is a family of
nonempty subsets of Q such that ∪rk�1Dk � Q.

Definition 1 (see [21]). An approximation space on T is a
pair (Q,φ), where φ is defined as an equivalence (EQ) re-
lation on T. For any subset A⊆Q, the upper approximation
φA and lower approximation φA of A in (Q,φ) are defined
as

φA � d ∈ Q|[d]φ ∩A≠∅􏽮 􏽯,

φA � d ∈ Q|[d]φ ⊆A􏽮 􏽯.
(1)

Here, [d]φ � g ∈ Q|(d, g) ∈ φ􏼈 􏼉 is known as EQ class of
d ∈ T, and the pair (φA,φA) is called a rough set.

Definition 2 (see [23]). A rough digraph on a nonvoid set Q

is a 3-tuple G � (Q,φA,ψ D) such that
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(1) φ is an EQ relation on the vertex set Q

(2) For A⊆Q, φA � (φA,φA) is a rough set on Q

(3) ψ D is an EQ relation on any M⊆Q × Q

(4) For D⊆A × A, ψ D � (ψD,ψD) is a rough relation
on φA � (φA,φA)

(e rough digraph is also represented by the pair
U � (U,U), where U � (φA,ψD) and U � (φA,ψD) are
digraphs. If D is an irreflexive and symmetric relation,U and
U are simple graphs and U is a rough graph on Q.

3. Rough Hypergraphs

In this section, the notion of a rough hypergraph is intro-
duced with certain interesting properties of isomorphism,
linearity, duality, and rough line graphs. We have discussed
the 2-section, L2-section, rank, antirank, covering, and
coloring of certain operations of rough hypergraphs.

Definition 3. Let φ be an EQ relation on Q and for A⊆Q; let
(φA,φA) be a rough set on Q. Let ψ be an EQ relation on
M⊆P(Q)∖ ∅{ }, the power set of Q, such that for each
d1, g1 ∈ U1, there exist d2, g2 ∈ U2 iff (U1, U2) ∈ ψ.

Let D⊆P(A)∖ ∅{ } be a family of nonempty subsets of
A; then the upper and lower approximations ψD and ψD are
defined as

ψD � V ∈M|[V]ψ ∩D≠∅􏽮 􏽯,

ψD � V ∈M|[V]ψ ⊆D􏽮 􏽯.
(2)

(e pair (ψD,ψD) is known as a rough relation on Q. If
ψD⊆P(φA), the power set of φA, then (ψD,ψD) is a rough
relation on (φA,φA).

Definition 4. A rough hypergraph on a nonempty set Q is a
triplet (Q,φA,ψD) such that

(1) φ is an EQ relation on vertex set Q

(2) For A⊆Q, (φA,φA) is a rough set on Q

(3) ψ is an EQ relation on M⊆P(Q)∖ ∅{ }, that is, the
family of nonempty subsets of Q

(4) For D⊆P(A)∖ ∅{ }, (ψD,ψD) is a rough relation on
(φA,φA); that is, ψD⊆P(φA)

(e rough hypergraph on Q is also denoted by the pair
R � (R,R), where R � (φA,ψD) and R � (φA,ψD) are
hypergraphs.

Example 1. Let φ be an EQ relation on Q � o, d, t, g, y, h􏼈 􏼉 as
given in Figure 1. Let A � o, t, g, d, h􏼈 􏼉, then φA � o, h, d, t{ },
and φA � o, d, t, g, y, h􏼈 􏼉. Let ψ be an EQ relation on
M⊆P(Q)∖ ∅{ } as shown in Figure 2.

Let D � o, g, h􏼈 􏼉, o, t, d, y􏼈 􏼉, o, t, d, g􏼈 􏼉􏼈 􏼉, then clearly
ψD � o, t, d, y􏼈 􏼉, o, t, d, g􏼈 􏼉􏼈 􏼉􏼈 , and ψ D� o, g, h􏼈 􏼉,􏼈

o, y, h􏼈 􏼉, o, g, y, h􏼈 􏼉, o, t, d, g􏼈 􏼉, o, t, d, y􏼈 􏼉}. (e rough
hypergraph on Q is shown in Figure 3.

Definition 5. (e degree of a vertex k in a rough hypergraph
R � (R,R) is the sum of degrees of vertex k in both
hypergraphs R � (ψ A,ψD) and R � (ψA,ψD). It is
denoted as deg(k) � (1/2)(deg (k) + deg(k)), where
deg (k) and deg(k) denote the number of hyperedges in-
cident to k in R(k) and R(k), respectively.

(e maximum degree of a rough hypergraph is denoted
by Δ(R) and computed as the sum of maximum degrees in
R and R, respectively; that is, Δ(R) � (1/2)(Δ(R) +

Δ(R)) � (1/2)(maxk∈P deg (k) + maxk∈Pdeg(k)).

o
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h

Figure 1: Approximation space (Q,φ).
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Figure 2: Approximation space (M,ψ).
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Figure 3: Rough hypergraph ((φA,ψ D), (φA,ψD)).

Journal of Mathematics 3



(e minimum degree of a rough hypergraph is denoted
by δ(R) and computed as the sum of minimum degrees in
R and R, respectively; that is, δ(R) � (1/2)

(δ(R) + δ(R)) � (1/2)(maxk∈P deg (k) + mink∈Pdeg(k)).

Definition 6. (e rank of a rough hypergraph is denoted
by r(R) and defined as the sum of ranks of R and R;
that is, r(R) � (1/2)(r(R) + r(R)) � (1/2)(maxE∈ψD|E|+

maxE∈ψD|E|).

(e antirank of a rough hypergraph is denoted by
s(R) and defined as the sum of antiranks of R and R;
that is, sR) � s(R) + s(R) � (1/2)(maxk∈PminE∈ψD|E|+

minE∈ψD|E|).

A rough hypergraph is called a uniform rough hyper-
graph if r(R) � s(R). A uniform rough hypergraph is
known as a p- uniform rough hypergraph if
r(R) � r(R) � p.

Note that a rough hypergraph for which r(R)≤ 2 and
r(R)≤ 2 is a rough graph. A 2-uniform rough hypergraph is
a rough graph.

Definition 7. A rough hypergraph R � ((φA,

ψD), (φA,ψD)) is called a partial rough hypergraph of a
rough hypergraph S � ((φB,ψ F), (φB,ψF)) if φA⊆ φB,
ψD⊆ ψ F, φA⊆φB, and ψD⊆ψF. It is written as R⊆S.

A partial rough hypergraph R � ((φA,ψD), (φA,ψD))

is called induced if ψ F and ψF contain all hyperedges of S
which has vertices from φB and φB, respectively.

Definition 8. A rough hyperpath of length q between ver-
tices g and k, denoted by ko − − kq, in a rough hypergraph
R � ((φA,ψD), (φA,ψD)) is a sequence of distinct vertices
and hyperedges ko, D1, k1, D2, k2, D3, . . . , Dq− 1, kq− 1, Dq, kq

in both R � (φA,ψD) and R � (φA,ψD). If ko � kq, then
the rough hyperpath is known as a rough hypercycle.

Definition 9. (e distance dR(k, g) between any two ver-
tices k and g of a rough hypergraphR is defined as the sum
of lengths of shortest hyperpaths connecting k and g in both
R and R; that is, dR(k, g) � (1/2)(dR(k, g) + d

R
(k, g)).

Definition 10. LetR1 andR2 be two rough hypergraphs on
Q1 and Q2, respectively. A homomorphism from R1 into
R2 is a mapping f: Q1⟶ Q2 if there exist homomor-
phisms f : Q1⟶ Q2 and f: Q1⟶ Q2; that is,

(1) If f(D) is a hyperedge inR2, then D is a hyperedge
in R1

(2) If f(D) is a hyperedge inR2 , then D is a hyperedge
in R1

A homomorphism which is a one-to-one correspon-
dence between Q1 and Q2 is called an isomorphism. In this
case, we say that the rough hypergraphs R1 and R2 are
isomorphic to each other and write as R1 � R2.

Definition 11. (e 2-section [R]2 � ([R]2, [R]2) �

((φA, [ψD]2), (φA, [ψD]2)) of a rough hypergraph
R � (R,R) is a rough graph with the same vertex set as in
R and two vertices are adjacent in [R]2 and [R]2 if they
belong to the same hyperedge in R and R, respectively.

(e L2-section [R]L2 � ([R]L 2, [R]L2) � ((φA, [ψD]2,

L), (φA, [ψD]2, L)) of a rough hypergraph R � (R, R) is
the 2-section ofR with a pair of mappings L � (L, L), where
L : [ψD]2⟶ ψD and L: [ψD]2⟶ ψD are such that

L(kg) � E ∈ ψD|k, g ∈ E􏼈 􏼉,

L(kg) � E ∈ ψD|k, g ∈ E􏽮 􏽯.
(3)

In other words, the L2-section is a labeled 2-section of a
rough hypergraph. As compared to 2-section, L2-section
provides additional information to trace back the edges of
[R]2 which are associated with the hyperedges of R. (us,
the original rough hypergraph can be easily constructed
from the L2-section. (e inverse [R]− 1

L2 is the rough
hypergraph whose L2-section is [R]L2 with ψD �

∪ kg∈[ψD]2
L(kg) and ψD � ∪ kg∈[ψD]2

L(kg).

Example 2. Consider a rough hypergraph R shown in
Figure 4. (e 2-section [R]2 of R is given in Figure 4 with
dashed lines and L2-section [R]L2 is given in Figure 5.

Remark 1. LetR be a rough hypergraph; then, Definition 11
directly follows that

(1) [R]− 1
2 � R

(2) [[R]− 1
2 ]2 � [R]2

Lemma 1. Let R1 and R2 be two isomorphic rough
hypergraphs; then, [R1]2 � [R2]2 and [R1]L2 � [R2]L2.

Proof. Let R1 � ((φA1,ψD1), (φA1,ψD1)) and R2 �

((φA2,ψD2), (φA2,ψD2)) be two rough hypergraphs, then
R1]2 � ((φA1, [ψD1]2), (φA1, [ψD1]2)), and [R2]2 �

((φA2, [ψD2]2), (φA2, [ψD2]2)). (e vertex set of Rj and
[Rj]2 is the same for j � 1, 2. Let kg ∈ [ψD1]2; then, there
exists E ∈ ψD1 such that k, g􏼈 􏼉⊆ E. Since R1 � R2,
therefore f: R1⟶R2 is an isomorphism and f(E) is a
hyperedge in R2 such that f(k), f(g)􏼈 􏼉 ∈ f(E), hence,
f(k)f(g) in an edge in [R2]2 and so [R1]2 � [R2]2.

Let [R1]L2 � ((φA1, [ψD1]2, L1), (φA1, [ψD1]2, L1)) and
[R2]L2 � ((φA2, [ψD2]2, L2), (φA2, [ψD2]2, L2)). It remains
to show that the labeling functions L1 � (L1, L1) and L2 �

(L2, L2) are equal. Clearly, for any k1g1 ∈ [ψD1]2,
L1 � E1|k1, g1 ∈ E1􏼈 􏼉 � f(E)|f(k), f(g) ∈ f(E)􏼈 􏼉 � L2.
Similarly, L1 � L2. Hence, the labeling functions L1 and L2
are equal and [R1]L2 � [R2]L2. □

Definition 12. Let R be a rough hypergraph on Q; then,
the distance between any two vertices k and g is defined as

dR(k, g) �
1
2

dR(k, g) + d
R

(k, g)􏽨 􏽩, (4)
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where dR(k, g) and d
R

(k, g) are lengths of shortest
hyperpaths between k and g in R and R, respectively.

Lemma 2. Let R be a rough hypergraph on Q; then, for any
k, g ∈ Q dR(k, g) � d[R]2

(k, g).

Proof. If k and g are in different connected components in
R or R, or both, then clearly k and g are in different
components in [R]2 or [R]2. In this case, R � R �∞.
Assume that R is a connected rough hypergraph; then, R
and R are both connected hypergraphs and so is [R]2. Let
k, E1, k1, E2, . . . , ks− 1, Es, g be the shortest hyperpath in R

between vertices k and g. (en, by the construction of [R]2,
there exists a hyperwalk in k, e1, k1, e2, . . . , ks− 1, es, ks � g in
[R]2. Let k, f1, k1, f2, . . . , kp− 1, f

p
, g be the shortest path in

R. Clearly s≥p. (us, corresponding to every f
j
∈ [ψD]2,

there exists Fj ∈ ψD such thatf
j
⊆Fj, and so a hyperwalk of

length p in R. A contradiction, hence
dR(k, g) � d[R]2

(k, g). Similarly, d
R

(k, g) � d
[R]2

(k, g). It
clearly follows that dR(k, g) � d[R]2

(k, g).
We now study certain products of rough hypergraphs. In

each product, the vertex set is the Cartesian product of the
sets of vertices of all rough hypergraphs. (e adjacency of
edges is based on the adjacency properties defined in the
product. Let R1⊛R2 denote any product of two rough
hypergraphs R1 and R2. For any rough hypergraph R, if
there exists another rough hypergraph U such that
R⊛U � R, then U is called the unit element. Note that U
must be a hypergraph with a single vertex and no loops. A
rough hypergraph R is called prime if whenever
R � R1⊛R2, then either R1 � U or R2 � U. □

Definition 13. Let R be a rough hypergraph on Q. (e
rough line graph of R is a rough graph
L(R) � (L(R), L(R)) such that

(1) L(J) � (φAL,ψDL), where φAL � ψD. (at is, the
hyperedge set of R � (φA,ψD) is the vertex set of
L(R). For any Ei, Ek ∈ ψD, if Ei ∩Ek ≠∅, then
EiEk ∈ ψDL.

(2) L(J) � (φAL,ψDL), where φAL � ψD. (at is, the
hyperedge set of R � (φA,ψD) is the vertex set of
L(R). For any Ei, Ek ∈ ψD, if Ei ∩Ek ≠∅, then
EiEk ∈ ψDL.

Example 3. (e rough line graph L(R) of Figure 3 is shown
with dashed lines in Figure 6.

Definition 14. A rough hypergraph R is called connected if
R and R are both connected hypergraphs.

Lemma 3. A rough hypergraph R is connected if and only if
L(R) is a connected rough graph.

Definition 15. A rough hypergraph R � ((φA,

ψD), (φA,ψD)) is called linear if R � (φA,ψD) and R �

(φA,ψD) are linear hypergraphs, that is,

(1) For any two hyperedges Ei, Ej ∈ ψD,

(a) Ei ⊆Ej⇒i � j

(b) |Ei ∩Ej|≤ 1

(2) For any two hyperedges Ei, Ej ∈ ψD,

(a) Ei ⊆Ej⇒i � j

(b) |Ei ∩Ej|≤ 1

Theorem 1. Any nontrivial simple rough graph is a rough
line graph of a linear rough hypergraph.

Proof. Let G � ((φC,ψ B), (φC,ψB)) be a rough graph on
Q. Assume, without loss of generality, thatU is a connected
rough graph without multiple edges. A rough hypergraph
R � ((α, β), (α, β)) can be constructed from U as follows:

(1) (e vertex set of R is the edge set of G, that is, α �

ψ B and α � ψ B

(2) Let Q � k1, k2, . . . , km􏼈 􏼉, then,

(a) If Ei is the collection of those edges of (φC,ψ B)

which has ki as incidence vertex, then Ei ∈ β is a
hyperedge in (α, β); that is, Ei � kikj ∈ ψ􏽮

B|kj ∈ Q, j � 1, 2, 3, . . .}

(b) If Ei is the collection of those edges of (φC,ψB)

which has ki as incidence vertex, then Ei ∈ β is a
hyperedge in (α, β); that is, Ei � kikj ∈ ψ􏽮

B|kj ∈ Q, j � 1, 2, 3, . . .}

It remains to show thatR is linear. Let Ei and Ej be two
hyperedges in (α, β) such that Ei ∩Ej � er, et􏼈 􏼉; that is, both
the edges er and et have two common vertices. Since
(φC,ψ B) has no multiple edges, therefore er � et. Hence,
(α, β) is a linear hypergraph proving thatR is a linear rough
hypergraph. □

y

tg E2

o

k

y

tg

E 1

E3

E2

Figure 4: 2-section of the rough hypergraph
((φA,ψ D), (φA,ψD)).
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Figure 5: L2-section of rough hypergraph ((φA,ψ D), (φA,ψD)).
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Theorem 2. For any rough hypergraph R, L(R) � [R∗]2.

Proof. Let R � ((φA,ψD), (φA,ψD)) be a rough hyper-
graph on Q � k1, k2, . . . , kn􏼈 􏼉 and ψD � E1, E2, . . .􏼈 , Em},
ψD � E1, E2, . . . , Em􏼈 􏼉. (e hyperedge set ofR is the vertex
set of L(R) which is also the vertex set of [R∗]2. Let
X1, X2, . . . , Xn􏼈 􏼉 be the hyperedge set of R∗ such that

Xi � Ej ∣ ki ∈ Ej􏽮 􏽯; then, ElEj|El, Ej ∈ Xi􏽮 􏽯 is the edge set of
L(R) and [R∗]2. (us, L(R) � [R∗]2. On the same ar-
gument, L(R) � [R

∗
]2. Hence, L(R) � [R∗]2. □

Lemma 4. For any rough hypergraph R,

(1) R∗∗ � R

(2) If R1 � R2, then R∗1 � R∗2

;e proof of Lemma 4 is a direct consequence of Defi-
nitions 10 and 28.

Theorem 3. For any rough hypergraph R, L(R∗) � [R]2.

Proof. By (eorem 2 and Lemma 4, [R]2 �

[R∗∗]2 � L(R∗). □

Theorem 4. If R � ((φA,ψD), (φA,ψD)) is a linear rough
hypergraph, then R∗ � ((φA∗,ψ D∗), (φA∗,ψD∗)) is also
linear.

Proof. SinceR is linear, therefore (φA,ψD) and (φA,ψD)

are linear hypergraphs. On the contrary, suppose that
(φA∗,ψ D∗) is not linear. (en, there exist hyperedges Xi

and Xj in (φA∗,ψ D∗) such that |Xi ∩Xj| � 2. Let
Xi ∩Xj � Et, Es􏼈 􏼉. Definition 28 implies that Et and Es have
two common vertices ki, kj, that is, ki, kj ∈ Et and ki, kj ∈ Es.
It denies the linearity of R. (us, J∗ is linear. Following
similar arguments, the linearity ofJ∗ can be proved. Hence,
J∗ is a linear rough hypergraph. □

3.1. Cartesian Product. In this subsection, we introduce the
concept of Cartesian product in rough hypergraphs and
study its 2-section, L2-section, distance, covering, and
coloring of the Cartesian product of rough hypergraphs.

Definition 16. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs. (e Cartesian product of R1 and
R2 is a rough hypergraph R1□R2 � (R1□R2,R1□R2)

which is defined as

(1) R1□R2 � (φA1 × φA2,ψD1□ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏽮 􏽯

(b) ψD1□ψD2 � k1􏼈 􏼉 × E2|k1 ∈ φ􏽮 A1, E2 ∈ ψD2}

∪ E1×􏼈 k2􏼈 􏼉|E1 ∈ ψD1, k2 ∈ φA2}

(2) R1□R2 � (φA1 × φA2,ψD1□ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏼈 􏼉

(b) ψD1□ψD2 � k1􏼈 􏼉 × E2|k1 ∈ φ􏼈 A1, E2 ∈ ψD2}

∪ E1 × k2􏼈 􏼉|E1 ∈ ψD1, k2 ∈ φA2􏼈 􏼉

In short, R1□R2 and R1□R2 are the Cartesian
products of lower approximate hypergraphs R1,R2 and
upper approximate hypergraphs R1,R2, respectively. Just
like the Cartesian product of hypergraphs, the Cartesian
product of rough hypergraphs is associative, distributive
with respect to the disjoint union, commutative, and a unit
as a trivial rough hypergraph with a single vertex. (at is, for
any rough hypergraphs R,R1, R2, and R3, the following
properties hold:

(1) R1□(R2□R3) � (R1□R2)□R3

(2) R1□R2 � R2□R1

(3) R1□(R2 ∪R3) � (R1□R2)∪ (R1□R2)

(4) R□U � R, where U is a single vertex rough
hypergraph without loops

Theorem 5. LetR1 andR2 be two rough hypergraphs; then,

(1) r(R1□R2) � max r(R1), r(R2), (r(R1)+􏼈

r(R2)/2), (r(R2) + r(R1)/2)}

(2) s(R1□R2) � min s(R1), s(R2),􏼈

(s(R1) + s(R2)/2), (s(R2) + s(R1)/2)}

Proof. Since, by Definition 16, R1□R2 � (R1□R2,

R1□R2), we first need to compute r(R1□R2) and
r(R1□R2). By Definition 6,

r R1□R2( 􏼁 � max
E∈ψD1□ψD2

|E|

� max k1􏼈 􏼉 × E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k1 ∈ φA1, E2 ∈ ψD2􏽮 􏽯

∪ E1 × k2􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E1 ∈ ψD1, k2 ∈ φA2􏽮 􏽯

� max E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E2 ∈ ψD2􏽮 􏽯∪ E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E1 ∈ ψD1􏽮 􏽯

� max max
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, max
E2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒r R1□R2( 􏼁 � max r R1( 􏼁, r R2( 􏼁􏼈 􏼉.

(5)

Similarly, r(R1□R2) � max r(R1), r(R2)􏽮 􏽯. Hence,

o
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t

g y
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g y
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Figure 6: Rough line graph L(R).
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r R1□R2( 􏼁 �
1
2

max r R1( 􏼁, r R2( 􏼁􏼈 􏼉 + max R1􏼐 􏼑, r R2􏼐 􏼑􏽮 􏽯

� max
r R1( 􏼁 + r R1􏼐 􏼑

2
,
r R2( 􏼁 + r R2􏼐 􏼑

2
,
r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

� max r R1( 􏼁, r R2( 􏼁,
r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(6)

By Definition 6, the antirank of R1□R2 is given as

s R1□R2( 􏼁 � min
E∈ψ D1□ψ D2

|E|

� min k1􏼈 􏼉 × E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k1 ∈ φA1, E2 ∈ ψD2􏽮 􏽯

∪ E1 × k2􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E1 ∈ ψD1, k2 ∈ φA2􏽮 􏽯

� min E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E2 ∈ ψD2􏽮 􏽯∪ E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|E1 ∈ ψD1􏽮 􏽯

� min min
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, min
E 2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒s R1□R2( 􏼁 � min s R1( 􏼁, s R2( 􏼁􏼈 􏼉.

(7)

Similarly, s(R1□R2) � min s(R1), s(R2)􏽮 􏽯. Hence,

s R1□R2( 􏼁 �
1
2

min s R1( 􏼁, s R2( 􏼁􏼈 􏼉 + min s R1􏼐 􏼑, s R2􏼐 􏼑􏽮 􏽯

� min
s R1( 􏼁 + s R1􏼐 􏼑

2
,
s R2( 􏼁 + s R2􏼐 􏼑

2
,
s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

� min s R1( 􏼁, s R2( 􏼁,
s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(8)

Lemma 5. Let R1 and R2 be two rough hypergraphs, then
[R1□R2]2 � [R1]2□[R2]2.

Proof. Since the vertex set of Ri and [Ri]2 is the same for
i � 1, 2, therefore the vertex set of [R1□R2]2 and
[R1]2□[R2]2 is the same. It only needs to show that the set

of hyperedges of [R1□R2]2 and [R1]2□[R2]2 is the same.
By Definition 16, [R1□R2]2 � ([R1□R2]2, [R1□R2]2),
where [R1□R2]2 � (φA1 × φA2, [ψD1□ψD2]2) and
[R1□R2]2 � (φA1 × φA2, [ψD1□ψD2]2). So, we have

ψD1□ψD2􏽨 􏽩2 � x1, x2( 􏼁 y1, y2( 􏼁| x1, x2( 􏼁, y1, y2( 􏼁􏼈 􏼉⊆ E ∈ ψD1□ψD2􏽮 􏽯

� x1, x2( 􏼁 x1, y2( 􏼁|y1 � x1, x2, y2􏼈 􏼉⊆E2 ∈ ψD2􏽮 􏽯

∪ x1, x2( 􏼁 y1, x2( 􏼁|y2 � x2, x1, y1􏼈 􏼉⊆E1 ∈ ψD1􏽮 􏽯

� x1, x2( 􏼁 x1, y2( 􏼁|x1 ∈ φA1, x2y2 ∈ ψD2􏽨 􏽩2􏽮 􏽯∪ x1, x2( 􏼁 y1, x2( 􏼁|x1y1 ∈ ψD1􏽨 􏽩2, x2 ∈ φA2􏽮 􏽯

⇒ ψD1□ψD2􏽨 􏽩2 � ψD1􏽨 􏽩2□ ψD2􏽨 􏽩2.

(9)

Journal of Mathematics 7



As the vertex set [R1□R2]2 and [R1]2□[R2]2 is also
same, so [R1□R2]2 � [R1]2□[R2]2. Similarly, [R1
□R2]2 � [R1]2□[R2]2. Hence, [R1□R2]2 � [R1]2□
[R2]2. □

Definition 17. Let [R1]L2 � ((φA1, [ψD1]2, L1), (φA1,

[ψD1]2, L1)) and [R2]L2 � ((φA2, [ψD2]2, L2),

(φA2, [ψD2]2, L2)) be L2-sections of two hypergraphs R1
and R2. (e Cartesian product of L2-sections is a rough
hypergraph with a labeling function L1□L2 � (L1□
L2, L1□L2), where L1□L2: [ψD1]2 × [ψD2]2⟶ ψD1□ψD2

and L1□L2: [ψD1]2 × [ψD2]2⟶ ψD1□ψD2 are defined as

L1 □ L2 k1􏼈 􏼉 × l2, g2􏼈 􏼉( 􏼁 � k1􏼈 􏼉 × E2|E2 ∈ L2 l2g2( 􏼁􏼈 􏼉

L1 □ L2 l1, g1􏼈 􏼉 × k2􏼈 􏼉( 􏼁 � E1 × k2􏼈 􏼉|E1 ∈ L1 l1g1( 􏼁􏼈 􏼉

L1 □ L2 k1􏼈 􏼉 × l2, g2􏼈 􏼉( 􏼁 � k1􏼈 􏼉 × E2|E2 ∈ L2 l2g2( 􏼁􏼈 􏼉

L1 □ L2 l1, g1􏼈 􏼉 × k2􏼈 􏼉( 􏼁 � E1 × k2􏼈 􏼉|E1 ∈ L1 l1g1( 􏼁􏼈 􏼉.

(10)

Lemma 6. Let R1 and R2 be two rough hypergraphs, then

(1) [R1 □R2]L2 � [R1]L2□ [R2]L2

(2) [R1 □R2]
− 1
L2 � [R1]

− 1
L2 □ [R2]

− 1
L2

Proof

(1) It is clear from Lemma 7 that
[R1□R2]2 � [R1]2□[R2]2. It only needs to prove
that the labeling function of [R1□R2]L2 and the
function L1□L2 of Definition 17 are the same.
Let [R1□R2]L2 � ((φA1 × φA2, [ψD1□ψD2]2, L),

(φ A1 × φA2, [ψD1□ψD2]2, L)) be the L2-section of
R1□R2 with a labeling function L � (L, L), where
L : [ψD1□ψD2]2⟶ ψD1□ψD2 and L: [ψD1□
ψD2]2⟶ ψD1□ψD2 are mappings. It is to be
shown that L((k1, k2)(g1, g2)) � L1□L2 ((k1, k2)

(g1, g2)) and L((k1, k2) (g1, g2)) � L1□L2 ((k1, k2)

(g1, g2)). By Definitions 11 and 17,

L k1, k2( 􏼁 k1, g2( 􏼁( 􏼁 � E | k1, k2( 􏼁, k1, g2( 􏼁􏼈 􏼉⊆ E ∈ ψD1□ψD2􏽮 􏽯

� k1􏼈 􏼉 × E2| k1, k2( 􏼁, k1, g2( 􏼁􏼈 􏼉⊆ k1􏼈 􏼉 × E2 ∈ ψD1□ψD2􏽮 􏽯

� k1􏼈 􏼉 × E2| k2, g2􏼈 􏼉⊆E2 ∈ ψD2􏽮 􏽯

� k1􏼈 􏼉 × E2|E2 ∈ L2 k2g2( 􏼁􏼈 􏼉

⇒ L k1, k2( 􏼁 k1, g2( 􏼁( 􏼁 � L1□L2 k1, k2( 􏼁 k1, g2( 􏼁( 􏼁.

⇒ L k1, k2( 􏼁 g1, k2( 􏼁( 􏼁 � E | k1, k2( 􏼁, g1, k2( 􏼁􏼈 􏼉⊆ E ∈ ψD1□ψD2􏽮 􏽯

� E1 × k2􏼈 􏼉| k1, k2( 􏼁, g1, k2( 􏼁􏼈 􏼉⊆E1 × k2􏼈 􏼉 ∈ ψD1□ψD2􏽮 􏽯

� E1 × k2􏼈 􏼉| k1, g1􏼈 􏼉⊆E1 ∈ ψD1􏽮 􏽯

� E1 × k2􏼈 􏼉|E1 ∈ L1 k1g1( 􏼁􏼈 􏼉

⇒ L k1, k2( 􏼁 g1, k2( 􏼁( 􏼁 � L1□L2 k1, k2( 􏼁 g1, k2( 􏼁( 􏼁.

(11)

(us, L((k1, k2)(g1, g2)) � L1□L2((k1, k2)(g1, g2)),
for each (k1, k2)(g1, g2) ∈ [ψD1□ψD2]2. Similarly,
L � L1□L2. Hence, L � L1□L2 which clearly proves
[R1□R2]L2 � [R1]L2□[R2]L2.

(2) For any rough hypergraphR, [R]− 1
L2 � (R, L) is the

rough hypergraph with a labeling function. (e
proof of part 2 is clear from part 1 and Remark 1.
Using Remark 1, [R1□R2]

− 1
L2 � (R1□R2, L). By

proof of part 1, (R1□R2, L) � (R1□R2, L1□L2) �

(R1, L1)□ (R2, L2) � [R1]
− 1
L2□[R2]

− 1
L2. □ □

Theorem 6. LetR1 andR2 be two rough hypergraphs on Q1
and Q2; then, for any k1, g1 ∈ Q1 and k2, g2 ∈ Q2,

dR1□R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 � dR1

k1, g1( 􏼁 + dR2
k2, g2( 􏼁.

(12)

Proof. (e proof of this theorem is a direct consequence of
Proposition 5.1 of [5], Lemmas 2 and 6. (us, for any two
rough hypergraphs R1 and R2,

dR1□R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 � d R1□R2[ ]2

k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� d R1[ ]2□ R2[ ]2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� d R1[ ]2
k1, g1( 􏼁 + d R2[ ]2

k2, g2( 􏼁

⇒dR1□R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� dR1
k1, g1( 􏼁 + dR2

k2, g2( 􏼁.

(13)

LetR be a rough hypergraph. If there exist prime rough
hypergraphs R1,R2, . . . ,Rq such that
R � R1□R2□ . . .□Rq, then it is called PFD (prime factor
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decomposition) of R into q factors w.r.t the Cartesian
product. □

Remark 2. Every connected rough hypergraph has a unique
PFD with respect to the Cartesian product.

(emethod to obtain a PFD of a rough hypergraph using
its L2-section is illustrated in Algorithm 1.

Definition 18. LetR1 andR2 be two rough hypergraphs on
Q1 and Q2, respectively. A homomorphism from R1 into
R2 is a mapping f: Q1⟶ Q2 if there exist homomor-
phisms f : Q1⟶ Q2 and f: Q1⟶ Q2; that is,

(1) If f(D) is a hyperedge inR2, then D is a hyperedge
in R1

(2) If f(D) is a hyperedge inR2 , then D is a hyperedge
in R1

A homomorphism which is a one-to-one correspon-
dence between Q1 and Q2 is called an isomorphism. In this
case, we say that the rough hypergraphs R1 and R2 are
isomorphic to each other and write as R1 � R2.

Definition 19. Let R � ((φA,ψD), (φA,ψD)) and
R′ � ((φA′,ψ D′), (φA′,ψD′)) be two rough hypergraphs
on Q and Q′, respectively. A surjective homomorphism
f: Q′ ⟶ Q is called a covering projection if

(1) |f− 1(k)| � |f− 1(E)| � p, for all k ∈ φA, E ∈ ψD

(2) |f
− 1

(k)| � |f
− 1

(E)| � p, for all k ∈ φA, E ∈ ψD

(3) E′ ∩F′ � ∅, for all distinct E′, F′ ∈ f− 1(E), E ∈ ψD

(4) E′ ∩F′ � ∅, for all distinct E′, F′ ∈ f− 1(E), E ∈ ψD

(e rough hypergraph R′ is called a p-fold covering of
R, and R is called quotient rough hypergraph of R′. If
p � 2, R′ is called a double cover of R.

Definition 20. Let R � ((φA,ψD), (φA,ψD)) be a rough
hypergraph on Q. (e sets S ⊆ φA and S⊆φA are called
independent if they contain no hyperedge of R and R,
respectively. (e cardinalities of the largest independent sets
are denoted by β(R) and β(R) and are called the inde-
pendence number of R and R, respectively. (e value
β(R) � (1/2)(β(R) + β(R)) is called independence
number of R.

Definition 21. Let R � ((φA,ψD), (φA,ψD)) be a rough
hypergraph on Q. (e subsets T ⊆ φA and T⊆φA are called
covers of R and R, respectively, if T ∩ E ≠∅ and
T∩E≠∅, for each E ∈ ψD andE ∈ ψD.(e cardinalities of
minimal covers are denoted by τ(R) and τ(R) and are
called covering numbers of R and R, respectively. (e
average value τ(R) � (1/2)(τ(R) + τ(R)) is called cov-
ering number of R.

Definition 22. Let R � ((φA,ψD), (φA,ψD)) be a rough
hypergraph on Q. (e fractional covers of R and R are,
respectively, the mappings f : φA⟶ R+ ∪ 0{ } and
f: φA⟶ R+ ∪ 0{ } such that

􏽘
k∈E

f(k) ≥ 1, for each E ∈ ψD,

􏽘

k∈E

f(k) ≥ 1, for eachE ∈ ψD.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

(e value τ∗(R) � (1/2)(minf􏽐k∈φAf (k) + min
f􏽐k∈φAf (k)) is called fractional covering number (FC

number) of R.

Definition 23. Let R � ((φA,ψD), (φA,ψD)) be a rough
hypergraph on Q. (e subsets M ⊆ ψD and M⊆ψD are
called matching if every pair of hyperedges from M and M

are mutually disjoint. (e cardinalities of maximal match-
ings are denoted by ](R) and ](R) and are called matching
numbers ofR andR, respectively.(e matching number of
R is computed as ](R) � (1/2)(](R) + ](R))

Definition 24. Let R � ((φA,ψD), (φA,ψD)) be a rough
hypergraph on Q. (e minimum number of mutually dis-
joint hyperedges whose union is the sets of vertices φA and
φA is called the partition number ofR and R, respectively,
denoted by ρ(R) and ρ(R). (e value
ρ(R) � (1/2)(ρ(R) + ρ(R)) is called the partition number
of R. If such partitions do not exist, then ρ(R) �∞.

We now study certain products of rough hypergraphs. In
each product, the vertex set is the Cartesian product of the
sets of vertices of all rough hypergraphs. (e adjacency of
edges is based on the adjacency properties defined in the
product. Let R1⊛R2 denote any product of two rough
hypergraphs R1 and R2. For any rough hypergraph R, if
there exists another rough hypergraph U such that
R⊛U � R, then U is called the unit element. Note that U
must be a hypergraph with a single vertex and no loops.

Definition 25. A rough hypergraph R � (R,R) is called
conformal if R and R are both conformal hypergraphs.
(at is, corresponding to each clique of 2-section [R]2 (and
[R]2), there is a hyperedge in R (and R).

Definition 26. Let R � (R,R) be a rough hypergraph. (e
collection of all hyperedges in R (and R) containing a
common vertex k is called a star of R (and R), denoted by
R(k) (andR(k)). (e pairR(k) � (R (k),R(k)) is called
a rough star of R. (e subsets E ⊆ ψD and E ⊆ ψD are
called intersecting families of R and R if every pair of
hyperedges of E and E have nonempty intersection.(e pair
(E, E) is called a rough intersecting family of R. A rough
hypergraphR is said to satisfy Helly property if each rough
intersecting family in R is a rough star.

Definition 27. Let R1′ and R2′ be p1-fold and p2-fold
coverings of rough hypergraphs R1 and R2 via covering
projections f1 � (f1, f1) and f2 � (f2, f2), respectively;
then, the Cartesian product (f, f) � f �

f1□f2 � (f1□f2, f1□f2) is defined as

(1) f(k1, k2) � (f1(k1), f2(k2)), for all
(k1, k2) ∈ φA1 × φA2
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(2) f(k1, k2) � (f1(k1), f2(k2)), for all
(k1, k2) ∈ φA1 × φA2

(3) f( k1􏼈 􏼉 × E2) � f1(k1) × f2(E2), for all k1 ∈ φA1,
E2 ∈ ϕD2

(4) f( k1􏼈 􏼉 × E2) � f1(k1) × f2(E2), for all k1 ∈ φA1,
E2 ∈ ϕD2

(5) f(E1 × k2􏼈 􏼉) � f1(E1) × f2(k2), for all E1 ∈ ϕD1,
k1 ∈ φA1

(6) f(E1 × k2􏼈 􏼉) � f1(E1) × f2(k2), for all E1 ∈ ϕD1,
k1 ∈ φA1

Theorem 7. Let R′1 and R′2 be p1-fold and p2-fold cov-
erings of rough hypergraphs R1 and R2 via covering pro-
jections f1 and f2, respectively; then,R′1□R′2 is a p1p2-fold
covering of R1□R2 via covering projection f1□f2.

Proof. (e mapping f � f1□f2 is given in Definition 27.
We first need to show that f � (f, f) is a surjective ho-
momorphism. Let k1′􏼈 􏼉 × E′2 be a hyperedge in R′1□R′2;
then, f( k1′􏼈 􏼉 × E′2) � f1(k1′) × f2(E′2). Since f1 and f2 are
homomorphisms, therefore f1(k1′) ∈ φA2′ and f2(E′2) is a
hyperedge in R2. (us, f1(k1′) × f2(E′2) is a hyperedge in
R1□R2. Similarly, f(E′1 × k2′􏼈 􏼉) is a hyperedge R1□R2

and f( k1′􏼈 􏼉 × E′2); f(E′1 × k2′􏼈 􏼉) are hyperedges inR1□R2
showing that f is a homomorphism. (e surjectivity of
f1□f2 and f1□f2 is obvious from the surjectivity of f1, f2,
f1, and f2.

Let (k1, k2) ∈ φA1 × φA2 be a vertex in R1□R2; then,

f
− 1
1 k1, k2( 􏼁 � k1′, k2′( 􏼁 ∣ f1 k1′( 􏼁 � k1, f2 k2′( 􏼁 � k2􏽮 􏽯

⇒f
− 1
1 k1, k2( 􏼁 � f

− 1
1 k1( 􏼁 × f

− 1
2 k2( 􏼁

⇒ f
− 1
1 k1, k2( 􏼁| � f

− 1
1 k1( 􏼁| × f

− 1
2 k2( 􏼁| � p1p2.

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

(15)

Similarly,

f
− 1

k1, k2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � f
− 1
1 k1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 × f
− 1
2 k2( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � p1p2. (16)

Consider a hyperedge k1􏼈 􏼉 × E2 in R1□R2; then,

f
− 1

k1􏼈 􏼉 × E2( 􏼁 � k1′, k2′( 􏼁|f1 k1′( 􏼁 � k1, f2 k2′( 􏼁 ∈ E2􏽮 􏽯

� f
− 1
1 k1( 􏼁 × f

− 1
2 k2( 􏼁|f2 k2′( 􏼁 ∈ E2􏽮 􏽯

� f
− 1
1 k1( 􏼁 × f

− 1
2 E2( 􏼁

⇒ f
− 1

k1􏼈 􏼉 × E2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � f
− 1
1 k1( 􏼁| × f

− 1
2 E2( 􏼁| � p1p2.

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

(17)

Similarly,

f
− 1
1 E1 × k2􏼈 􏼉( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � f
− 1
1 E1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 × f
− 1
2 k2( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � p1p2

· f
− 1

k1􏼈 􏼉 × E2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � f
− 1

E1 × k2􏼈 􏼉( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � p1p2.

(18)

Let k1􏼈 􏼉 × E2 be a hyperedge inR1□R2 such that k1′􏼈 􏼉 ×

E′2, k1′􏼈 􏼉 × F′2 ∈ f− 1
1 ( k1􏼈 􏼉 × E2) and k1′􏼈 􏼉 × E′2 ∩

k1′􏼈 􏼉 × F′2 ≠∅. It follows that E′2 ∩F′2 ≠∅, a contradiction.
Similarly, we can prove the other cases. Hence, f � (f, f) is
covering projection andR′1□R′2 is a p1p2-fold covering of
R1□R2. □ □

Theorem 8. LetR1 andR2 be two rough hypergraphs; then,
R1□R2 is conformal if and only ifR1 andR2 are conformal.

Proof. Let R1 and R2 be two conformal rough hyper-
graphs. Let L � (L,L) be a rough clique in [R1□R2]2;
then, by Lemma 7, there are two possibilities. □

Case 1. (ere exists a rough cliqueL1 � (L1,L1) in [R1]2
such that L � L1 × x2􏼈 􏼉, for some x2 ∈ ψD2, and
L � L1 × x2􏼈 􏼉, for some x2 ∈ ψD2. Since L is a rough
clique, therefore, L1 is also a rough clique. As R1 is a
conformal rough hypergraph, therefore there exist hyper-
edges E1 and E1 corresponding toL1 andL1 inR1 andR1.
(us, (E1 × x2, E1 × x2)􏼈􏼈 is a rough hyperedge corre-
sponding toL1 showing thatR1□R2 is a conformal rough
hypergraph.

Case 2. (ere exists a rough cliqueL2 � (L2,L2) in [R2]2
such that L � x1􏼈 􏼉 × L2, for some x1 ∈ ψD1, and
L � x1􏼈 􏼉 × L2, for some x1 ∈ ψD1. (is case can be proved
along the same lines as Case 1. Hence, R1□R2 is a con-
formal rough hypergraph.

Conversely, let R1□R2 be a conformal rough hyper-
graph. Let L1 and L2 be rough cliques in R1 and R2,
respectively. By Lemma 7,L � L1□L2 is a rough clique in
[R1□R2]2. SinceR1□R2 is a conformal rough hypergraph,

(1) Given a connected rough hypergraph R � ((φA,ψD),φA,ψD)

(2) Compute the L2-section [R]2 � ((φA, [ψ D]2), (φA, [ψD]2)) of R
(3) Using the Algorithm of Imrich and Peterin [52], decompose the labeled graphs (φA, [ψ D]2) and (φA, [ψD]2) into prime factors

w.r.t the Cartesian product.(at is, the edges of (φA, [ψ D]2) and (φA, [ψD]2) are colored w.r.t the copies of corresponding prime
factors.

(4) Merge the factors if necessary
(5) Compute [R]− 1

2 using the labeled and the PFD of R is obtained such that the colored copies are the prime factors

ALGORITHM 1: Method to compute PFD of a rough hypergraph.
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therefore, there exists a rough hyperedge E � (E, E) in
R1□R2 corresponding toL. By Lemma 7, there exist rough
hyperedges E1 and E2 in R1 and R2 such that E � E1□E2.
Clearly, E1 and E2 correspond to inL1 andL2, respectively,
proving that R1□R2 are conformal rough hypergraphs. □

Theorem 9. LetR1 andR2 be two rough hypergraphs; then,
R1□R2 has the Helly property iffR1 andR2 have the Helly
property.

Definition 28. (e dual of a rough hypergraph
R � ((φA,ψD), (φA,ψD)) is a rough hypergraph
R∗ � ((φA∗,ψ D∗), (φA∗,ψD∗)), where

(1) (e hyperedge set ψD of R is the vertex set of R∗,
that is, φA∗ � ψD � E1, E2, . . . , Er􏼈 􏼉

(2) (e edge set ψD ofR is the vertex set ofR∗, that is,
φA∗ � ψD � E1, E2, . . . , Er􏼈 􏼉

(3) If |φA| � m, then ψ D∗ � K1, K2, . . . , Km􏼈 􏼉 is the
hyperedge set ofR∗ such thatKi � Ej|ki ∈ Ej􏽮 􏽯, that
is, Ki is the collection of those hyperedges of R

which share the common vertex ki

(4) If |φA| � n, then ψD∗ � K1, K2, . . . , Kn􏼈 􏼉 is the
hyperedge set ofR∗ such thatKi � Ej|ki ∈ Ej􏽮 􏽯, that
is, Ki is the collection of those hyperedges of R

which share the common vertices ki

Remark 3. LetR1 andR2 be two rough hypergraphs; then,
(R1□R2)

∗ may not be equal toR∗1□R
∗
2 . Since, for any two

hypergraphs H1 and H2, (H1□H2)
∗ is not equal to h∗1□H∗2

in general, therefore, the equality also does not hold in the
case of rough hypergraphs because a rough hypergraph
contains two hypergraphs as upper and lower approxima-
tions. We discuss this fact using an example of two
hypergraphs shown in Figures 7 and 8.

It is easy to check that H1□H2 has nine edges and so
(H1□H2)

∗ has nine vertices. But, H∗1□H∗2 has three vertices.
(e vertex sets of (H1□H2)

∗ and H∗1□H∗2 are not equal and
it proves our claim.

3.2. Square Product. In this subsection, we introduce the
concept of square product in rough hypergraphs and discuss
its associativity, commutativity, distributivity, 2-section,
rank, and antirank properties.

Definition 29. Let R1 ∗R2 ∗ · · · ∗Rr be any product of
rough hypergraphs and V(Ri) denotes the vertex set of Ri,
for any 1≤ i≤ r. (e mapping pi � (p

i
, pi): V(R1 ∗

R2 ∗ · · · ∗Rr)⟶ V(Ri) is called the projection of
R1 ∗R2 ∗ · · · ∗Rr onto ith factor Ri, where p

i
: R1 ∗

R2 ∗ · · · ∗Rr⟶Ri and pi: R1 ∗R2 ∗ · · · ∗Rr⟶Ri

are the projection mappings defined as

p
i

k1, k2, . . . , kn( 􏼁 � pi k1, k2, . . . , kn( 􏼁 � ki,

for all ki ∈ Qi, 1≤ i≤ r.
(19)

Definition 30. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs.(e square product ofR1 andR2 is
a rough hypergraph R1 × R2 � (R1 × R2,R1 × R2)

which is defined as

(1) R1 × R2 � (φA1 × φA2,ψD1 × ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏽮 􏽯

(b) ψD1 × ψD2 � E1 × E2|E1 ∈ ψD1, E2 ∈ ψD2􏽮 􏽯

(2) R1□R2 � (φA1 × φA2,ψD1□ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏼈 􏼉

(b) ψD1 × ψD2 � E1 × E2|E1 ∈ ψD1, E2 ∈ ψD2􏼈 􏼉

In short,R1 × R2 andR1 × R2 are the square products
of lower approximate hypergraphs R1,R2 and upper ap-
proximate hypergraphs R1,R2, respectively. Just like the
square product of hypergraphs, the square product of rough
hypergraphs is associative, distributive with respect to the
disjoint union, commutative, and a unit U as a trivial
hypergraph with a single vertex such thatU � U. (at is, for
any rough hypergraphs R,R1, R2, and R3, the following
properties hold:

(1) R1 × (R2 × R3) � (R1 × R2) × R3

(2) R1 × R2 � R2 × R1

(3) R1 × (R2 ∪R3) � (R1 × R2)∪ (R1 × R2)

(4) R × U � R, where U is a single vertex hypergraph
without loops

(5) (e projections p1: V(R1 × R2)⟶ (R1) and
p2: V(R1 × R2)⟶ V(R2) are homomorphisms

Definition 31. Let R be a rough hypergraph; then, R is
called an r-uniform rough hypergraph if R and R are both
r-uniform hypergraphs; that is, for each E ∈ ψD and
E ∈ ψD, | E | � |E| � r.

Figure 7: Hypergraph H1.

Figure 8: Hypergraph H2.
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Lemma 7. Let R1 and R2 be two r-uniform rough hyper-
graphs; then, [R1 × R2]2 � [R1]2 × [R2]2.

Proof. Since the vertex set of Ri and [Ri]2 is the same for
i � 1, 2, therefore, the vertex set of [R1 × R2]2 and [R1]2 ×

[R2]2 is the same. It only needs to show that the set of

hyperedges of [R1 × R2]2 and [R1]2 × [R2]2 is the same.
By Definition 30, [R1 × R2]2 � ([R1 × R2]2, [R1 × R2]2),
where [R1 × R2]2 � (φA1 × φA2, [ψD1 × ψD2]2) and
[R1 × R2]2 � (φA1 × φA2, [ψD1 × ψD2]2). As R1 and R2
are r-uniform rough hypergraphs, so we have

ψD1 × ψD2􏽨 􏽩2 � x1, x2( 􏼁 y1, y2( 􏼁| x1, x2( 􏼁, y1, y2( 􏼁􏼈 􏼉⊆ E ∈ ψD1 × ψD2􏽮 􏽯

� x1, x2( 􏼁 x1, y2( 􏼁| x1, y1􏼈 􏼉⊆E1 ∈ ψD1, x2, y2􏼈 􏼉⊆E2 ∈ ψD2, E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

� x1, x2( 􏼁 x1, y2( 􏼁|x1y1 ∈ ψD1􏽨 􏽩2, x2y2 ∈ ψD2􏽨 􏽩2􏽮 􏽯

⇒ ψD1 × ψD2􏽨 􏽩2 � ψD1􏽨 􏽩2 × ψD2􏽨 􏽩2.

(20)

As the vertex set [R1 × R2]2 and [R1]2 × [R2]2 is also
the same, so [R1 × R2]2 � [R1]2 × [R2]2. Similarly,
[R1 × R2]2 � [R1]2 × [R2]2. Hence, [R1 × R2]2 � [R1]2
×[R2]2. □

Theorem 10. Let R1 and R2 be two rough hypergraphs;
then,

(1) r(R1 × R2) � max r(R1),􏼈 r(R2), (r(R1) +r(R2)

/2), (r(R2) + r(R1)/2)}

(2) s(R1 × R2) � max s(R1), s(R2), (s(R1) +􏼈

s(R2)/2), (s(R2) + s(R1)/2)}

Proof. Since, by Definition 30, R1 × R2 �

(R1 × R2,R1 × R2), we first need to compute r(R1 × R2)

and r(R1 × R2). By Definition 6,

r R1 × R2( 􏼁 � max
E∈ψD1×ψD2

E
􏼌􏼌􏼌

􏼌􏼌􏼌

� max E |p1 E( ) � E1 ∈ ψD1, p2 E( ) � E2 ∈ ψD2􏽮 􏽯

� max max
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, max
E2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒r R1 × R2( 􏼁 � max r R1( 􏼁, r R2( 􏼁􏼈 􏼉.

(21)

Similarly, r(R1 × R2) � max r(R1), r(R2)􏽮 􏽯. Hence,

r R1 × R2( 􏼁 �
1
2

max r R1( 􏼁, r R2( 􏼁􏼈 􏼉 + max r R1􏼐 􏼑, r R2􏼐 􏼑􏽮 􏽯

� max
r R1( 􏼁 + r R1􏼐 􏼑

2
,
r R2( 􏼁 + r R2􏼐 􏼑

2
,
r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

⇒r R1 × R2( 􏼁 � max r R1( 􏼁, r R2( 􏼁,
r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(22)

Using Definition 6, the antirank of R1 × R2 is given as

s R1 × R2( 􏼁 � min
E∈ψD1×ψD2

E
􏼌􏼌􏼌

􏼌􏼌􏼌

� min E
􏼌􏼌􏼌

􏼌􏼌􏼌|p1 E( ) � E1 ∈ ψD1, p2 E( ) � E2 ∈ ψD2􏽮 􏽯

� max min
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, min
E2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒s R1 × R2( 􏼁 � max s R1( 􏼁, s R2( 􏼁􏼈 􏼉.

(23)
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Similarly, s(R1 × R2) � max s(R1), s(R2)􏽮 􏽯. Hence,

s R1 × R2( 􏼁 �
1
2

max s R1( 􏼁, s R2( 􏼁􏼈 􏼉 + max s R1􏼐 􏼑, s R2􏼐 􏼑􏽮 􏽯

� max
s R1( 􏼁 + s R1􏼐 􏼑

2
,
s R2( 􏼁 + s R2􏼐 􏼑

2
,
s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

⇒s R1 × R2( 􏼁 � max s R1( 􏼁, s R2( 􏼁,
s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(24)

□
3.3. Direct Product. In this section, we introduce the ex-
tension of the concept of the square product to direct
product of rough hypergraphs and discuss its associativity,
commutativity, distributivity, 2-section, rank, and antirank
properties.

Definition 32. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs.(e direct product ×

⌣ ofR1 andR2
is a rough hypergraph R1×

⌣
R2 � (R1×

⌣
R2,R1×

⌣
R2)

which is defined as

(1) R1×
⌣
R2 � (φA1 × φA2,ψD1×

⌣ ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏽮 􏽯

(b) ψD1×
⌣ ψD2 � E |p1􏼈 (E) ∈ ψD1, p2(E)⊆E2
∈ ψD2}∪ E |p1(E)⊆E1 ∈ ψD1, p2(E) ∈ ψ􏽮 D2}

(2) R1×
⌣
R2 � (φA1 × φA2,ψD1×

⌣ ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏼈 􏼉

(b) ψD1×
⌣ ψD2 � E|p1(E) ∈ ψD1, p2􏼈

(E)⊆E2ψD2}∪ E|p1(E)⊆E1 ∈􏼈

ψD1, p2(E) ∈ ψD2}

In short, R1×
⌣
R2 and R1×

⌣
R2 are the MRP direct

products of lower approximate hypergraphs R1,R2 and
upper approximate hypergraphs R1,R2, respectively. Just
like the MRP direct product of hypergraphs, the MRP direct
product of rough hypergraphs is associative, right distrib-
utive with respect to the disjoint union, commutative, and a

unit U as a trivial hypergraph with a single vertex such that
U � U. (at is, for any rough hypergraphs R,R1, R2, and
R3, the following properties hold:

(1) R1×
⌣

(R2×
⌣
R3) � (R1×

⌣
R2)×

⌣
R3

(2) R1×
⌣
R2 � R2×

⌣
R1

(3) R1×
⌣

(R2 ∪R3) � (R1×
⌣
R2)∪ (R1×

⌣
R2)

(4) R×
⌣
U � R, where U is a single vertex hypergraph

without loops
(5) (e projections p1: V(R1×

⌣
R2)⟶ (R1) and

p2: V(R1×
⌣
R2)⟶ V(R2) may not be weak

homomorphisms

Lemma 8. Let R1 and R2 be two rough hypergraphs; then,
[R1×

⌣
R2]2 � ([R1]2□[R2]2)∪ ([R1]2 × [R2]2).

Proof. Since the vertex set of Ri and [Ri]2 is the same for
i � 1, 2, therefore, the vertex set of [R1×

⌣
R2]2 and the union

of [R1]2□[R2]2 and [R1]2 × [R2]2 is the same. It only
needs to show that the set of hyperedges of [R1×

⌣
R2]2 and

([R1]2□[R2]2)∪ ([R1]2 × [R2]2) is the same. By Defini-
tion 32, [R1×

⌣
R2]2 � ([R1×

⌣
R2]2, [R1×

⌣
R2]2), where

[R1×
⌣
R2]2 � (φA1 × φA2, [ψD1×

⌣ ψD2]2) and [R1×
⌣
R2]2

� (φA1 × φA2, [ψD1×
⌣ ψD2]2). So, we have

ψD1×
⌣ ψD2􏽨 􏽩2 � x1, x2( 􏼁 y1, y2( 􏼁| x1, x2( 􏼁, y1, y2( 􏼁􏼈 􏼉⊆ E ∈ ψD1 × ψD2􏽮 􏽯

ψD1×
⌣ ψD2􏽨 􏽩2 � x1, x2( 􏼁 y1, y2( 􏼁| x1, x2( 􏼁, y1, y2( 􏼁􏼈 􏼉⊆ E ∈ ψD1 × ψD2􏽮 􏽯

� x1, x2( 􏼁 y1, y2( 􏼁|x1 � y1, x2, y2􏼈 􏼉⊆p2 E( ) ∈ ψD2􏽮 􏽯

∪ x1, x2( 􏼁 x1, y2( 􏼁| x1, y1􏼈 􏼉⊆p1 E( ) ∈ ψD1, x2 � y2􏽮 􏽯

∪ x1, x2( 􏼁 x1, y2( 􏼁 ∣ x1, y1􏼈 􏼉⊆p1 E( ) ∈ ψD1, x2, y2􏼈 􏼉⊆p2 E( ) ∈ ψD2, E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

� x1, x2( 􏼁 x1, y2( 􏼁|x1, y1 ∈ φA1, x2y2 ∈ ψD2􏽨 􏽩2􏽮 􏽯

x1, x2( 􏼁 x1, y2( 􏼁|x1y1 ∈ ψD1􏽨 􏽩2, x2, y2 ∈ φA2􏽮 􏽯

x1, x2( 􏼁 x1, y2( 􏼁|x1y1 ∈ ψD1􏽨 􏽩2, x2y2 ∈ ψD2􏽨 􏽩2􏽮 􏽯

⇒ ψD1×
⌣ ψD2􏽨 􏽩2 � ψD1􏽨 􏽩2□ ψD2􏽨 􏽩2􏼐 􏼑∪ ψD1􏽨 􏽩2 × ψD2􏽨 􏽩2􏼐 􏼑.

(25)
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(us, [R1×
⌣
R2]2 � ([R1]2□[R2]2)∪ ([R1]2 × [R2]2).

Similarly, [R1×
⌣
R2]2 � ([R1]2□[R2]2)∪ ([R1]2 × [R2]2).

Hence,
[R1 × R2]2 � ([R1]2□[R2]2)∪ ([R1]2 × [R2]2). □

Theorem 11. Let R1 and R2 be two rough hypergraphs;
then,

(1) r(R1×
⌣
R2) � max r(R1), r(R2),􏼈

(r(R1) + r(R2)/2), (r(R2) + r(R1)/2)}

(2) s(R1×
⌣
R2) � min s(R1), s(R2), (s(R1) +􏼈

s(R2)/2), (s(R2) + s(R1)/2)}

Proof. Since, by Definition 32, R1×
⌣
R2 �

(R1×
⌣
R2,R1×

⌣
R2), we first need to compute r(R1×

⌣
R2)

and r(R1×
⌣
R2). By Definition 6,

r R1×
⌣
R2􏼐 􏼑 � max

E∈ψD1×
⌣ ψD2

E
􏼌􏼌􏼌

􏼌􏼌􏼌

� max E
􏼌􏼌􏼌

􏼌􏼌􏼌|p1 E( ) � E1 ∈ ψD1, p2 E( )⊆E2 ∈ ψD2􏽮 􏽯

∪ E
􏼌􏼌􏼌

􏼌􏼌􏼌|p1 E( )⊆E1 ∈ ψD1, p2 E( ) � E2 ∈ ψD2􏽮 􏽯

� max max
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, max
E2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒r R1×
⌣
R2􏼐 􏼑 � max r R1( 􏼁, r R2( 􏼁.

(26)

Similarly, r(R1×
⌣
R2) � max r(R1), r(R2)􏽮 􏽯. Hence,

r R1×
⌣
R2􏼐 􏼑 �

1
2

max r R1( 􏼁, r R2( 􏼁􏼈 􏼉 + max r R1􏼐 􏼑, r R2􏼐 􏼑􏽮 􏽯

� max
r R1( 􏼁 + r R1􏼐 􏼑

2
,
r R2( 􏼁 + r R2􏼐 􏼑

2
,
r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

⇒r R1×
⌣
R2􏼐 􏼑 � max r R1( 􏼁, r R2( 􏼁,

r R1( 􏼁 + r R2􏼐 􏼑

2
,
r R2( 􏼁 + r R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(27)

Using Definition 6, the antirank of R1×
⌣
R2 is given as

s R1×
⌣
R2􏼐 􏼑 � min

E ∈ψD1×
⌣ ψD2

E
􏼌􏼌􏼌

􏼌􏼌􏼌

� min E
􏼌􏼌􏼌

􏼌􏼌􏼌|p1 E( ) � E1 ∈ ψD1, p2 E( )⊆E2 ∈ ψD2􏽮 􏽯

∪ E
􏼌􏼌􏼌

􏼌􏼌􏼌|p1 E( )⊆E1 ∈ ψD1, p2 E( ) � E2 ∈ ψD2􏽮 􏽯

� min min
E1∈ψD1

E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, min
E2∈ψD2

E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼨 􏼩

⇒s R1×
⌣
R2􏼐 􏼑 � min s R1( 􏼁, s R2( 􏼁􏼈 􏼉.

(28)

Similarly, s(R1×
⌣
R2) � max s(R1), s(R2)􏽮 􏽯. Hence,

s R1×
⌣
R2􏼐 􏼑 �

1
2

min s R1( 􏼁, s R2( 􏼁􏼈 􏼉 + min s R1􏼐 􏼑, s R2􏼐 􏼑􏽮 􏽯

� min
s R1( 􏼁 + s R1􏼐 􏼑

2
,
s R2( 􏼁 + s R2􏼐 􏼑

2
,
s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

⇒s R1×
⌣
R2􏼐 􏼑 � min s R1( 􏼁, s R2( 􏼁,

s R1( 􏼁 + s R2􏼐 􏼑

2
,
s R2( 􏼁 + s R1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭.

(29)

□
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3.4. Union and Intersection. In this subsection, we introduce
the concepts union of the intersection of rough hypergraphs
and study their properties.

Definition 33. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs. (e union f R1 and R2 is a rough
hypergraph R1 ∪R2 � (R1 ∪R2,R1 ∪R2), where
R1 ∪R2 � (φA1 ∪ φA2,ψD1 ∪ ψD2) and R1 ∪R2 �

(φA1 ∪φA2,ψD1 ∪ψD2).
(e intersection f R1 and R2 is a rough hypergraph

R1 ∩R2 � (R1 ∩R2,R1 ∩R2), where R1 ∩R2 �

(φA1 ∩ φA2,ψD1 ∩ ψD2) and R1 ∩R2 � (φA1 ∩φA2,

ψD1 ∩ψD2).
In short, R1 ∪R2 and R1 ∩R2 are the union and in-

tersection of lower approximate hypergraphs R1 and R2.
Similarly, for the upper approximate hypergraphs, just like
the union (intersection) of hypergraphs, the union (inter-
section) of rough hypergraphs is associative, commutative,
and distributive. (at is, for any rough hypergraphsR1,R2,
and R3, the following properties hold:

(1) R1 ∪ (R2 ∪R3) � (R1 ∪R2)∪R3

(2) R1 ∩ (R2 ∩R3) � (R1 ∩R2)∩R3

(3) R1 ∪R2 � R2 ∪R1

(4) R1 ∩R2 � R2 ∩R1

(5) R1 ∪ (R2 ∩R3) � (R1 ∪R2)∩ (R1 ∪R2)

(6) (e projections p1: V(R1 ∪R2)⟶ (R1) and
p2: V(R1 ∪R2)⟶ V(R2) may not be weak
homomorphisms

(7) (e projections p1: V(R1 ∩R2)⟶ (R1) and
p2: V(R1 ∩R2)⟶ V(R2) may not be weak
homomorphisms

Remark 4. Let R1 � (R1,R1) and R2 � (R2,R2) be two
rough hypergraphs, then

(1) [R1 ∪R2]2 � [R1]2∪ [R2]2

(2) r(R1 ∪R2) � max r(R1), r(R2),􏼈

(r(R1) + r(R2)/2), (r(R2) + r(R1)/2)}

(3) s(R1 ∪R2) � min s(R1), s(R2), (s(R1) +􏼈

s(R2)/2), (s(R2) + s(R1)/2)}

(4) (R1 ∪R2)
∗ � R∗1 ∪R

∗
2

3.5. Strong Product. In this subsection, we introduce the
concept of a strong product using the Cartesian and square
product of rough hypergraphs. We illustrate the notions of
associativity, commutativity, distributivity, 2-section, dis-
tance, rank, and antirank properties of the strong product of
rough hypergraphs.

Definition 34. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs.(e strong product ofR1 andR2 is
a rough hypergraph R1⊠R2 � (R1⊠R2,R1⊠R2), where
R1⊠R2 � (R1□R2)∪ (R1 × R2) � (φA1 × φA2, (ψD1

□ψD2)∪ (ψD1 × ψD2)) and R1 ∪R2 � (R1□R2)∪
(R1 × R2) � (φA1 × φA2, (ψD1□ψD2)∪ (ψD1 × ψD2)). In
other words, the strong product of R1 and R2 is the union
of Cartesian product and square product of rough hyper-
graphs R1 and R2.

In short,R1⊠R2 andR1⊠R2 are the strong products of
lower approximate hypergraphs R1,R2 and upper ap-
proximate hypergraphs R1,R2, respectively. Just like the
strong product of hypergraphs, the strong product of rough
hypergraphs is associative, right distributive with respect to
the disjoint union, commutative, and a unit U as a trivial
hypergraph with a single vertex such thatU � U. (at is, for
any rough hypergraphs R,R1, R2, and R3, the following
properties hold:

(1) R1⊠(R2⊠R3) � (R1⊠R2)⊠R3

(2) R1⊠R2 � R2⊠R1

(3) R1⊠(R2 ∪R3) � (R1⊠R2)∪ (R1⊠R2)

(4) R⊠U � R, where U is a single vertex hypergraph
without loops

(5) (e projections p1: V(R1⊠R2)⟶ (R1) and
p2: V(R1⊠R2)⟶ V(R2) may not be weak
homomorphisms

(6) [R1⊠R2]2 � [R1]2⊠[R2]2

(7) r(R1⊠R2) � max r(R1), r(R2), (r(R1)+􏼈

r(R2)/2), (r(R2) + r(R1)/2)}

(8) s(R1⊠R2) � min s(R1), s(R2),􏼈

(s(R1) + s(R2)/2), (s(R2) + s(R1)/2)}

Theorem 12. Let R1 and R2 be two rough hypergraphs on
Q1 and Q2; then, for any k1, g1 ∈ Q1 and k2, g2 ∈ Q2,

dR1⊠R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� dR1
k1, g1( 􏼁, dR2

k2, g2( 􏼁,
dR1

k1, g1( 􏼁 + d
R2

k2, g2( 􏼁

2
,
d
R1

k1, g1( 􏼁 + dR2
k2, g2( 􏼁

2
⎧⎨

⎩

⎫⎬

⎭.

(30)

Proof. (e proof of this theorem is a direct consequence of
Proposition 5.4 of [5], Lemma 2, and the result
[R1⊠R2]2 � [R1]2⊠[R2]2. (us, for any two rough
hypergraphs R1 and R2,
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dR1⊠R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 � d R1⊠R2[ ]2

k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� d R1[ ]2⊠ R2[ ]2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� max d R1[ ]2
k1, g1( 􏼁, d R2[ ]2

k2, g2( 􏼁􏼚 􏼛

⇒dR1⊠R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� max dR1
k1, g1( 􏼁, dR2

k2, g2( 􏼁􏽮 􏽯.

(31)

Similarly, dR1⊠R2
((k1, k2), (g1, g2)) � max dR1

(k1, g1),􏽮

dR2
(k2, g2)}, and the result follows. □

3.6. Normal Product. In this subsection, we introduce the
concept of a normal product using the Cartesian and direct
product of rough hypergraphs. We elaborate on the notions
of associativity, commutativity, distributivity, 2-section,
distance, rank, and antirank properties of the normal
product of rough hypergraphs.

Definition 35. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs.(e strong product ofR1 andR2 is
a rough hypergraph R1⊠

⌣
R2 � (R1⊠

⌣
R2,R1⊠

⌣
R2), where

R1⊠
⌣
R2 � (R1□R2)∪ (R1×

⌣
R2) � (φA1 × φA2, (ψD1□

ψD2)∪ (ψD1×
⌣ ψD2)) and R1⊠

⌣
R2 � (R1□ R2)∪

(R1×
⌣
R2) � (φA1 × φA2, (ψD1□ψD2)∪ (ψD1×

⌣ ψD2)). In
other words, the strong product of R1 and R2 is the union
of Cartesian product and direct product of rough hyper-
graphs R1 and R2.

In short,R1⊠
⌣
R2 andR1⊠

⌣
R2 are the strong products of

lower approximate hypergraphs R1,R2 and upper ap-
proximate hypergraphs R1,R2, respectively. Just like the
strong product of hypergraphs, the strong product of rough
hypergraphs is associative, right distributive with respect to
the disjoint union, commutative, and a unit U as a trivial
hypergraph with a single vertex such thatU � U. (at is, for
any rough hypergraphs R,R1, R2, and R3, the following
properties hold:

(1) R1⊠
⌣

(R2⊠
⌣
R3) � (R1⊠

⌣
R2)⊠

⌣
R3

(2) R1⊠
⌣
R2 � R2⊠

⌣
R1

(3) R1⊠
⌣

(R2 ∪R3) � (R1⊠
⌣
R2)∪ (R1⊠

⌣
R2)

(4) R⊠⌣ U � R, where U is a single vertex hypergraph
without loops

(5) (e projections p1: V(R1⊠
⌣
R2)⟶ (R1) and

p2: V(R1⊠
⌣
R2)⟶ V(R2) may not be weak

homomorphisms
(6) [R1⊠

⌣
R2]2 � [R1]2⊠[R2]2

(7) r(R1⊠
⌣
R2) � max r(R1),􏼈

r(R2), (r(R1) + r(R2)/2), (r(R2) + r(R1)/2)}

(8) s(R1⊠
⌣
R2) � min s(R1), s(R2),􏼈

(s(R1) + s(R2)/2), (s(R2) + s(R1)/2)}

Theorem 13. Let R1 and R2 be two rough hypergraphs on
Q1 and Q2, then for any k1, g1 ∈ Q1 and k2, g2 ∈ Q2,

d
R1⊠

⌣
R2

k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� dR1
k1, g1( 􏼁, dR2

k2, g2( 􏼁,􏽮

dR1
k1, g1( 􏼁 + d

R2
k2, g2( 􏼁

2
,
d
R1

k1, g1( 􏼁 + dR2
k2, g2( 􏼁

2
⎫⎬

⎭.

(32)

Proof. (e proof of this theorem is a direct consequence of
Proposition 5.4 of [5], Lemma 2 and the result
[R1⊠

⌣
R2]2 � [R1]2⊠[R2]2. (us, for any two rough

hypergraphs R1 and R2. □ □

3.7. Lexicographic Product and Costrong Product. In this
subsection, we describe the properties of the lexicographic
product and costrong product of rough hypergraphs.

Definition 36. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs. (e lexicographic product ° of R1
and R2 is a rough hypergraph R1°R2 � (R1°R2,R1°R2)

which is defined as

(1) R1°R2 � (φA1 × φA2,ψD1°ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏽮 􏽯

(b) ψD1°ψD2 � E |p1(E) ∈ ψD1,􏽮 p2(E)⊆E2 ∈
ψD2}∪ k1􏼈 􏼉×􏼈 E2|k1 ∈ ψD1, E2 ∈ ψD2}

(2) R1°R2 � (φA1 × φA2,ψD1°ψD2)

(a) φA1 × φA2 � (k1, k2)|k1 ∈ φA1, k2 ∈ φA2􏼈 􏼉

(b) ψD1°ψD2 � E|p1(E) ∈ ψD1, p2(E)⊆E2 ∈􏼈

ψD2}∪ k1􏼈 􏼉×􏼈 E2|k1 ∈ ψD1, E2 ∈ ψD2}

In short, R1°R2 and R1°R2 are the lexicographic
products of lower approximate hypergraphs R1,R2 and
upper approximate hypergraphs R1,R2, respectively. Just
like the lexicographic product of hypergraphs, the lexico-
graphic product of rough hypergraphs is associative, right
distributive with respect to the disjoint union, noncom-
mutative, and a unit U (left identity) as a trivial hypergraph
with a single vertex such that U � U. (at is, for any rough
hypergraphs R,R1, R2, and R3, the following properties
hold:

(1) R1°(R2°R3) � (R1°R2)°R3

(2) R1°R2 � R2°R1

(3) R1°(R2 ∪R3) � (R1°R2)∪ (R1°R2)

(4) U°R � R, where U is a single vertex hypergraph
without loops

(5) R°U � R

(6) (e projections p1: V(R1°R2)⟶ (R1) and
p2: V(R1°R2)⟶ V(R2) may not be weak
homomorphisms

(7) [R1°R2]2 � [R1]2°[R2]2

(8) r(R1°R2) � max r(R1),􏼈

r(R2), (r(R1) + r(R2)/2), (r(R2) + r(R1)/2)}
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(9) s(R1°R2) � min s(R1),􏼈

s(R2), (s(R1) + s(R2)/2), (s(R2) + s(R1)/2)}

Theorem 14. Let R1 and R2 be two rough hypergraphs on
Q1 and Q2; then, for any k1, g1 ∈ Q1 and k2, g2 ∈ Q2,

dR1°R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 �

dR1
k1, g1( 􏼁, if k1 ≠g1,

dR2
k2, g2( 􏼁, if k1 � g1, deg k1( 􏼁 � 0,

min dR2
k2, g2( 􏼁, 2􏽮 􏽯, if k1 � g1, deg k1( 􏼁≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d
R1°R2

k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 �

d
R1

k1, g1( 􏼁, if k1 ≠g1,

d
R2

k2, g2( 􏼁, if k1 � g1, deg k1( 􏼁 � 0,

min d
R2

k2, g2( 􏼁, 2􏼚 􏼛, if k1 � g1, deg k1( 􏼁≠ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

Proof. (e proof of this theorem is a direct consequence of
Proposition 5.4 of [5], Lemma 2, and the result

[R1⊠R2]2 � [R1]2⊠[R2]2. (us, for any two rough
hypergraphs R1 and R2,

dR1°R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 � d R1°R2[ ]2

k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

� d R1[ ]2° R2[ ]2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁

�

d R1[ ]2
k1, g1( 􏼁, if k1 ≠g1,

dR2
k2, g2( 􏼁, if k1 � g1, deg k1( 􏼁 � 0,

min dR2
k2, g2( 􏼁, 2􏽮 􏽯 if k1 � g1, deg k1( 􏼁≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⇒dR1°R2
k1, k2( 􏼁, g1, g2( 􏼁( 􏼁 �

dR1
k1, g1( 􏼁, if k1 ≠g1,

dR2
k2, g2( 􏼁, if k1 � g1, deg k1( 􏼁 � 0,

min dR2
k2, g2( 􏼁, 2􏽮 􏽯, if k1 � g1, deg k1( 􏼁≠ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

Similarly for upper approximate hypergraphs, the result
follows. □

Definition 37. Let R1 � (R1,R1) and R2 � (R2,R2) be
two rough hypergraphs. (e costrong product ⋆ of R1 and
R2 is a rough hypergraph R1⋆R2 � (R1⋆R2,R1⋆R2)

which is defined as R1⋆R2 � (R1°R2)∪ (R2°R1).
In short, R1°R2 and R1°R2 are the costrong products

of lower approximate hypergraphs R1,R2 and upper ap-
proximate hypergraphs R1,R2, respectively. Just like the
costrong product of hypergraphs, the costrong product of
rough hypergraphs is associative, right distributive with
respect to the disjoint union, commutative, and a unitU (left
identity) as a trivial hypergraph with a single vertex such that
U � U.

Remark 5. Let R1 and R2 be two rough hypergraphs, then

(1) [R1⋆R2]2 � [R1]2⋆[R2]2

(2) r(R1⋆R2) � max r(R1),􏼈

r(R2), (r(R1) + r(R2)/2), (r(R2) + r(R1)/2)}

(3) s(R1⋆R2) � min s(R1), s(R2), (s(R1) +􏼈

s(R2)/2), (s(R2) + s(R1)/2)}

3.8. Limitations of the Proposed Study. Apart from all the
benefits, rough hypergraphs also have some shortcomings
and disadvantages. Rough sets and hypergraphs are both
complex mathematical structures and are not simple to
apply for the given information. (e computation of rough
relations using power sets is a lengthy and tricky task. (ere
are a lot of complicated calculations which make it difficult
to study hypergraphical structures using rough sets. (e
calculation complexity not only increases time consumption
but also increases the probability of errors.

4. Conclusions and Future Directions

Rough models combined with other algebraic structures
retain the property to study uncertain and vague informa-
tion using approximation techniques. To discuss approxi-
mate relations among more than two objects, rough graphs
cannot give error-free results. In this research paper, the
notion of a rough set was applied to hypergraphs to in-
troduce the novel concept of rough hypergraphs. Certain
important properties of isomorphism, conformality, line-
arity, duality, associativity, commutativity, distributivity,
Helly property, and intersecting families of rough hyper-
graphs are illustrated in detail. (e formulae of distance
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function, 2-section, L2-section, covering, coloring, rank, and
antirank of certain products of rough hypergraphs are
established in terms of corresponding rough hypergraphs.
(is work can further be extended to (1) Dombi fuzzy rough
hypergraphs, (2) bipolar fuzzy rough hypergraphs, and (3)
picture fuzzy rough hypergraphs.
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