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Bus hub is characterized with multiple berths, each serving speci�c bus routes. When bus routes at di�erent berths share the same
stops en route, passengers to the shared stops may rush among these berths to catch the newly arriving bus, causing inconvenience
and deteriorating bus service level. �us, this research attempts to optimize bus route assignment to the berths at a bus hub to
minimize passenger transfer distance among the optional berths. �e problem is modeled with integer linear programming, with
the constraints of bus service capacity. To enhance computation e�ciency, exclusive and inclusive constraints based on the count
of shared stops among the bus routes are additionally added to the original model, though they may bring gap from the optimal
solution. Case study follows to apply the proposed set of models to a bus terminal, where a total of 26 routes are assigned to 11
berths. It is found that the models with additional constraints can greatly reduce calculation time at the cost of small or no gap
from the optimal solution. �us, the models with additional constraints are recommended to obtain ideal solution quickly. �is
research provides insights into bus route management at the bus terminal with multiple berths, contributing to enhanced
passenger waiting experience.

1. Introduction

Transit oriented development has long been accepted as a
radical remedy to urban congestion under rapidly increasing
motorization. Bus hub, a critical facility in the transit system,
has attracted tremendous attention to accommodate various
trip demands with multiple routes [1, 2]. Considering that
these routes may share stops en route, passengers alighting at
these shared stops can be faced withmultiple route choices at
di�erent berths. Without proper route assignment, bus
riders may have di�culty in deciding which berth to wait at.
�at is, they may struggle from the current berth to another
to catch the newly arriving bus if it serves their alighting
stop, which severely impacts passengers’ route choice de-
cisions [3]. For example, in Figure 1, if the newly arriving bus
(in red) at Berth 1 serves the route that shares stops with the
lines at other berths, passengers alighting at the shared stops
may hurry to Berth 1 as the dotted lines. Such hasty transfer

can bring signi�cant inconvenience to passenger waiting, as
well as delay to bus service when drivers wait for the
catching-up riders to board and buy ticket or swipe smart
card. �us, it is necessary to assign the routes with shared
stops to the same or adjacent berths to facilitate passengers’
bus route choice and to secure bus service e�ciency.

In the literature, there is increasingly rich and expansive
document on facilitating bus passengers’ waiting, but most
existing research aims at reducing waiting time [4, 5]. On
this problem, early studies generally target bus frequency [6],
while the latest research focuses on reliability as it is vali-
dated to exert more signi�cant in¡uence on bus service
quality [7–10]. Huang et al. [11] proposed data-driven ap-
proaches based on functional data analysis and Bayesian
support vector regression for short-term bus arrival time
prediction under uncertainties for bus service reliability.
Based on GPS and smart card databases of all bus routes in
Santiago, they �nd that functional data analysis can adapt to

Hindawi
Journal of Mathematics
Volume 2022, Article ID 1590504, 8 pages
https://doi.org/10.1155/2022/1590504

mailto:haohaiming@126.com
https://orcid.org/0000-0001-9260-0772
https://orcid.org/0000-0003-1233-8466
https://orcid.org/0000-0001-6100-0328
https://orcid.org/0000-0002-1121-9011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1590504


the fast and sharp changes in traffic dynamics after being
trained with Bayesian support vector regression. Transit
crowding results in excessive waiting time and in-vehicle
delay, making travel time less reliable. Paudel [12] quantified
the economic cost of crowding on the quality of bus services
to investigate the relationship between ridership and bus
service reliability. He proposed a multivariate linear pro-
gramming model in which the variables consist of three
components: bus ridership, a vector of controls (e.g., bus
speed and operation status), and four coefficients measuring
bus service effects, confirming that transit crowding poses a
negative effect on bus service reliability.

Furthermore, bus real-time information [13] and
schedule publishment [14] are emphasized to help passen-
gers better plan trips to avoid undue waiting time. Bus real-
time information, such as in-vehicle congestion and waiting
time information, helps to mitigate bus bunching with
passengers guided to choose the most appropriate bus, in-
stead of the earliest one. Building a simulation model to
depict bus operation and passenger service choices, Zhou
et al. [15] showed that providing bus real-time information is
as effective as the schedule-based and headway-based con-
trol methods in reducing passenger waiting time. Zhang
et al. [16] studied an automatic bus schedule redesign
method based on bus arrival time prediction for real-time
bus dispatching to minimize the impact on the initial
schedule by finding the minimum adjustment range, which
reduces passengers’ average wait time at stops and allows bus
operations to be adjusted in time. Updated research resorts
to automatic vehicle location data, providing many more
details than human-collected ones. Barabino and Di Fran-
cesco [17] developed a descriptive model to identify and
analyse the regularity of actual arrival (or departure) times at
bus stops. Using archived AVL data to derive related sources,
this method would benefit transit managers in making ac-
curate regularity analysis and possible service revisions.

Targeting the relationship among bus routes, Barabino
et al. [18] proposed an offline framework to monitor the
reliability of transfers at all the bus stops and time periods by
analysing automatic vehicle location data. Liu et al. [19]
constructed a joint optimization model of the bus departure
time and speed for multiple routes with several shared stops

to avoid bus bunching and reduce passenger wait time by
approximately 30%. To simplify the transfer coordination
model among bus routes, transfer passengers’ wait time is
minimized by adjusting bus departure interval and speed
[20]. Markevych et al. [21] established the influence of bus
dwell time on the inter-route transfer impedance with
simulation. New zonal express routes can be added to reduce
transit transfers, where similar travel demand is clustered to
determine bus stop locations [22]. Motivated by the dy-
namics of traffic demands, Wu et al. [23] employed au-
tonomous buses to allow passengers to travel on the shortest
path smoothly, which is validated to reduce 15% transfers on
average.

Note that the above research assumes that passengers
wait at a predetermined site, which is not changeable. But
that is not always true, as riders may transfer among the
berths that serve the routes dewlling at the riders' alighting
stops. ,us, it is necessary to optimize route assignment to
berths especially at the bus hub, the space of which spreads
extensively, and transfer among berths can be very incon-
venient. ,ough there are few efforts on the route assign-
ment to bus hub berths, rich literature exists in the similar
field of berth assignment at port [24] and gate assignment at
airport [25].

,e studies on ship assignment are basically oriented
with maximal port loading, under the consideration of
differing berth shore power, crane services, slip depth, and
length [26]. ,us, ships can be directed to the optimal berth
for maximal utility of the available port service capacity.
Developing a multiple linear regression model, Mahpour
et al. [27] showed that access channel depths and the number
of berths are the most significant contributing factors on the
loading efficiency. Research on the airport gate assignment
can be classified according to the optimization objective, i.e.,
to be passenger-oriented or agency-oriented [28]. For ex-
ample, research on passenger-oriented objectives has started
since the 1970s to minimize passenger intra-hub travel [29].
Bi et al. [25] aimed tominimize total passenger walk distance
by optimizing the number of aircraft assigned to the apron
with a mixed integer nonlinear programming model, which
is solved with filtered beam search algorithms for the
problems of larger sizes. Subsequently, various studies have
accounted for passenger walk distance [30, 31], waiting or
transfer time [32, 33], and baggage transport distance [34].
Chow et al. [35] developed a gate assignment model to
reduce travellers’ total walk distance by optimizing the
utilization of gate resources, which shows an 8.7% reduction
for business class travellers and 7.4% for economy one by
reducing the usage of the far gates. Wu et al. [36] focused on
the impacts of gate assignment on the service to transfer
passengers at the hub airport with satellite halls. Considering
the transfer time budget, a transfer demand-oriented ob-
jective function is formulated to improve the efficient uti-
lization of gate resources. To reduce baggage transportation
distance, Jiang et al. [37] improved vehicle routes for bag-
gage collection to minimize total vehicle distance.

A major difference of ship berth or airport gate from bus
hub berth is that ships and air passengers are seldom
temporarily directed to another berth or gate or are always

Berth 1

Newly arriving bus

Berth 3

Berth 2

Berth 4

Catching-up route
Catching-up riders

Figure 1: Rider transfer among berths for the newly arriving bus at
Berth 1.
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allowed sufficient time to make the transfer in a few cases. In
contrast, passengers at bus hubs may freely haste among the
optional berths. ,at is, if there is a newly arriving bus that
pulls in at another berth and head to the passengers'
alighting stop, passengers may transfer from the current
berth to that one.

,e contributions of this article can be threefold. First,
this research aims to optimize bus route assignment to the
multiple berths at bus hubs when the routes share stops en
route to reduce passengers’ transfer distance among the
optional berths and avoid disruptions to the bus hub station.
,us, passengers’ waiting experience at the hub can be
improved and bus service quality can be refined. Second, the
problem is modeled with mixed integer linear programming
(MILP) under the constraint of berth service capacity, based
on which the extended models are developed to enhance
solution efficiency without significantly degenerating the
solution quality. ,us, the routes departing from the same
bus hub and serving more shared stops are more likely
grouped to the same or the neighboring berths. ,ird, case
study is conducted at a typical bus hub station to demon-
strate the performance of the proposed model, validating
that the optimal assignment of bus routes to the hub can be
rapidly obtained with passenger transfer distance reduced
significantly.

,e remainder of the paper is structured as follows. In
Section 2, the parameters in the proposed model are sum-
marized. Section 3 establishes the basic assumption and
modeling with ILP for the optimal route allocation to bus
hub berths. Section 4 conducts the case study, and Section 5
briefly concludes the research with suggestions for future
research directions.

2. Notation

For the convenience and consistency of presenting the
proposed model, parameters used hereafter are listed in
Table 1.

3. Assumptions and Methodology

,e following assumptions are made before developing the
proposed model. (1) Route assignment to hub berths is static
to avoid disruption to passengers. Moreover, their initial
walk distance to any berth is not specifically addressed as
they always have abundant time to do so. (2) All bus pas-
sengers can be accommodated, and they are equally attracted
to the routes as long as they dwell at the alighting stop. Also,
passengers always ride the earliest arriving bus. (3) Berth
service capacity is reflected with route count, without
specifying bus frequency and dwell time of each route for
simplicity.

,e objective function of the proposed model is struc-
tured with

min z �
ij≠i sij · dij 

2
. (1)

to minimize the total transfer distance that passengers walk
among the berths serving the routes dewlling at the riders'
alighting stops. ,e reason why the minimal transfer dis-
tance is adopted as the objective rather than transfer time
among the routes at the hub is as follows. ,e transfer time
includes two parts: (1) the walking time from the current
berth to the berth where the newly arriving bus dwells and
(2) the waiting time at the berth before the target bus arrives
[18]. ,e second part of waiting time can be zero because the
passengers may rush from the current berth to another one
when there comes the newly arriving bus. ,erefore, the
transfer time can be equal to the walk time between the
current and the target berth, i.e., the transfer distance di-
vided by walk speed, where walk speed can vary significantly.
,us transfer impedance can be reflected with the distance
between the berths serving the bus routes that dwell at the
same stops en route, which is minimized as the objective of
the proposed model.

It is noted that the walk distance of passengers not
alighting at the shared stops is not included in (1), as they
have only one optional berth and have no need to transfer to
other berths. Parameter sij refers to the total number of
shared stops between routes i and j, and dij represents the
distance between the berths that routes i and j are assigned
to. Parameter dij is given by

dij � ki − kj



, ∀i≠ j, (2)

where ki and kj mean the berth number that routes i and j

are assigned to. Route assignment is constrained with


b

Bib � 1, ∀i, (3)


i

Bib ≤Cb, ∀b, (4)

ki � 
b

b · Bib( , ∀i, (5)

where Bib is binary variable indicating whether route i is
assigned to berth b. ,at is, when b � ki, variable Bib is
tightened to take the value of 1; otherwise, it is equal to 0.
Parameter Cb means the maximum count of bus routes that
can be accommodated by berth b, due to the berth’s limited
service capacity.

,us, the proposed model can be summarized with
objective of (1) and constraints of equations (2)–(5). To
linearize the programming model, the nonlinear relation-
ship from (2) is replaced with the following equations:

dij ≥ ki − kj,

dij ≥ − ki − kj ,

∀i≠ j.

(6)

To reduce solution time of the proposed programming,
exclusive and inclusive constraints can be added to the
model as follows:
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if sij ≤ Sl, thenBib + Bjb ≤ 1, ∀i≠ j, (7)

if sij ≥ Su, then ki � kj, ∀i≠ j. (8)

(7) means that when the number of shared stops between
routes i and j is no more than the lower bound Sl, they are
regarded as the least related routes and cannot be assigned to
the same berths. ,is relationship can remove N∗fM−2
schemes from the feasible domain, where fM−2 represents
the solution count of assigning (M − 2) routes to N berths.
In contrast, (8) sets the routes with close relations, i.e.,
sharing stops no fewer than Su, to the same berth. As a result,
the passengers patronating these routes can wait at one
berth, without the need to transfer to other berths. ,is
relationship can remove (N2 − N)∗fM−2 schemes from the
feasible domain. Note that the constraints of equations (7)
and (8) may also remove the model’s optimal solution from
feasible domain, though they help to reduce the search space
and to enhance solution efficiency. In the following, to
explore the effect of exclusive and inclusive constraints on
the accuracy and efficiency of model solving, we test the
original model and the extended ones as follows:

(i) Model 1 adopts the constraints of equations
(3)–(6) without the exclusive and inclusive con-
straints. ,us, the model is capable of returning
the optimal route assignment to the hub station,
though it may take a relatively long computation
time.

(ii) Model 2 adopts the constraints of equations (3)–(7)
with an exclusive constraint, which helps to separate
the bus routes with few shared stops to different
berths.

(iii) Model 3 adopts the constraints of equations (3)–(6)
as well as the inclusive constraint of equation (8),
which combines the bus routes with sufficient
shared stops at the same berth.

(iv) Model 4 adopts the constraints of equations (3)–(8)
with both exclusive and inclusive constraints, which
is more likely to return sub-optimal result for the
benefit of reduced computation time.

4. Case Study and Sensitivity Analyses

,e proposed method is tested at a bus hub close to the
railway and coach station in Ningbo, Zhejiang Province,
China. Figure 2 shows the siting of the hub and its geo-
graphical layout with 11 berths, which are numbered anti-
clockwise and spaced evenly. To avoid disorder in the waiting
area, passengers are required to walk along the pedestrian
path of blue line.,us, walk distance between different berths
can be represented with the gap in their berth indices. ,is
hub serves a total of 26 routes, and the count of stops shared
by each pair of bus routes (i.e., sij) is summarized in Figure 3.
Parameters of the proposed model are set as follows. Capacity
of bus berths (i.e., Cb) is set as 2, 2, 3, 1, 2, 3, 3, 2, 3, 3, and 2,
respectively, considering their actual service space. ,e lower
and upper bounds of shared stops between bus routes are 0
and 7 for the adoption of the exclusive and inclusive con-
straints, respectively. ,e algorithm is coded with Matlab
2021a in the environment of Windows 10, characterized with
i-7-7700K CPU, 4.2GHz processor, and 16GB RAM.

Results of Models 1 to 4 are summarized in Table 2. It is
observed that Model 1 takes 360min (i.e., 6 hours) to obtain
the optimal solution. In comparison, Model 2 incorporating
the exclusive relationship manages to reduce calculation
time to 50min, though it brings 2.46% gap from the optimal
value. Model 3 with inclusive constraints is capable of lo-
cating the optimal solution and reducing calculation time to
30min. Model 4 corresponds to the shortest calculation time
of 12min by combining the exclusive and inclusive con-
straints, with 2.46% gap from the optimal solution.

Figure 4 shows the proposed scheme from the developed
model. It is observed that the optimal solution from Models
1 and 3 (Figure 4(a)) assigns the route pairs (2, 4), (7, 11), (4,
21), and (6, 23) to the same berth, though they have no
shared stops. ,at can be explained with their complex
relationship to the routes at the neighboring berths under
the tight constraints from berth capacity. Moreover, refer-
ring to the results from Models 2 and 4 (Figure 4(b)), the
exclusive constraint removes the optimal solution from the
feasible domain and brings moderate gap from the optimal
solution, which is acceptable in the transportation engi-
neering field that works well with the nearly optimal

Table 1: List of parameters.

Notation Explanation
Indices

i, j Index of routes
b Index of berths

Parameters
ki, kj Berth index that routes i and j are assigned to
Cb Maximum count of bus routes that can be accommodated by berth b

N, M Berth count and route count at the hub
Sl, Su Lower and upper bounds of shared bus stops for exclusive and inclusive constraints

Decision variables
Bib, Bjb Binary variables indicating whether routes i and j are assigned to berth b

Auxiliary variables
sij Total number of shared stops between routes i and j

dij Distance between the berths that routes i and j are assigned to

4 Journal of Mathematics



solution. ,erefore, it is recommended to adopt the ex-
tended model to greatly reduce calculation time (V.S. Model
1) without significantly deteriorating the optimal solution.

Due to the berth not being able to serve more routes than
its capacity, bus routes must be assigned to many berths to
avoid bus queues. In addition, adding some routes to one
berth may increase the total transfer distance because the
passengers, who may ride the route, possiblely transfer from
the berth they currently wait at to this berth. ,at may
increase the total transfer distance at the bus hub. ,us, the

proposed programming may assign fewer routes to one
berth than its service capacity for minimal transfer distance.

Sensitivity analyses test the impact of problem scale on
solution time and examine the difference in solution effi-
ciency and accuracy among different models. Specifically,
route count at a bus hub increases from 10 to 20, which is
common in practice and could avoid undue calculation time.
To overcome the effect of the specific characteristics in the
shared stops among bus routes, the routes given in the
previous section are randomly selected 10 times. ,e pro-
posed 4 models are then employed to solve each set of the
selected routes, respectively. Figure 5 shows the box plot of
CPU time from the calculation, where Model 3 tends to be
the most efficient one, while the efficiency of Models 2 and 4
are less stable. Figure 6 shows the distribution of the ob-
jective value, where no significant gap is observed among the
four proposed models. ,us, it is recommended to incor-
porate the inclusive constraint, which combines the bus
routes sharing many stops en route at the same berth.

Figure 2: Siting and geographical layout of the selected bus hub. (a) Bus hub siting. (b) Hub geographical layout.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

37

0

Route NO.

Ro
ut

e N
O

.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

21

23

25
26

24

20

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 3: ,e demonstration of the count of shared stops of each
pair of bus routes.

Table 2: Results of proposed models.

Model Objective Optimality Gap Solution time (min)
1 244 Yes — 360
2 250 No 2.46% 50
3 244 Yes — 30
4 250 No 2.46% 12
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,e integer linear programming model proposed in this
paper can provide a theoretical basis for transit agencies to
assign bus routes to the multiple berths at bus hubs, thereby
reducing transfer distances, improving bus service efficiency,
and attracting more transit riders. In terms of modeling
selection, adding inclusive constraints can be further applied
to the situations of large model scale, which may take a long
time for the optimal solution.

5. Conclusions

,ere has been rich literature about where to build a bus hub
and which routes to serve it at specified service frequency.
However, assigning the multiple bus routes with shared
stops among the berths at a bus hub has not been fully
studied. ,at may facilitate passengers’ bus route choice and
waiting experience by avoiding their hasty transfer among
distant optional berths that serve the bus routes dwelling at
the alighting stops.

To this end, bus route assignment to the multiple berths
at a bus hub is modeled with the objective to minimize
passengers’ transfer cost among the berths serving the bus
routes to their destination stop, which is weighted with the
shared stops between each route pair. ,en, the constraints
for the route assignment under berth service capacity are
established. ,us, integer nonlinear programming is pro-
posed and is then converted to integer linear programming.
Further, to improve solution efficiency, additional con-
straints are developed. ,e exclusive and inclusive con-
straints assign the least (i.e., with few or no shared stops) and
the most related (i.e., with many shared stops) bus routes to
different and the same berths, respectively. ,us, four
models are developed for the problem, i.e., the original
model (Model 1), the model with exclusive constraint
(Model 2), the model with inclusive constraint (Model 3),
and the model with both exclusive and inclusive constraints
(Model 4). Case study follows to validate that the extended
models are capable of finding the optimal or near-optimal
solution at the advantage of CPU time.

Admittedly, this research simplifies the actual process of
passengers riding a bus, which just focuses on the optimal
bus route allocation to the multiple berths at one bus hub to
facilitate passengers waiting. For example, loading factor of
buses is not considered or balanced, where passengers can
actually be directed to wait for the soon-coming and less-
crowded or faster bus with real-time arrival information.
Refined berth assignment considering the stochasticity of
bus dwell time to avoid bus queues at the berths is another
fruitful avenue for future extension.
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