Topological Indices of Drugs Used in Rheumatoid Arthritis Treatment and Its QSPR Modeling

Saima Parveen (${ }^{[},{ }^{1}$ Fozia Bashir Farooq, ${ }^{2}$ Nadeem Ul Hassan Awan $\left(\mathbb{D},{ }^{1}\right.$ Rakotondrajao Fanja ${ }^{[}{ }^{3}$, and Muhammad Farooq Choudhary ${ }^{4}$
${ }^{1}$ Department of Mathematics, Government College University Faisalabad, Faisalabad, Pakistan
${ }^{2}$ Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
${ }^{3}$ Department of Mathematics and Informatics, Antananarivo University, BP 907 101, Antananarivo, Madagascar
${ }^{4}$ Wasfaty for Information Technology, Riyadh, Saudi Arabia
Correspondence should be addressed to Rakotondrajao Fanja; frakoton@yahoo.fr

Received 16 March 2022; Revised 23 May 2022; Accepted 28 June 2022; Published 5 August 2022
Academic Editor: Muhammad Kamran Jamil
Copyright © 2022 Saima Parveen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A topological index is a molecular descriptor derived from the molecular structure of a chemical substance. These indices can be used to analyze mathematical values and predict various physical properties of drugs. This article discusses tofacitinib, leflunomide, upadacinib, baricitinib, filgotinib, methotrexate, and other drugs used to treat rheumatoid arthritis, and the goal of the QSPR study is to calculate the relationship between the properties under investigation (e.g., boiling point, polarity, and molar volume) and molecular descriptors. Topological indices (TIs) were imposed on said drugs to calculate the correlation with physicochemical properties in this course.

1. Introduction

Topological indices (TIs) are numeric descriptors obtained through a molecular graph in order to fully examine the drugs and are widely used in the investigation and prediction of many drugs' physicochemical properties. There are various types of polynomials and topological indices that are extensively calculated, represent the chemical structure, and play an important role in chemical graph theory. Among these families, degree-based topological indices are extremely important and play an important role in chemical graph theory. Among these techniques, the QSPR approach correlates a molecule's biological activity with its physicochemical properties using a variety of descriptors, and it is used on drugs used in the treatment of rheumatoid arthritis. The QSPR approach has recently been used to develop models to predict drug properties. QSAR is a drug design source that specifies a relationship between molecules' physicochemical properties and biological activities that affect drug response. The augmented Zagreb index in [1] is
the best predictor of alkane heat of formation. The ABC index and Randic index are useful for calculating drug bioactivity. These properties are being researched because of their substantial impact on bioactivity and drug transit in the human body. In this paper, we compute TIs for drugs used in the treatment of rheumatoid arthritis. Similarly, anti-RA drugs are chemical compounds with carefully defined topological indices and deliberate QSPR analysis. Using linear regression is highly correlated with the characteristic of RA drugs based on mathematical observation. Rheumatoid arthritis (RA) is a chronic, autoimmune, and inflammatory joint disease. Estimates from North America and Northern Europe range from 20 to 50 cases per 100,000 people. The prevalence of RA in developing countries is unknown [2-5]. Scientists are constantly looking for the latest ways to treat people suffering from RA. One method is to create new drugs. Drug detection remains difficult to work because it is expensive, needs much time, and is much more difficult in some situations. This disease will cause functional impairment, premature mortality, joint erosions, and decreased

(a)

(e)

(b)

(f)

(i)

(c)

(g)

(j)

FIgure 1: Structure of drugs. (a) Azathioprine. (b) Hydroxycholoquine. (c) Sulfasalazine. (d) Filgothinib. (e) Leflunomide. (f) Prednisolone. (g) Methotrexate. (h) Baricitinib. (i) Tofacitinib. (j) Upadacitinib.
quality of life over time. This necessitates prompt screening, diagnosis, and treatment which helps in order to control the disease. This work investigates ten drugs medicines tofacitinib, leflunomide, upadacinib, baricitinib, filgotinib, methotrexate, prednisolone, sulfasalazine, azathioprine, and hydroxychloroquine that are secure and reliable remedies which are the need of the community well-being. Figure 1 depicts the chemical structure of said drugs.

2. Material and Method

Elements denote vertices in drug structure, and the corresponding bonds of atoms are referred to as edges. Graph $G(V, E)$ is simple, finite, and connected, whereas V and E in the chemical graph are referred to as vertex and edge set, respectively. The degree of a vertex in a graph G is denoted by d_{u} and is the number of vertices adjacent to it. Degree-based topological indices used are given as follows.

Definition 1. The $A B C$ indices [6] is

$$
\begin{equation*}
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u+} d_{v}-2}{d_{u} d_{v}}} \tag{1}
\end{equation*}
$$

Definition 2. The Randic index $R A(G)$ [7] is

$$
\begin{equation*}
R A(G)=\sum_{u v \in E(G)} \sqrt{\frac{1}{d_{u} d_{v}}} . \tag{2}
\end{equation*}
$$

Definition 3. The sum connectivity index [8] is

$$
\begin{equation*}
S(G)=\sum_{u v \in E(G)} \sqrt{\frac{1}{d_{u}+d_{v}}} . \tag{3}
\end{equation*}
$$

Definition 4. The GA index [9] of a molecular graph G is

Table 1: The TI values of drugs.

Name of drug	$F(G)$	$A B C(G)$	$R A(G)$	$S(G)$	$M 2(G)$	$G A(G)$	$M 1(G)$	$H(G)$	$H M(G)$
Azatjoprine	410	20.54	12.00	12.45	174	26.38	144	11.15	758
Hydroxycholoqoine	916	37.92	21.41	21.59	353	45.07	278	18.88	1622
Sulfasatazne	626	31.29	18.94	19.34	273	20.60	220	17.60	1172
Filgotinib	1050	42.41	23.52	24.38	426	52.26	322	21.08	1902
Leflumomide	454	21.65	12.60	12.82	184	26.80	152	11.43	822
Predisolane	1176	42.46	23.59	24.12	469	51.53	336	20.81	2114
Methotrexate	906	42.19	24.90	25.29	373	52.88	300	22.71	1652
Bracitinib	824	34.12	19.21	19.84	334	42.32	256	17.33	1492
Tofacitinib	828	33.80	18.94	19.35	325	40.88	252	16.85	1478
Upadacinib	902	36.66	16.33	20.98	361	44.74	276	18.14	1624

$$
\begin{equation*}
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{d_{u} d_{v}}}{d_{u}+d_{v}} \tag{4}
\end{equation*}
$$

Definition 5. The first and second Zagreb indices [10] are

$$
\begin{align*}
& M 1(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right), \\
& M 2(G)=\sum_{u v \in E(G)}\left(d_{u} d_{v}\right) \tag{5}
\end{align*}
$$

Definition 6. The harmonic index [11] is

$$
\begin{equation*}
H(G)=\sum_{u v \in E(G)} \frac{2}{d_{u}+d_{v}} \tag{6}
\end{equation*}
$$

Definition 7. The hyper Zagreb index [12] is

$$
\begin{equation*}
H M(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)^{2} \tag{7}
\end{equation*}
$$

Definition 8. The forgotten index [13] is

$$
\begin{equation*}
F(G)=\sum_{u v \in E(G)}\left[\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right] . \tag{8}
\end{equation*}
$$

Physical property values are obtained from Chemspider. The data in Tablel show that they are normally distributed. As a result, the linear regression model is best to examine and use in this analysis. We recommend that the reader read the following research articles [1, 14-32] for more information on TIs.

The molecular formula of methotrexate is $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{5}$. A wide range of cancers and rheumatoid arthritis are treated with methotrexate. Lymphocytic leukemia is also treated with this medicine. The molecular formula of baricitinib is $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$. Baricitinib is used in severe rheumatoid arthritis. The molecular formula of tofacitinib is $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}$. The molecular formula of Upadacitinib is $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}$. Upadacitinib is used to cure moderate to severe RA and slow down disease progression. The molecular formula of azathioprine is $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$. Azathioprine has a long duration of action. The molecular formula of hydroxychloroquine is
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}$ and is helpful in RA treatment. The molecular formula of sulfasatazne is $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$. Ulcerative colitis and rheumatoid arthritis are treated with the anti-inflammatory drug sulfasalazine. The molecular formula of filgotinib is $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$. Methotrexate is used alone or in combination with filgotinib to treat rheumatoid arthritis. More than 50% of patients suffering from RA are incapable to accomplish the availability of numerous cures including disease-modifying anti-rheumatic drugs (DMARS) like methotrexate. The molecular formula of leflunomide is $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. The use of this medical treatment retards the progression of structural damage and improves physical function.

3. Results and Discussion

TIs are carried out on RA drugs in this section. The relationship between QSPR analysis and TIs shows that properties under discussion are highly correlated as regards of the disease's physicochemical properties. Tofacitinib, leflunomide, upadacinib, baricitinib, filgotinib, methotrexate, neoral, prednisolone, sulfasalazine, azathioprine, and hydroxychloroquine are the ten medications used in the RA analysis. Figure 1 depicts the drug structure. For drug research, we use regression analysis calculations.
3.1. Regression Model. In this article, the tenacity of QSPR modelling is tested using a drug computable structure analysis of nine topological indices. Table 2 shows the four physical properties of ten RA medications: polarity, molar volume (MV), refractive index (R), and complexity. We run the regression analysis for the drugs, and the validated linear regression model is as follows:

$$
\begin{equation*}
P=A+b(T I) . \tag{9}
\end{equation*}
$$

P denotes physicochemical property. Letters $A, T I$, and b represent the topological index, constant, and regression coefficient, respectively. The software packages Statistix, Python, and MATLAB are helpful in determining the results. The physiochemical properties of nine TIs of RA drugs are investigated using a linear QSPR model. For the aforementioned calculation, equation (1) is appropriate.

Table 2: Correlation coefficients.

Topological index	Correlation coefficient of			
	Polarity	Refractive index	Molar volume	Complexity
$A B C(G)$	0.872	0.872	0.898	0.709
$R A(G)$	0.909	0.909	0.914	0.729
$S(G)$	0.933	0.933	0.908	0.735
$G A(G)$	0.907	0.907	0.897	0.761
$M 1(G)$	0.818	0.818	0.867	0.709
$M 2(G)$	0.754	0.754	0.83	0.707
$H M(G)$	0.728	0.727	0.82	0.677
$F(G)$	0.722	0.721	0.821	0.649
$H(G)$	0.931	0.93	0.909	0.755

Theorem 1. Let G_{1} be a graph of Sulfasatazne. The TIs of G_{1} are

$$
\begin{align*}
A B C\left(G_{1}\right) & =31.29 \\
R A\left(G_{1}\right) & =18.95 \\
S\left(G_{1}\right) & =19.34 \\
G A\left(G_{1}\right) & =40.60 \\
M 1\left(G_{1}\right) & =220 \tag{10}\\
M 2\left(G_{1}\right) & =273 \\
F\left(G_{1}\right) & =626 \\
H\left(G_{1}\right) & =17.60 \\
H M\left(G_{1}\right) & =1172
\end{align*}
$$

Proof. Let G_{1} be the graph of sulfasatazne, with edge set E and $E_{m, n}$ partition of G_{1} vertices with degrees m and n. $\left|E_{1,2}\right|=2,,\left|E_{1,3}\right|=13,\left|E_{1,4}\right|=2,\left|E_{2,3}\right|=6,\left|E_{3,3}\right|=18$, and $\left|E_{3,2}\right|=2$.
(i) Using Definition 1 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
A B C\left(G_{1}\right)= & 2 \sqrt{\frac{1+2-2}{1 \times 2}}+13 \sqrt{\frac{1+3-2}{1 \times 3}} \\
& +2 \sqrt{\frac{1+4-2}{1 \times 4}}+6 \sqrt{\frac{2+3-2}{2 \times 3}} \\
& +18 \sqrt{\frac{3+3-2}{3 \times 3}}+2 \sqrt{\frac{3+4-2}{3 \times 4}}=31.29 . \tag{11}
\end{align*}
$$

(ii) Using Definition 2 and the partitions $E_{m, n}$, we obtain

$$
\begin{aligned}
R A\left(G_{1}\right)= & 2 \sqrt{\frac{1}{1 \times 2}}+13 \sqrt{\frac{1}{1 \times 3}}+2 \sqrt{\frac{1}{1 \times 4}}+6 \sqrt{\frac{1}{2 \times 3}} \\
& +18 \sqrt{\frac{1}{3 \times 3}}+2 \sqrt{\frac{1}{3 \times 4}}=18.95 .
\end{aligned}
$$

(iii) Using Definition 3 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
S\left(G_{1}\right)= & 2 \sqrt{\frac{1}{1+2}}+13 \sqrt{\frac{1}{1+3}}+2 \sqrt{\frac{1}{1+4}}+6 \sqrt{\frac{1}{2+3}} \\
& +18 \sqrt{\frac{1}{3+3}}+2 \sqrt{\frac{1}{3+4}}=19.34 \tag{13}
\end{align*}
$$

(iv) Using Definition 4 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
G A\left(G_{1}\right)= & \frac{2 \sqrt{1 \times 2}}{1+2}+\frac{13 \sqrt{1 \times 3}}{1+3}+\frac{2 \sqrt{1 \times 4}}{1+4}+\frac{6 \sqrt{2 \times 3}}{2+3} \\
& +\frac{18 \sqrt{3 \times 3}}{3+3}+\frac{2 \sqrt{3 \times 4}}{3+4}=40.60 . \tag{14}
\end{align*}
$$

(v) Using Definition 5 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
M 1\left(G_{1}\right)= & 2(1+2)+13(1+3)+2(1+4)+6(2+3) \\
& +18(3+3)+2(3+4)=220 . \tag{15}
\end{align*}
$$

(iii) Using Definition 5 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
M 2\left(G_{1}\right)= & 2(1 \times 2)+13(1 \times 3)+2(1 \times 4)+6(2 \times 3) \\
& +18(3 \times 3)+2(3 \times 4)=273 . \tag{16}
\end{align*}
$$

(vi) Using Definition 6 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
H\left(G_{1}\right)= & 2\left(\frac{1}{1+2}\right)+13\left(\frac{1}{1+3}\right)+2\left(\frac{1}{1+4}\right)+6\left(\frac{1}{2+3}\right) \\
& +18\left(\frac{1}{3+3}\right)+2\left(\frac{1}{3+4}\right)=17.60 \tag{17}
\end{align*}
$$

(vii) Using Definition 7 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
H M\left(G_{1}\right)= & 2(1+2)^{2}+13(1+3)^{2}+2(1+4)^{2} \\
& +6(2+3)^{2}+18(2+4)^{2}+2(3+4)^{2}=1172 . \tag{18}
\end{align*}
$$

(viii) Using Definition 8 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
F\left(G_{1}\right)= & 2(1+4)+13(1+9)+2(1+16)+6(4+9) \tag{19}\\
& +18(4+16)+2(9+9)+2(9+16)=626
\end{align*}
$$

Theorem 2. Let G_{2} be graph of Upadacinib. The TIs of G_{2} are as follows:

$$
\begin{align*}
A B C\left(G_{2}\right) & =36.66 \\
R A\left(G_{2}\right) & =20.33 \\
S\left(G_{2}\right) & =20.98 \\
G A\left(G_{2}\right) & =44.74 \\
M 1\left(G_{2}\right) & =276 \tag{20}\\
M 2\left(G_{2}\right) & =361 \\
F\left(G_{2}\right) & =902 \\
H\left(G_{2}\right) & =18.14 \\
H M\left(G_{2}\right) & =1624
\end{align*}
$$

Proof. Let G_{2} be graph of upadacinib having edge set E and $E_{m, n}$ partition of G_{2} vertices with degrees m and n. With $\left|E_{1,3}\right|=7,\left|E_{1,4}\right|=16,\left|E_{2,3}\right|=4,\left|E_{3,3}\right|=12,\left|E_{3,4}\right|=4, \quad$ and $\left|E_{4,4}\right|=6$.
(i) Using Definition 1 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
A B C\left(G_{2}\right)= & 7 \sqrt{\frac{1+3-2}{1 \times 3}}+16 \sqrt{\frac{1+4-2}{1 \times 4}}+4 \sqrt{\frac{2+3-2}{2 \times 3}} \\
& +12 \sqrt{\frac{3+3-2}{3 \times 3}}+4 \sqrt{\frac{3+4-2}{3 \times 4}} \\
& +6 \sqrt{\frac{1}{4 \times 4}}=36.66 . \tag{21}
\end{align*}
$$

(ii) Using Definition 2 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
R A\left(G_{2}\right)= & 7 \sqrt{\frac{1}{1 \times 3}}+16 \sqrt{\frac{1}{1 \times 4}}+4 \sqrt{\frac{1}{2 \times 3}}+12 \sqrt{\frac{1}{3 \times 3}} \\
& +4 \sqrt{\frac{1}{3 \times 4}}+6 \sqrt{\frac{1}{4 \times 4}}=20.33 \tag{22}
\end{align*}
$$

(iii) Using Definition 3 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
S\left(G_{2}\right)= & 7 \sqrt{\frac{1}{1+3}}+16 \sqrt{\frac{1}{1+4}}+4 \sqrt{\frac{1}{2+3}}+12 \sqrt{\frac{1}{3+3}} \\
& +4 \sqrt{\frac{1}{3+4}}+6 \sqrt{\frac{1}{4+4}}=20.98 \tag{23}
\end{align*}
$$

(iv) Using Definition 4 and the partitions $E_{m, n}$, we obtain
$G A\left(G_{2}\right)=\frac{7 \sqrt{1 \times 3}}{1+3}+\frac{16 \sqrt{1 \times 4}}{1+4}+\frac{4 \sqrt{2 \times 3}}{2+3}+\frac{12 \sqrt{3 \times 3}}{3+3}$

$$
\begin{equation*}
+\frac{4 \sqrt{3 \times 4}}{3+4}+\frac{6 \sqrt{4 \times 4}}{4+4}=44.74 \tag{24}
\end{equation*}
$$

(v) Using Definition 5 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
M 1\left(G_{2}\right)= & \sum_{u v \in E\left(G_{1}\right)}\left(s_{u+} s_{v}\right)=7(1+3)+16(1+4) \\
& +4(2+3)+12(3+3) \\
& +4(3+4)+6(4+4)=276 \tag{25}
\end{align*}
$$

(vi) Using Definition 5 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
M 2\left(G_{2}\right)= & 7(1 \times 3)+16(1 \times 4)+4(2 \times 3) \\
& +12(3 \times 3)+4(3 \times 4)+6(4 \times 4)=361 \tag{26}
\end{align*}
$$

(vii) Using Definition 5 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
H\left(G_{2}\right)= & 7\left(\frac{1}{1+3}\right)+16\left(\frac{1}{1+4}\right)+4\left(\frac{1}{2+3}\right)+12\left(\frac{1}{3+3}\right) \\
& +4\left(\frac{1}{3+4}\right)+6\left(\frac{1}{4+4}\right)=18.14 \tag{27}
\end{align*}
$$

(viii) Using Definition 6 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
H M\left(G_{2}\right)= & 3(1+2)^{2}+3(1+3)^{2}+6(1+4)^{2} \\
& +4(2+3)^{2}+5(2+4)^{2}+3(3+3)^{2} \tag{28}\\
& +1(3+4)^{2}+4(4+4)^{2}=1624
\end{align*}
$$

(ix) Using Definition 7 and the partitions $E_{m, n}$, we obtain

$$
\begin{align*}
F\left(G_{2}\right)= & 3(1+4)+4(1+9)+6(1+16)+4(4+9) \\
& +5(4+16)+3(9+9)+1(9+16) \\
& +4(16+16)=902 \tag{29}
\end{align*}
$$

Table 3: RA immune system drugs physical properties.

Name of drug	Molar volume $\left(\mathbf{c m}^{3}\right)$	Polarity $\left(\mathbf{m}^{3} \mathbf{m o l}^{-1}\right)$	Refractive index $\left(\mathbf{m}^{3} \mathbf{m o l}^{-1}\right)$	Complexity	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$	D $\left(\mathbf{c m}^{3}\right)$	Enthalpy $\left({ }^{\circ} \mathrm{C}\right)$
Azatjoprine	145.40	27.30	68.90	354.00	555.80	145.40	
Hydroxycholoqoine	285.40	39.20	99.00	368.50			
Sulfasatazne	267.70	40.60	102.40	631.00	516.70	285.40	266.30
Filgotinib	281.10	45.30	114.30	715.00	689.30	267.70	370.70
Leflumomide	194.10	24.20	61.00	327.00	289.10		
Predisolane	274.70	37.90	95.50	724.00	570.60	194.10	129.00
Methotrexate	275.70	47.20	119.00	704.00		274.70	
Bracitinib	238.10	38.90	98.20	678.00	707.00	2314.80	
Tofacitinib	241.00	34.70	87.50		585.80	241.00	308.10
Upadacinib	243.00	36.30	91.60	561.00	189.00	243.00	

Figure 2: Physicochemical properties and TIs.

The remaining drugs topological indices can be calculated using the same procedure as applied in Theorem 2, Theorem 1, and Definitions 1-8. Table 1 contains values for each drug.

Applying (1), we calculated the linear models for all TIs written as follows:
(1) Regression models for $A B C(G)$ are as follows:

$$
\text { Polarity }=10.364+0.781[A B C(G)]
$$

Refractive index $=26.174+1.970[A B C(G)]$ Complexity $=57.998+14.646[A B C(G)]$ $\mathrm{MV}=72.605+5.014[A B C(G)]$
(2) Regression models for $R A(G)$] are as follows:

Polarity $=8.149+1.483[R A(G)]$
Refractive index $=20.601+3.739[R A(G)]$
Complexity $=21.629+27.488[R A(G)]$
$\mathrm{MV}=62.686+9.01[R A(G)]$

Table 4: QSPR model of $A B C$ (G).

Physiochemical property	N	A	b	r	r^{2}	F	p	Indicator
Polarity	10	10.364	0.8	0.781	0.872	25.479	0.001	Significant
Refractive index	10	26.174	1.970	0.782	0.760	25.364	0.001	Significant
Molar volume	10	72.605	5.014	0.898	0.806	33.157	0.000	Significant
Complexity	9	57.998	14.646	0.709	0.502	7.064	0.033	Significant

Table 5: QSPR model of $R A(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	8.149	1.483	0.909	0.827	38.129	0.000	Significant
Refractive index	10	20.601	3.739	0.909	0.825	37.829	0.000	Significant
Molar volume	10	62.686	9.301	0.914	0.835	40.511	0.000	Significant
Complexity	9	21.629	27.488	0.729	0.532	7.959	0.026	Significant

Table 6: QSPR model of $S(G)$.

Physiochemical property	N	A	B	R	r^{2}	F	p	Indicator
Polarity	10	6.574	1.536	0.933	0.871	53.979	0.000	Significant
Refractive index	10	16.611	3.874	0.933	0.870	53.595	0.000	Significant
Molar volume	10	58.881	9.330	0.908	0.825	37.724	0.000	Significant
Complexity	9	2.985	27.955	0.735	0.540	8.233	0.024	Significant

TAble 7: QSPR model of $G A(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	8.253	0.683	0.907	0.823	37.292	0.000	Significant
Refractive index	10	20.859	1.721	0.907	0.822	37.020	0.000	Significant
Molar volume	10	66.421	4.207	0.897	0.804	32.770	0.000	Significant
Complexity	9	-1.382	13.231	0.761	0.580	9.650	0.017	Significant

Table 8: QSPR model of $M 1(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	14.306	0.090	0.818	0.669	16.188	0.004	Significant
Refractive index	10	36.118	0.227	0.818	0.668	16.130	0.004	Significant
Molar volume	10	93.419	0.597	0.867	0.753	24.328	0.001	Significant
Complexity	9	104.000	1.804	0.709	0.503	7.073	0.032	Significant

(3) Regression models for sum $S(G)$ are as follows:

Polarity $=6.574+1.536[S(G)]$
Refractive index $=16.611+3.874[S(G)]$
Complexity $=2.985+27.955[S(G)]$
$\mathrm{MV}=58.881+9.330[S(G)]$
(4) Regression models for $G A(G)$ are as follows:

Polarity $=8.253+0.683[G A(G)]$
Refractive index $=20.859+1.721[G A(G)]$
Complexity $=-1.382+13.231[G A(G)]$
$\mathrm{MV}=66.421+4.207[G A(G)]$
(5) Regression models for M1 (G) are as follows:

Polarity $=14.306+0.090[M 1(G)]$
Refractive index $=36.118+0.227[M 1(G)]$
Complexity $=104.000+1.804[M 1(G)]$
$\mathrm{MV}=93.419+0.597[M 1(G)]$
(6) Regression models for $H M(G)$ are as follows:

Polarity $=19.733+0.023[H M(G)]$
Refractive index $=49.809+0.030[H M(G)]$
Complexity $=187.760+0.255[H M(G)]$
$\mathrm{MV}=122.143+0.084[H M(G)]$
(7) Regression models for M2 (G) are as follows:

Polarity $=18.556+0.057[M 2(G)]$
Refractive index $=46.844+0.143[M 2(G)]$
Complexity $=158.746+1.228[M 2(G)]$
$\mathrm{MV}=116.976+0.390[\mathrm{M} 2(G)]$
(8) Regression models for $F(G)$ are as follows:

$$
\text { Polarity }=19.971+0.021[F(G)]
$$

Table 9: QSPR model of M2 (G).

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	18.556	0.057	0.754	0.569	10.570	0.012	Significant
Refractive index	10	46.844	0.143	0.754	0.568	10.530	0.012	Significant
Molar volume	10	116.976	0.390	0.830	0.688	17.669	0.003	Significant
Complexity	9	158.746	1.228	0.707	0.500	6.988	0.033	Significant

Table 10: QSPR model of $H M(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	19.733	0.023	0.728	0.530	9.009	0.017	Significant
Refractive index	10	49.809	0.030	0.727	0.529	8.979	0.017	Significant
Molar volume	10	122.143	0.084	0.820	0.672	16.394	0.004	Significant
Complexity	9	187.760	0.255	0.677	0.458	5.909	0.045	Significant

Table 11: QSPR model of $F(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	19.971	0.021	0.722	0.521	8.695	0.018	Significant
Refractive index	10	50.401	0.054	0.721	0.520	8.673	0.019	Significant
Molar volume	10	122.674	0.151	0.821	0.673	16.491	0.004	Significant
Complexity	9	205.354	0.442	0.649	0.421	5.097	0.059	Significant

TAble 12: QSPR model of $H(G)$.

Physiochemical property	N	A	b	R	r^{2}	F	p	Indicator
Polarity	10	6.602	1.34	0.931	0.867	52.134	0.000	Significant
Refractive index	10	16.703	4.373	0.930	0.866	54.565	0.000	Significant
Molar volume	10	58.494	10.565	0.909	0.826	38.035	0.000	Significant
Complexity	9	-14.384	32.514	0.755	0.569	9.257	0.019	Significant

Table 13: SE of estimate.

Topological index	Std. error of the estimate for			
	Polarity	Refractive index	Complexity	Molar volume
$A B C(G)$	3.70109	9.35334	131.75522	20.82685
$R A(G)$	3.15306	7.98066	127.75416	19.18354
$S(G)$	2.72018	6.88389	126.59865	19.75959
$G A(G)$	3.18207	8.05203	121.09125	20.92556
$M 1(G)$	4.35128	10.9985	131.71405	23.49938
$M 2(G)$	4.96955	12.55069	132.1127	26.37188
$H M(G)$	54.9258	13.11165	137.52096	27.05248
$F(G)$	5.24112	13.23146	142.0393	26.9989
$H(G)$	2.76158	7.00027	122.54701	19.69254

Refractive index $=50.401+0.054[F(G)]$
Complexity $=205.354+0.442[F(G)]$
$\mathrm{MV}=122.674+0.151[F(G)]$
(9) Regression models for $H(G)$ are as follows:

Polarity $=6.602+1.34[H(G)]$
Refractive index $=16.703+4.373[H(G)]$
Complexity $=-14.384+32.514[H(G)]$
$\mathrm{MV}=58.494+10.565[H(G)]$
3.2. Quantitative Structure Analysis and Comparison between Topological Indices and Correlation Coefficient of Physicochemical Properties. Table 3 consists of physicochemical properties related to ten rheumatoid arthritis drugs. Their TIs values, on the other hand, are recorded in Table 1 and derived with the aid of their molecular structure. Table 2 shows the correlation coefficients among physicochemical properties and TIs. Figure 2 depicts a graph of the correlation coefficient of aforementioned drugs.

Table 14: Comparison of actual and computed values for refractive index from regression models.

Name of drug	Refractivity of drug $\left(\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A B C(G)$	$R(G)$	$S(G)$	$G A(G)$	$M 1(G)$	$M 2(G)$	$F(G)$	$H(G)$	$H M(G)$
Azathioprine	68.9 ± 0.5	66.6378	65.469	64.8423	66.25898	68.806	71.726	72.541	65.46195	72.549
Hydroxycholoquine	99 ± 0.3	100.8764	100.653	100.2507	98.42447	99.224	97.323	99.865	99.26524	98.469
Sulfasalazine	102.4 ± 0.5	87.8153	91.41766	91.53416	90.316	86.058	85.883	84.205	93.6678	84.969
Filgotinib	114.3 ± 0.5	109.3217	108.5423	111.0591	110.7985	109.212	107.762	107.101	108.8858	106.869
Leflunomide	61 ± 0.3	68.8245	67.7124	66.27568	66.9818	70.622	73.156	74.917	66.68639	74.469
Prednisolone	95 ± 0.4	109.8202	108.804	110.0519	109.5421	112.39	113.911	113.905	107.7051	113.229
Methotrexate	119 ± 0.3	109.2883	113.7021	114.5845	111.8655	104.218	100.183	99.325	116.0138	99.369
Baricitinib	98.2 ± 0.5	93.3904	92.42719	93.47116	93.69172	94.23	94.606	94.897	92.48709	94.569
Tofacitinib	87.5 ± 0.3	92.76	91.41766	91.5729	91.21348	93.322	93.319	95.113	90.38805	94.149
Upadacitinib	91.6 ± 0.5	98.3942	96.61487	97.88752	97.85654	98.77	98.467	99.109	96.02922	98.529

Table 15: Comparision of actual and computed values for polarity from regression models.

Name of drug	Polarity of drug $\left(\mathrm{cm}^{3}\right)$	Polarity computed from regression model for								
			$A B C(G)$	$R(G)$	$S(G)$	$G A(G)$	$M 1(G)$	$M 2(G)$	$F(G)$	$H(G)$
				26.40574	25.945	25.6972	26.27054	27.266	28.474	28.581
21.543	37.167									
Azathioprine	39.2		39.97952	39.90003	39.7362	39.03581	39.326	38.677	39.207	31.9012
57.039										
Hydroxycholoquine	40.6		34.80149	36.23702	36.2802	35.9828	34.106	34.117	33.117	30.186
46.689										
Sulfasalazine	45.3	43.48621	43.02916	44.0217	43.94658	43.286	42.838	42.021	34.8492	63.479
Filgotinib	24.2	27.27265	26.8348	26.2655	26.5574	27.986	29.044	29.505	21.9182	38.639
Leflunomide	37.9	43.52526	43.13297	43.6223	43.44799	44.546	45.289	44.667	34.4874	68.355
Prednisolone	47.2	43.31439	45.0757	45.4194	44.37004	41.306	39.817	38.997	37.0334	57.729
Methotrexate	38.9	37.01172	36.63743	37.0482	37.15756	37.346	37.594	37.275	29.8242	54.049
Baricitinib	34.7	36.7618	36.23702	36.2956	36.17404	36.986	37.081	37.359	29.181	53.727
Tofacitinib	36.3	38.99546	38.29839	38.7993	38.81042	39.146	39.133	38.913	30.9096	57.085
Upadacitinib										

Table 16: Comparison of actual and computed values for complexity from regression models.

| Name of drug | Complexity of drug | Complexity computed from regression model for | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $R(G)$ | $S(G)$ | $G A(G)$ | $M 1(G)$ | $M 2(G)$ | $F(G)$ | $H(G)$ | $H M(G)$ |
| Azathioprine | 354 | | 351.485 | 351.0248 | 347.6518 | 363.776 | 372.418 | 386.574 | 348.1471 | 381.05 |
| Hydroxycholoquine | 331 | | 610.1471 | 606.5335 | 594.9392 | 605.512 | 592.23 | 610.226 | 599.4803 | 601.37 |
| Sulfasalazine | 657 | | 542.2517 | 543.6347 | 535.7966 | 500.88 | 493.99 | 482.046 | 557.8624 | 486.62 |
| Filgotinib | 715 | | 668.1468 | 684.5279 | 690.0701 | 684.888 | 681.874 | 669.454 | 671.0111 | 672.77 |
| Leflunomide | 327 | | 367.9778 | 361.3681 | 353.2088 | 378.208 | 384.698 | 406.022 | 357.251 | 397.37 |
| Prednisolone | 724 | | 670.0709 | 677.2596 | 680.4114 | 710.144 | 734.678 | 725.146 | 662.2323 | 726.83 |
| Methotrexate | 704 | 675.9127 | 706.0802 | 709.967 | 698.2733 | 645.2 | 616.79 | 605.806 | 724.0089 | 609.02 |
| Baricitinib | 678 | 557.7195 | 549.6735 | 557.6122 | 558.5539 | 565.824 | 568.898 | 569.562 | 549.0836 | 568.22 |
| Tofacitinib | | 553.0328 | 542.2517 | 543.9143 | 539.5013 | 558.608 | 557.846 | 571.33 | 533.4769 | 564.65 |
| Upadacitinib | | 594.9204 | 580.46 | 589.4809 | 590.5729 | 601.904 | 602.054 | 604.038 | 575.42 | 601.88 |

Table 17: Comparison of actual and computed values for molar volume from regression models.

Name of drug	Molar volume molar volume of drug $\left(\mathrm{cm}^{3}\right)$	$A B C(G)$	$R(G)$	$S(G)$	$G A(G)$	$M 1(G)$	$M 2(G)$	$F(G)$	$H(G)$	$H M(G)$
Azathioprine	145.4 ± 7.0	175.5926	174.298	175.0395	177.4017	179.387	184.836	184.584	77.1802	185.815
Hydroxycholoquine	285.4 ± 3.0	262.7359	261.8204	260.3157	256.0305	259.385	254.646	260.99	95.94864	258.391
Sulfasalazine	267.7 ± 3.0	229.4931	238.8469	239.3232	237.2252	224.559	223.446	217.2	92.8408	220.591
Filgotinib	281.1 ± 7.0	285.2487	281.4455	286.3464	286.2788	285.653	283.116	281.224	101.2902	281.911
Leflunomide	194.1 ± 3.0	181.1581	179.8786	178.4916	179.1686	184.163	188.736	191.228	77.86004	191.191
Prednisolone	274.7 ± 5.0	285.4994	282.0966	283.9206	283.2077	294.011	299.886	300.25	100.6347	299.719
Methotrexate	275.7 ± 3.0	284.1457	294.2809	294.8367	288.8872	272.519	262.446	259.48	105.2479	260.911
Baricitinib	238.1 ± 7.0	243.6827	241.3582	243.9882	244.4612	246.251	247.236	247.098	92.18524	247.471
Tofacitinib	241 ± 3.0	242.0782	238.8469	239.4165	238.4032	243.863	243.726	247.702	91.0198	246.295
Upadacitinib	243 ± 7.0	256.4182	251.7753	254.6244	254.6422	258.191	257.766	258.876	94.15192	258.559

3.3. Calculation of Statistical Parameters. In this section, QSPR modelling is imposed in such a way to determine a relationship between the physicochemical properties of rheumatoid arthritis drugs that are tofacitinib, leflunomide, upadacinib, baricitinib, filgotinib, methotrexate, neoral, prednisolone, sulfasalazine, azathioprine, and hydroxychloroquine. TIs, b, r, and N are independent variables, regression model constants, correlation coefficients, and sample size. Such type of test is useful for comparing and deciding on model improvements. It is worth noting that the r value is larger than 0.6 and the p value is less than 0.05 . As a result, it determines that all properties are significant as given in Tables 4-12.
3.4. Standard Error of Estimate (SE) and Comparision. A standard error of estimate is the measure of variation for an observation calculated around the computed regression line. This assesses degree of correctness of predictions computed around regression line as shown in Table 13. Tables 14-17 compare experimental and theoretical calculated values of the models.

4. Conclusions

According to the statistical parameters used in linear QSPR models and topological indices, the $S(G)$ index has a high correlation with molar volume ($r=0.908$). The H index has the highest correlated complexity value, $r=0.755$. The $S(G)$ index represents the highest correlation coefficient of the refractive index, $r=0.933$. The maximum correlated value of flash polarity $r=0.933$ is provided by harmonic $S(G)$. TIs had no relationship with density, boiling point, or polar surface area.

In this paper, we calculated TIs and linked it with the linear QSPR model for rheumatoid arthritis drugs. The findings will aid in the development of new drugs and preventive measures for numerous disease in the pharmaceutical manufacturing industries. The correlation coefficient contributes significantly to the range of TIs for drugs. These findings are eye-opening of pharmaceutical researchers who work on medication science, and they provide a method to estimate and predict physicochemical properties for new RA treatment drugs to cure other specific autoimmune diseases.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Shanmukha, N. S. Basavarajappa, and K. N. Anilkumar, "Predicting physicochemical properties of octane isomers
using QSPR approach," Malaya Journal of Matematik, vol. 8, no. 1, pp. 104-116, 2020.
[2] D. P. M. Symmons, E. M. Barrett, C. R. Bankhead, D. G. L. Scott, and A. J. Silman, "The incidence of rheumatoid arthritis in the United Kingdom: results from the norfolk arthritis register," Rheumatology, vol. 33, no. 8, pp. 735-739, 1994.
[3] F. Guillemin, S. Briancon, J. M. Klein, E. Sauleau, and J. Pourel, "Low incidence of rheumatoid arthritis in France," Scandinavian Journal of Rheumatology, vol. 23, no. 5, pp. 264-268, 1994.
[4] J. K. Pedersen, N. K. Kjær, A. J. Svendsen, and K. HørslevPetersen, "Incidence of rheumatoid arthritis from 1995 to 2001: impact of ascertainment from multiple sources," Rheumatology International, vol. 29, no. 4, pp. 411-415, 2009.
[5] Y. Alamanos, P. V. Voulgari, and A. A. Drosos, "Incidence and prevalence of rheumatoid arthritis, based on the 1987 American college of rheumatology criteria: a systematic review," Seminars in Arthritis and Rheumatism, vol. 36, pp. 182-188, 2006.
[6] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, "An atombond connectivity index: modelling the enthalpy of formation of alkanes," Indian Journal of Chemistry, vol. 37A, 1998.
[7] M. Randic, "Characterization of molecular branching," Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609-6615, 1975.
[8] B. Zhou and N. Trinajstić, "On general sum-connectivity index," Journal of Mathematical Chemistry, vol. 47, no. 1, pp. 210-218, 2010.
[9] D. Vukičević and B. Furtula, "Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges," Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1369-1376, 2009.
[10] I. Gutman, "Degree-based topological indices," Croatica Chemica Acta, vol. 86, no. 4, pp. 351-361, 2013.
[11] R. Narayanan and S. B. Gunturi, "In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method," Bioorganic \& Medicinal Chemistry, vol. 13, no. 8, pp. 3017-3028, 2005.
[12] G. H. Shirdel, H. Rezapour, and A. M. Sayadi, "The hyperzagreb index of graph operations," Iranian Journal of Mathematical Chemistry, vol. 4, 2013.
[13] B. Furtula and I. Gutman, "A forgotten topological index," Journal of Mathematical Chemistry, vol. 53, no. 4, pp. 11841190, 2015.
[14] S. Parveen, N. U. HassanAwan, F. B. Farooq, M. Muhammad, and N. Iqbal, "Topological indices of novel drugs used in diabetes treatment and their QSPR modeling," Journal of Chemistry, vol. 2022, Article ID 5209329, 17 pages, 2022.
[15] S. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled, and S. Gavade, "QSPR analysis of certain degree based topological indices," Journal of Statistics Applications \& Probability, vol. 6, no. 2, pp. 361-371, 2017.
[16] M. Randic, "Comparative structure-property studies: regressions using a single descriptor," Croatica Chemica Acta, vol. 66, pp. 289-312, 1993.
[17] M. Randic, "Quantitative structure-property relationship boiling points of planar benzenoids," New Journal of Chemistry, vol. 20, no. 10, pp. 1001-1009, 1996.
[18] S. Hayat, M. Imran, and J. B. Liu, "Correlation between the estrada index and π-electronic energies for benzenoid hydrocarbons with applications to boron nanotubes," International Journal of Quantum Chemistry, vol. 119, no. 23, Article ID e26016, 2019.
[19] N. Idrees, M. N. Naeem, F. Hussain, A. Sadiq, and M. K. Siddiqui, "Molecular descriptors of benzenoid systems," Quimica Nova, vol. 40, pp. 143-145, 2017.
[20] A. Aslam, S. Ahmad, and W. Gao, "On certain topological indices of boron triangular nanotubes," Zeitschrift für Naturforschung A, vol. 72, no. 8, pp. 711-716, 2017.
[21] S. Hayat, S. Wang, and J. B. Liu, "Valency-based topological descriptors of chemical networks and their applications," Applied Mathematical Modelling, vol. 60, pp. 164-178, 2018.
[22] S. Nasir, N. Ul Hassan Awan, F. B. Farooq, and S. Parveen, "Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling," AIMS Mathematics, vol. 7, no. 7, pp. 11829-11850, 2022.
[23] M. Adnan, S. A. U. H. Bokhary, G. Abbas, and T. Iqbal, "Degree-based topological indices and QSPR analysis of antituberculosis drugs," Journal of Chemistry, vol. 2022, Article ID 5748626, 17 pages, 2022.
[24] Ö. Çolakoğlu, "QSPR modeling with topological indices of some potential drug candidates against COVID-19," Journal of Mathematics, vol. 2022, Article ID 3785932, 9 pages, 2022.
[25] A. Ahmad, R. Hasni, N. Akhter, and K. Elahi, "Analysis of distance-based topological polynomials associated with zerodivisor graphs," Computers, Materials And Continua, vol. 70, no. 2, pp. 2898-2904, 2022.
[26] S. A. K. Kirmani, P. Ali, F. Azam, and P. A. Alvi, "On vedegree and ev-degree topological properties of hyaluronic acid-anticancer drug conjugates with QSPR," Journal of Chemistry, vol. 2021, Article ID 3860856, 23 pages, 2021.
[27] S. Husain, M. Imran, A. Ahmad, Y. Ahmad, and K. Elahi, "A study of cellular neural networks with vertex-edge topological descriptors," Computers, Materials \& Continua, vol. 70, no. 2, pp. 3433-3447, 2022.
[28] S. Husain, F. A Abolaban, A. Ahmad, M. Ahsan Asim, and Y. Ahmad, "On vertex-edge-degree topological descriptors for certain crystal networks," Computer Systems Science and Engineering, vol. 40, no. 3, pp. 835-850, 2022.
[29] E. A. Refaee and A. Ahmad, "A study of hexagon star network with vertex-edge-based topological descriptors," Complexity, vol. 2021, 7 pages, Article ID 9911308, 2021.
[30] A. Ahmad and S. C. López, "Distance-based topological polynomials associated with zero-divisor graphs," Mathematical Problems in Engineering, vol. 2021, Article ID 4959559, 8 pages, 2021.
[31] A. N. A. Koam, A. Ahmad, Y. Ahmad, and Y. Ahmad, "Computation of reverse degree-based topological indices of hex-derived networks," AIMS Mathematics, vol. 6, no. 10, pp. 11330-11345, 2021.
[32] S. Nasir, F. B. Farooq, N. Idrees, M. J. Saif, and F. Saeed, "Topological characterization of nanosheet covered by C3 and C6," Processes, vol. 7, no. 7, p. 462, 2019.

