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In this study, the estimation of parameters of a three-parameter flexible reduced logarithmic-inverse Lomax (FRL-IL) distribution
based on progressive type-II right censored sample is studied. -ese methods include maximum likelihood estimations (MLEs)
and Bayesian estimators. Approximate confidence intervals (ACIs) for the reliability and hazard functions are estimated based on
the asymptotic distribution of maximum likelihood estimates (MLEs). In addition, two bootstrap CIs are also proposed. Bayesian
estimates are obtained for symmetric and asymmetric loss functions such as squared error loss (SEL) and linear-exponential
(LINEX) loss functions.-e Gibbs withinMetropolis-Hasting sampler procedure is applied using the Markov ChainMonte Carlo
(MCMC) technique to get the Bayes estimates of the unknown parameters and their credible intervals (CRIs). Finally, a real-life
dataset that represents a group of patients with bladder cancer is considered an application of the proposed methods.

1. Introduction

In life testing and reliability experiments, experiments must
be often terminated before all units on the test have failed.
For example, units may accidentally break in an industrial
experiment, individuals may drop out of the study in a
clinical trial, or the study may have to be terminated for lack
of funds. For many reasons, the removal of units before
failure is very often a procedure due to limitations of time
and cost associated with the experiment. In such cases, in a
lifetime test, it is impossible for experimenters to obtain the
complete sample information in a short period of time. It
leads us to the area of censoring, namely, some surviving
units are removed from the experiment following a specific
censoring scheme, and the final sample obtained is the
censored sample, see Klein and Moeschberger [1]. Reducing
the total test time and the associated test is one of the major
reasons for censoring. In the life-testing experiment, if all the
items under the test are observed until failure, the life test is
said to be a complete life test. -e available data in most

practical situations are not complete.-erefore, censoring is
very important in lifetime data analysis, either due to test
time or budget constraints. Well-known censoring schemes
are divided into two, type-I and type-II, censors. And then,
a progressive censoring scheme is further proposed.-is, in
turn, allows the experimenters to remove the remaining
units at different stages during the test, which is more
flexible and realistic. -e progressive type-II censoring
scheme can be demonstrated as follows: the tester assigns
independent and identical units on the life test. Suppose
there are n units to be tested at the beginning of the ex-
periment, the lifetime test is terminated at the failure time
of the mth (m< n) unit. Once the first failure occurs, time
t(1) is registered, and R1 units are randomly withdrawn
from the remaining n − 1 survival units. Consequently,
time t(2) will be registered and R2 units are randomly
withdrawn from the remaining n − R1 − 2 survival units at
the occurrence of the second failure. -is experiment stops
at the mth failure, which is determined in advance, at time
tm, and Rm � n − m − 􏽐

m− 1
i�1 Ri (Figure 1).
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-ere are a lot of authors who have studied progressive
type-II censoring with different breakdowns of failure
time, including Mann et al. [2], Lawless [3], Meeker and
Escobar [4], and Balakrishnan [5] studied the properties of
progressively censored order statistics and provided an
overview of various developments in inferential proce-
dures based on progressive type-I and type-II right cen-
sored samples and identified some interesting possible
problems for further research. Balakrishnan and Cramer
[6] provide a comprehensive literature review on pro-
gressive censoring, details on this progressive censoring
scheme, and its different applications. Tse et al. [7] indi-
cated that, for example, the number of patients who drop
out of a clinical test at each stage is random and cannot be
predetermined. In some reliability trials, the experimenter
may decide that it is inappropriate or dangerous to per-
form the test on some of the units tested even though these
units did not fail. In such instances, the pattern of removal
is random with each failure. For further information on
the progressively censored samples, see Balakrishnan and
Sandhu [8] and Balakrishnan and Aggarwala [9]. Aggar-
wala and Balakrishnan [10] have discussed inference for
the case of progressive type II censored when lifetime
distributions are Weibull, log normal, and exponential.
Balakrishnan and Sandhu [11], and Aggarwala and
Balakrishnan [12] have developed an algorithm to simulate
general progressive type-II censored samples from uni-
form or any other continuous distributions. An interesting
real application of progressive type II censored has been
carried out by Montanari et al [13], and Eryilmaz and
Bairamov [3] and also has been studying the estimation of
parameters from different lifetime distributions based on
progressive type-II censoring by many authors, including
Balakrishnan and Kannan [14], Ali Mousa and Jaheen
[15, 16], and Ali Mousa and Al-sagheer [17]. Recently,
Salemi et al. [18] studied A-optimal and D-optimal cen-
soring plans in progressive type-II right censored order
statistics, Qin et al. [19] propose a new test statistic based
on spacings to test whether the general progressive type-II
censored samples are from an exponential distribution,
Maiti and Kayal [20] studied estimation of the unknown
parameters, reliability, and hazard functions of a log-lo-
gistic distribution under the progressive type-II censored
sample, also, a study of the generalized Rayleigh distri-
bution was presented when a controlled stepwise sample of
the second type was available by Maiti and Kayal [21], and

parametric (classical and the Bayes) point estimation
procedures have been proposed to estimate the reliability
characteristics, viz, reliability function and mean time to
failure for XGD based on the complete observations, using
four different estimation methods proposed by Saha and
Yadav [22].

Bladder cancer is one of the most prevalent malignant
tumors and one of the most expensive to treat per patient.
Bladder cancer is chronically under-recognized as a public
health concern and scientifically underfunded, despite its
high prevalence, morbidity, death, and related management
costs. In the last 30 years, 5-year survival rates for patients
with prostate and kidney cancer have dramatically im-
proved, but progress in bladder cancer has slowed a renewed
interest from the clinical and research communities. Im-
proved diagnostics, therapies, and health services for pa-
tients with bladder cancer will emerge as awareness and
funding for the disease growth. For this reason, since our
study will be on patients with bladder cancer, which requires
us to reduce the number of experimental patients and the
time of the lifetime experiment of these patients, we will
apply the progressive type-II censoring scheme, which
satisfies the requirements of obtaining good estimation by
reducing the experimental time of patients and keeping
some experimental patients from failure.

In this study, the three-parameter flexible reduced
logarithmic-inverse Lomax (FRL-IL) distribution proposed
by Buzaridah et al. [23] is considered as a good model for the
failure times of the bladder cancer patient components. -e
random variable X has a (FRL-IL) flexible reduced loga-
rithmic-inverse Lomax distribution if its probability density
function (PDF) and cumulative distribution function (CDF)
are given by

f(x; α, β, λ) �
αβλ/x2

􏼐 􏼑[1 +(β/x)]
− (α+1)

1 + λ − λ(1 +(β/x))
− α

􏼂 􏼃log[1 + λ]
,

x> 0, α, β, λ> 0,

(1)

F(x; α, β, λ) � 1 −
log 1 + λ − λ(1 +(β/x))

− α
􏼂 􏼃

log[1 + λ]
,

x> 0, α, β, λ> 0,

(2)

while the reliability and hazard function of FRL-IL, re-
spectively, are given by

X1:m:n X2:m:n X3:m:n Xm:m:n

R1 R2 R3 Rm

remove remove remove remove

Figure 1: Type-II progressive censoring.
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S(x; α, β, λ) �
log 1 + λ − λ(1 +(β/x))

− α
􏼂 􏼃

log(1 + λ)
, x> 0,

h(x; α, β, λ) �
αβλ/x2

􏼐 􏼑(1 +(β/x))
− (α+1)

1 + λ − λ(1 +(β/x))
− α

􏼂 􏼃log 1 + λ − λ(1 +(β/x))
− α

􏼂 􏼃
, x> 0.

(3)

Buzaridah et al. [23] discussed the statistical properties
for the FRL-IL, including the behavior of the function of
probability density, the reliability or survival function, the
function of the hazard rate, the function of the reversed
hazard rate, and the residual (reversed) life. -e moments
and the moments generating function, quantile function,
and skewness and kurtosis are obtained. In addition, they
investigated the maximum likelihood estimators of the
unknown parameters and their asymptotic confidence in-
tervals based on complete data.

-e rest of this study is organized as follows: In Section 2,
the MLEs of α, β, λ, S(t), and h(t) are formulated. As-
ymptotic confidence intervals based on the maximum
likelihood estimates are presented in Section 3. -e confi-
dence intervals for the unknown parameters, reliability
function, and hazard function are constructed using two
parametric bootstrap procedures in Section 4. Bayes esti-
mates for the aforementioned parameters and functions are
also obtained for different loss functions such as squared
error loss (SEL) and LINEX loss functions in Section 5. -e
real dataset has been analyzed in Section 6. A simulation
study is performed in Section 7 to assess the quality of the
different estimators developed in this study. Finally, we
conclude the study in Section 8.

2. Maximum Likelihood Estimators

In this section, we study the estimation problem of the FRL-
IL parameters under progressive type-II censored samples
using an estimation method called the maximum likelihood
estimators (MLEs).

Let X1: m: n, X2: m: n, . . . , Xm: m: n, 1≤m≤ n denote the
progressive type-II censored sample of size m from a sample
of n with scheme R1, R2, . . . , Rm, m< n drawn from the FRL-
IL distribution. -e likelihood function based on a pro-
gressive type-II censored sample from FRL-IL (α, β, λ) is
given by

L α, β, λ| x( 􏼁 � C 􏽙
m

i�1
f xi: m: n; α, β, λ( 􏼁

· 1 − F xi: m: n; α, β, λ( 􏼁􏼂 􏼃
Ri , m< n,

(4)

where C is a constant defined as C � n(n − 1 − R1)(n − 2 −

R1 − R2), . . . , (n − 􏽐
m− 1
i�1 (Ri + 1)).

F(·) andf(·) are cdf and pdf defined in equations (1) and
(2), respectively.

Substituting cdf and pdf into equation (4), then, we can
write the log-likelihood function of α, β and λ based on
progressive type-II censored sample as follows:

L α, β, λ| x( 􏼁 � C 􏽙
m

i�1

αβλ/x2
i: m: n􏼐 􏼑 1 + β/xi: m: n( 􏼁􏼂 􏼃

− (α+1)

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

􏼂 􏼃log[1 + λ]
⎛⎝ ⎞⎠ ×

log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

􏼂 􏼃

log[1 + λ]
􏼠 􏼡

Ri

,

L α, β, λ| x( 􏼁 � C × αmβmλm
􏽑

m
i�1 x

− 2
i: m: n

􏽑
m
i�1 1 + β/xi: m: n( 􏼁􏼂 􏼃

− (α+1)

(log[1 + λ])
m

􏽑
m
i�1 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
􏼂 􏼃 ×

􏽑
m
i�1 log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁( 􏼁

Ri

􏽑
m
i�1 (log(1 + λ))

Ri .

(5)

-e log-likelihood function without the constant term
can be written as

ℓ � m log α + m log β + m log λ − 2􏽘

m

i�1
log xi: m: n − (α + 1) 􏽘

m

i�1
log 1 +

β
xi: m: n

􏼠 􏼡

− 􏽘
m

i�1
log 1 + λ − λ 1 +

β
xi: m: n

􏼠 􏼡

− α

􏼠 􏼡 − m log(log(1 + λ))

+ 􏽘
m

i�1
Rilog log 1 + λ − λ 1 +

β
xi: m: n

􏼠 􏼡

− α

􏼠 􏼡􏼠 􏼡 − 􏽘
m

i�1
Rilog(log(1 + λ)).

(6)
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Calculating the first partial derivatives of ℓ with respect
to α, β, and λ and equating each to zero, we get the likelihood
equations as

zℓ
zα

�
m

α
− 􏽘

m

i�1
log 1 +

β
xi: m: n

􏼠 􏼡 − 􏽘

m

i�1

λ 1 + β/xi: m: n( 􏼁( 􏼁
− α ln 1 + β/xi: m: n( 􏼁( 􏼁( 􏼁

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁

+ 􏽘
m

i�1
Ri

λ 1 + β/xi: m: n( 􏼁( 􏼁
− α ln 1 + β/xi: m: n( 􏼁( 􏼁( 􏼁

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁 ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁( 􏼁
􏼢 􏼣,

(7)

zℓ
zβ

�
m

β
− 􏽘

m

i�1

α + 1
β + xi: m: n

− 􏽘
m

i�1

αλ 1 + β/xi: m: n( 􏼁( 􏼁
− (α+1)

xi: m: n 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁

+ 􏽘
m

i�1
Ri

αλ 1 + β/xi: m: n( 􏼁( 􏼁
− (α+1)

xi: m: n 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁 ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁( 􏼁
⎡⎣ ⎤⎦,

(8)

zℓ
zλ

�
m

λ
−

m

(ln(1 + λ))(1 + λ)
− 􏽘

m

i�1

1 − 1 + β/xi: m: n( 􏼁( 􏼁
− α

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁

+ 􏽘
m

i�1
Ri

1 − 1 + β/xi: m: n( 􏼁( 􏼁
− α

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁 ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁( 􏼁
−

1
(ln(1 + λ))(1 + λ)

􏼢 􏼣.

(9)

Since equations (7)–(9) do not have closed-form solu-
tions, the Newton-Raphson iteration method is used to
obtain the estimates. Ahmed [24] and Mahmoud et al. [25]
describe the steps in which the algorithm works in detail.

-e algorithm is described as follows:

(1) Use the method of moments or any other methods to
estimate the parameters α, β, and λ as starting point
of iteration, denote the estimates as (α0, β0, λ0), and
set k � 0.

(2) Calculate (zℓ/zα, zℓ/zβ, zℓ/zλ)(αk,βk,λk) and the ob-
served Fisher information matrix I− 1(α, β, λ), given
in the next section.

(3) Update (α, β, λ) as

αk+1, βk+1, λk+1( 􏼁 � αk, βk, λk( 􏼁 +
zℓ
zα

,
zℓ
zβ

,
zℓ
zλ

􏼠 􏼡
αk,βk,λk( )

× I
− 1

(α, β, λ).

(10)

(4) Set k � k + 1 and then go back to Step 1.
(5) Continue the iterative steps until |(αk+1, βk+1, λk+1) −

(αk, βk, λk)| is smaller than a threshold value. -e
final estimates of (α, β, λ) are the MLE of the pa-
rameters denoted as (􏽢α, 􏽢β, 􏽢λ).

Moreover, the invariance property of MLEs, and the
MLEs of S(t) and h(t) can be obtained after replacing α, β,
and λ by 􏽢α, 􏽢β, and 􏽢λ as

􏽢S(t) �
log 1 + 􏽢λ − 􏽢λ(1 +(􏽢β/t))− 􏽢α

􏼔 􏼕

log(1 + 􏽢λ)
,

􏽢h(t) �
􏽢α􏽢β􏽢λ/t2􏼐 􏼑(1 +(􏽢β/t))− (􏽢α+1)

1 + 􏽢λ − 􏽢λ(1 +(􏽢β/t))− 􏽢α
􏼔 􏼕log 1 + 􏽢λ − 􏽢λ(1 +(􏽢β/t))− 􏽢α

􏼔 􏼕
.

(11)

3. Asymptotic Confidence Intervals

-e asymptotic variances and covariances of the MLEs, 􏽢α, 􏽢β,
and 􏽢λ are given by the entries of the inverse of the Fisher
information matrix Iij � E − [z2ℓ(Ψ)/zψizψj]􏽮 􏽯, where i, j �

1, 2, 3 and Ψ � (ψ1,ψ2,ψ3) � (α, β, λ). Unfortunately, exact
closed forms for the expectations listed above are difficult to
come by. -erefore, the observed Fisher information matrix
􏽢Iij � − [z2ℓ(Ψ)/zψizψj]􏽮 􏽯

Ψ�􏽢Ψ
, which is obtained by drop-

ping the expectation operator E, will be used to construct
confidence intervals (CIs) for the parameters. As a result, the
observed information matrix is given by
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􏽢I(􏽢α, 􏽢β, 􏽢λ) �

−
z2ℓ
zα2

−
z2ℓ

zα zβ
−

z2ℓ
zα zλ

−
z2ℓ

zβ zα
−

z2ℓ
zβ2

−
z2ℓ

zβ zλ

−
z2ℓ

zλ zα
−

z2ℓ
zλ zβ

−
z2ℓ
zλ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(α,β,λ)�(􏽢α,􏽢β,􏽢λ)

, (12)

z
2ℓ

zα2
� −

m

α2
+ 􏽘

m

i�1

λ ln2 1 + β/xi: m: n( 􏼁( 􏼁􏼐 􏼑(λ + 1) 1 + β/xi: m: n( 􏼁( 􏼁
α

λ 1 + β/xi: m: n( 􏼁( 􏼁
α

− λ + 1 + β/xi: m: n( 􏼁( 􏼁
α

( 􏼁
2 − 􏽘

m

i�1
Ri

λ ln2 1 + β/xi: m: n( 􏼁( 􏼁􏼐 􏼑

ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
⎡⎣

×
λ + ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁 1 + β/xi: m: n( 􏼁( 􏼁

α
( 􏼁(1 + λ)

λ 1 + β/xi: m: n( 􏼁( 􏼁
α

− λ + 1 + β/xi: m: n( 􏼁( 􏼁
α

( 􏼁
2

⎤⎦,

(13)

z
2ℓ

zβ2
� −

m

β2
+ 􏽘

m

i�1

α + 1
β + xi: m: n( 􏼁

2 + 􏽘

m

i�1

αλ(α + 1) 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁

x
2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

2 × 1 +
β

xi: m: n

􏼠 􏼡

− (α+2)

− α2λ2 1 +
β

xi: m: n

􏼠 􏼡

− (2α+2)

⎡⎣ ⎤⎦

− 􏽘
m

i�1
Ri

αλ
x
2 ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁􏼐 􏼑 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

2
⎡⎢⎢⎣

×
ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁(1 + α + λ + αλ)

1 + β/xi: m: n( 􏼁( 􏼁
α+2 −

λln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁 + αλ
1 + β/xi: m: n( 􏼁( 􏼁

2α+2
⎛⎝ ⎞⎠⎤⎥⎥⎦,

(14)

z
2ℓ

zλ2
� −

m

λ2
+

m(ln(λ + 1) + 1)

ln2(λ + 1)􏼐 􏼑(λ + 1)
2 + 􏽘

m

i�1

1 + β/xi: m: n( 􏼁( 􏼁
− α

− 1( 􏼁
2

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
2

− 􏽘
m

i�1
Ri

1 + β/xi: m: n( 􏼁( 􏼁
− α

− 1( 􏼁
2 ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁 + 1( 􏼁

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
2ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

−
(ln(λ + 1) + 1)

ln2(λ + 1)􏼐 􏼑(λ + 1)
2

⎡⎢⎣ ⎤⎥⎦,

(15)

z
2ℓ

zα zβ
� − 􏽘

m

i�1

1
xi: m: n + β

+ 􏽘
m

i�1

λ
1 + β/xi: m: n( 􏼁( 􏼁

2α
xi: m: n + β( 􏼁 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

2
⎡⎣

× λ − λ 1 +
β

xi: m: n

􏼠 􏼡

α

− 1 +
β

xi: m: n

􏼠 􏼡

α

+ α ln 1 +
β

xi: m: n

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

+ αλ ln 1 +
β

xi: m: n

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

􏼠 􏼡

− 􏽘

m

i�1
Ri

λ 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
− 2 1 + β/xi: m: n( 􏼁( 􏼁

− 2α

ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁􏼐 􏼑 xi: m: n + β( 􏼁
⎡⎢⎣

× λ ln 1 + λ − λ 1 +
β

xi: m: n

􏼠 􏼡

− α

􏼠 􏼡 − ln 1 + λ − λ 1 +
β

xi: m: n

􏼠 􏼡

− α

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

􏼠

− λ ln 1 + λ − λ 1 +
β

xi: m: n

􏼠 􏼡

− α

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

+ αλ ln 1 +
β

xi: m: n

􏼠 􏼡

+ α ln 1 +
β

xi: m: n

􏼠 􏼡ln 1 + λ − λ 1 +
β

xi: m: n

􏼠 􏼡

− α

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

+αλ ln 1 +
β

xi: m: n

􏼠 􏼡ln 1 + λ − λ 1 +
β

xi: m: n

􏼠 􏼡

− α

􏼠 􏼡􏼠 􏼡 1 +
β

xi: m: n

􏼠 􏼡

α

􏼡􏼣,

(16)
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z
2ℓ

zα zλ
� − 􏽘

m

i�1

1 + β/xi: m: n( 􏼁( 􏼁
− αln 1 + β/xi: m: n( 􏼁( 􏼁

1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
2 + 􏽘

m

i�1
Ri

ln 1 + β/xi: m: n( 􏼁( 􏼁

ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁􏼐 􏼑
⎡⎢⎣

×
ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

1 + β/xi: m: n( 􏼁( 􏼁
α 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁

2
⎤⎦,

(17)

z
2ℓ

zβ zλ
� − 􏽘

m

i�1

α 1 + β/xi: m: n( 􏼁( 􏼁
− (α+1)

xi: m: n 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
2

+ 􏽘
m

i�1
Ri

α ln 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁 1 + β/xi: m: n( 􏼁( 􏼁
− (α+1)

xi: m: n ln2 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁􏼐 􏼑 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

( 􏼁
2

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(18)

-erefore, the approximate asymptotic variance-co-
variance matrix [ 􏽢V] for the MLEs is obtained by inverting
the observed information matrix 􏽢I(α, β, λ); therefore,

[􏽢V] � 􏽢I
− 1

(􏽢α, 􏽢β, 􏽢λ) �

Var(􏽢α) cov(􏽢α, 􏽢β) cov(􏽢α, 􏽢λ)

cov(􏽢β, 􏽢α) Var(􏽢β) cov(􏽢β, 􏽢λ)

cov(􏽢λ, 􏽢α) cov(􏽢λ, 􏽢β) Var(􏽢λ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(19)

It is well known that under some regularity conditions
(see Lawless [26]), (􏽢α, 􏽢β, 􏽢λ) is approximately distributed as
multivariate normal with mean (α, β, λ) and covariance
matrix I− 1(α, β, λ). -en, the 100(1 − c)% two-sided con-
fidence intervals of α, β, and λ can be given by

􏽢α ± Z(c/2)

������
var(􏽢α)

􏽰
􏼐 􏼑,

􏽢β ± Z(c/2)

������

var(􏽢β)

􏽱

􏼒 􏼓,

􏽢λ ± Z(c/2)

������

var(􏽢λ)

􏽱

􏼒 􏼓,

(20)

where Z(c/2) is the percentile of the standard normal dis-
tribution with right-tail probability (c/2).

To construct the asymptotic confidence interval of the
reliability and hazard functions, which are functions in the
parameters α, β, and λ, it is necessary to compute their
variances. -e delta method is used to compute the ap-
proximate estimates of the variance of 􏽢S(t) and 􏽢h(t) (for
more details about the delta method, see Greene [27],
Ahmed [24], and El-Sagheer [28]). According to this
method, the variance of 􏽢S(t) and 􏽢h(t) can be approximated,
respectively, by

􏽢σ2􏽢S(t)
� [∇􏽢S(t)]

T
[􏽢V][∇􏽢S(t)],

􏽢σ2􏽢h(t)
� [∇􏽢h(t)]

T
[􏽢V][∇􏽢h(t)],

(21)

where ∇􏽢S(t) and ∇􏽢h(t) are, respectively, the gradient of 􏽢S(t)

and 􏽢h(t) with respect to α, β, and λ.
-en, the 100(1 − c)% two-sided confidence intervals of

S(t) and h(t) can be given by

􏽢S(t) ± Z(c/2)

����

􏽢σ2􏽢S(t)

􏽲

,

􏽢h(t) ± Z(c/2)

����

􏽢σ2􏽢h(t)

􏽲

.

(22)

4. Bootstrap Confidence Intervals

A parametric bootstrap interval, as opposed to a point esti-
mate, substantially provides more information about the
population value of the quantity of interest. In addition, it is
clear that confidence intervals based on asymptotic results
perform poorly for a small sample size. Two parametric
bootstrap algorithms are offered to calculate the bootstrap
confidence intervals of α, β, λ, S(t) and h(t). -e first one is
the percentile bootstrap (Boot-p) confidence interval, pro-
posed by Efron [29]. -e second one is the bootstrap-t (Boot-
t) confidence interval, which is presented in Hall [30]. Boot-t
was created using a studentized “pivot” and requires an es-
timator of the variance of the MLE of α, β, λ, S(t) and h(t).

4.1. Parametric Boot-p

(1) Based on the original data x � x1: m: n, x2: m: n, . . . ,

xm: m: n, 􏽢α, 􏽢β, and 􏽢λ are obtain by maximizing
equations (7)–(9).

(2) Based on the prespecified progressive censoring
scheme (R1, R2, . . . , Rm), a type-II progressive cen-
soring sample x∗ � x∗1: m: n, x∗2: m: n, . . . , x∗m: m: n from
the FRL-IL distribution with parameters 􏽢α, 􏽢β, and 􏽢λ
are generated, using the algorithm described in
Balakrishnan and Sandhu [11].

(3) -e MLEs are obtained based on the bootstrap
sample, and this bootstrap estimate is denoted by 􏽢ψ∗

(in our case ψ could) be α, β, λ, S(t) and h(t).
(4) Steps (2) and (3) are repeated N boot times, and

􏽢ψ∗1 , 􏽢ψ∗2 , . . . , 􏽢ψ∗N boot is obtained, where 􏽢ψ∗i � (􏽢α∗i ,
􏽢β
∗
i , 􏽢λ
∗
i , 􏽢S
∗
i (t), 􏽢h

∗
i (t)), i � 1, 2, 3, . . . , N boot.

(5) 􏽢ψ∗i , i � 1, 2, 3, . . . , N boot is arranged in ascending
orders, and 􏽢ψ∗(1), 􏽢ψ∗(2), . . . , 􏽢ψ∗(N boot) is obtained.
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Let G1(z) � P(􏽢ψ∗ ≤ z) be the cumulative distribution
function of 􏽢ψ∗. 􏽢ψboot− p � G− 1

1 (z) is defined for given z. -e
approximate bootstrap-p 100(1 − c)% CI of 􏽢ψ is given by

􏽢ψboot− p

c

2
􏼒 􏼓, 􏽢ψboot− p 1 −

c

2
􏼒 􏼓􏼔 􏼕. (23)

4.2. Parametric Boot-t

(1)–(3) -e same as the parametric Boot-p.
(4) Based on the asymptotic variance-covariancematrix
(19) and delta method (21), respectively, the variance-
covariance matrix I− 1∗(zℓ/zα, zℓ/zβ, zℓ/zλ) and the
approximate estimates of the variance S(t) and h(t) are
computed.
(5) -e T∗ψ statistic is computed, which is defined as

T
∗ψ

�
􏽢ψ∗ − 􏽢ψ( 􏼁
�������

􏽤var 􏽢ψ∗( 􏼁

􏽱 . (24)

(6) Steps 2–5 are repeated NBoot times, and
T
∗ψ
1 , T

∗ψ
2 , . . . , T

∗ψ
N boot is obtained.

(7) T
∗ψ
1 , T

∗ψ
2 , . . . , T

∗ψ
N boot is sorted in ascending orders,

and the ordered sequences T
∗ψ
(1), T
∗ψ
(2), . . . , T

∗ψ
(N boot) are

obtained.

Let G2(z) � P(T∗ ≤ z) be the cumulative distribution

function of T∗ for given z. 􏽢ψboot− t � 􏽢ψ + G− 1
2 (z)

�������
􏽤var(􏽢ψ∗)

􏽱

is
defined.

-en, the approximate bootstrap-t 100(1 − c)% CI of
􏽢ψ � (􏽢α, 􏽢β, 􏽢λ, 􏽢S(t), 􏽢h(t)) is given by

􏽢ψboot− t

c

2
􏼒 􏼓, 􏽢ψboot− p 1 −

c

2
􏼒 􏼓􏼔 􏼕. (25)

5. Bayes Estimation

In this section, we obtain Bayesian estimates that deal with
the parameters as random and uncertainties in the pa-
rameters are described by a joint prior distribution, which

was developed before the collected failure data.-e Bayesian
approach is highly useful in reliability analysis because it
may incorporate previous knowledge into the analysis. -is
is important because one of the main challenges associated
with reliability analysis is the limited availability of data.
Bayesian estimates of the unknown parameters α, β, and λ
and some lifetime parameters S(t) and h(t) against the SEL
and LINEX loss functions are developed. It is assumed here
that the parameters α, β, and λ are independent and follow
the gamma prior distributions,

π1(α) � αa1− 1 exp − b1α( 􏼁, α> 0,

π2(β) � βa2− 1 exp − b2β( 􏼁, β> 0,

π3(λ) � λa3− 1 exp − b3λ( 􏼁, λ> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

where all the hyperparameters ai and bi, i � 1, 2, 3 are as-
sumed to be non-negative and known.

-e posterior distribution of the parameters α, β, and λ
denoted by π∗(α, β, λ| x) can be obtained by combining the
likelihood function in equation (4) with the priors in
equation (23), and it can be written as

π∗ α, β, λ| x( 􏼁 �
π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁

􏽒
∞
0 􏽒
∞
0 􏽒
∞
0 π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁dαdβdλ

.

(27)

A commonly used loss function is the SEL, which is a
symmetrical loss function that assigns equal losses to
overestimation and underestimation. If ϕ is the parameter to
be estimated by an estimator 􏽢ϕ, then the square error loss
function is defined as

L(ϕ, 􏽢ϕ) � (􏽢ϕ − ϕ)
2
. (28)

-erefore, the Bayes estimate of any function of α, β, and
λ, say g(α, β, λ) under the SEL function, can be obtained as

􏽢gBS α, β, λ| x( 􏼁 � Eα,β,λ| x(g(α, β, λ)), (29)

where

Eα,β,λ| x(g(α, β, λ)) �
􏽒
∞
0 􏽒
∞
0 􏽒
∞
0 g(α, β, λ)π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁dαdβdλ

􏽒
∞
0 􏽒
∞
0 􏽒
∞
0 π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁dαdβdλ

. (30)

Variance [31] considered a LINEX (linear exponential)
loss function L(Δ) for a parameter ϕ is given by

L(Δ) � e
cΔ

− c△ − 1􏼐 􏼑, c≠ 0,Δ � 􏽢ϕ − ϕ. (31)

-is loss function is suitable for situations where
overestimation is more costly than its underestimation.
Zellner [32] discussed Bayesian estimation and

prediction using LINEX loss. Hence, under LINEX loss
function in equation (30), the Bayes estimate of a
function g(α, β, λ) is

􏽢gBL α, β, λ| x( 􏼁 � −
1
c
log E e

− cg(α,β,λ)
| x􏼐 􏼑􏽨 􏽩, c≠ 0, (32)

where
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E e
− cg(α,β,λ)

| x􏼐 􏼑 �
􏽒
∞
0 􏽒
∞
0 􏽒
∞
0 e

− cg(α,β,λ)π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁dαdβdλ

􏽒
∞
0 􏽒
∞
0 􏽒
∞
0 π1(α)π2(β)π3(λ)L α, β, λ| x( 􏼁dαdβdλ

, (33)

where the calculation of the multiple integrals in equations
(30) and (33) cannot be analytically solved.-us, theMCMC
technique is used to generate samples from the joint pos-
terior density function in equation (27). In order to be able
to implement the MCMC technique, we consider the Gibbs
within the Metropolis-Hasting sampler procedure. -eM-H

and Gibbs sampling are two useful MCMC methods that
have been widely used in statistics. -ese methods recently
have a high degree of discussions. (for details, see Ahmed
[33], Panahi and Asadi [34], and Abushal [35]).

From equation (27), the joint posterior distribution can
be written as follows:

π∗ α, β, λ| x( 􏼁∝
αm+a1− 1βm+a2− 1λm+a3− 1

e
− b1α− b2β− b3λ􏽑

m
i�1x

− 2
i: m: n􏽑

m
i�1 1 + β/xi: m: n( 􏼁( 􏼁

− (α+1)

􏽑
m
i�1 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁(log(1 + λ))

m

× 􏽙
m

i�1

log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

􏼂 􏼃

log[1 + λ]
􏼠 􏼡

Ri

.

(34)

-e posterior conditionals for α, β, and λ are

π∗1 α|β, λ, x( 􏼁∝ αm+a1− 1
e

− b1α 􏽑
m

i�1
x

− 2
i: m: n

􏽑
m
i�1 1 + β/xi: m: n( 􏼁( 􏼁

− (α+1)

􏽑
m
i�1 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁 × 􏽑

m
i�1

log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

􏼂 􏼃

log[1 + λ]
􏼠 􏼡

Ri

,
(35)

π∗2 β|α, λ, x( 􏼁∝ βm+a2− 1
e

− b2β 􏽑
m

i�1
x

− 2
i: m: n

􏽑
m
i�1 1 + β/xi: m: n( 􏼁( 􏼁

− (α+1)

􏽑
m
i�1 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁 × 􏽑

m
i�1

log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁
− α

􏼂 􏼃

log[1 + λ]
􏼠 􏼡

Ri

,
(36)

π∗3 λ|α, β, x( 􏼁∝ λm+a3− 1
e

− b3λ 􏽑
m

i�1
x

− 2
i: m: n

􏽑
m
i�1 1 + β/xi: m: n( 􏼁( 􏼁

− (α+1)

􏽑
m
i�1 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
( 􏼁(log(1 + λ))

m
× 􏽙

m

i�1
log 1 + λ − λ 1 + β/xi: m: n( 􏼁( 􏼁

− α
􏼂 􏼃

log[1 + λ]
􏼠 􏼡

Ri

.

(37)

But, the conditional posteriors of α, β, and λ in equations
(35)–(37) do not present standard forms, so Gibbs sampling
is not a straightforward option. -erefore, the use of the
Metropolis-Hasting sampler is required for the imple-
mentation of MCMC technique.Within Gibbs sampling, the
Metropolis-Hasting algorithm is as follows:

(1) Start with an initial guess (α(0), β(0), λ(0)).
(2) Set j � 1.
(3) Using the followingM-H algorithm, generate α(j), β(j),

and λ(j) from π∗1(α(j− 1)|β(j− 1), λ(j− 1), x), π∗2
(β(j− 1)|α(j), λ(j− 1), x) and π∗3(λ(j− 1)|α(j), β(j), x) with
the normal proposal distributions

N α(j− 1)
, var(α)􏼐 􏼑,

N β(j− 1)
, var(β)􏼐 􏼑,

N λ(j− 1)
, var(λ)􏼐 􏼑,

(38)

where var(α), var(β), and var(λ) can be obtained
from the main diagonal in inverse Fisher informa-
tion matrix in equation (12).

(4) Generate a proposal α∗ from N(α(j− 1), var(α)), β∗
from N(β(j− 1), var(α)), and λ∗ from
N(λ(j− 1), var(λ)).

(i) Evaluate the acceptance probabilities
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ηα � min 1,
π∗1 α∗|β(j− 1)

, λ(j− 1)
, x􏼐 􏼑

π∗1 α(j− 1)
|β(j− 1)

, λ(j− 1)
, x􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

ηβ � min 1,
π∗2 β∗|α(j)

, λ(j− 1)
, x􏼐 􏼑

π∗2 β(j− 1)
|α(j)

, λ(j− 1)
, x􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

ηλ � min 1,
π∗3 λ∗|α(j)

, β(j)
, x􏼐 􏼑

π∗3 λ(j− 1)
|α(j)

, β(j)
, x􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (39)

(ii) Generate a u1, u2, and u3 from a uniform (0, 1)

distribution.
(iii) If u1 < ηα, accept the proposal and set α(j) � α∗,

else set α(j) � α(j− 1).
(iv) If u2 < ηβ, accept the proposal and set β(j) � β∗,

else set β(j) � β(j− 1).
(v) If u3 < ηλ, accept the proposal and set λ(j) � λ∗,

else set λ(j) � λ(j− 1).

(5) Compute the reliability function and hazard function
as

S
(j)

(t) �
log 1 + λ(j)

− λ(j) 1 + β(j)/t􏼐 􏼑􏼐 􏼑
α(j)

􏼔 􏼕

log 1 + λ(j)
􏼐 􏼑

, t≥ 0,

h
(j)

(t) �
α(j)β(j)λ(j)/t2􏼐 􏼑 1 + β(j)/t􏼐 􏼑􏼐 􏼑

− α(j)+1( )

1 + λ(j)
− λ(j) 1 + β(j)/t􏼐 􏼑􏼐 􏼑

− α(j)

􏼢 􏼣log 1 + λ(j)
− λ(j) 1 + β(j)/t􏼐 􏼑􏼐 􏼑

− α(j)

􏼢 􏼣

, t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

(6) Set j � j + 1.
(7) Repeat steps (3)–(6) N times and obtain

α(i), β(i), λ(i), S(i)(t) and h(i)(t), i � 1, 2, . . . , N.
(8) To compute the CRs of α, β, λ, S(t) and h(t)ψ(i)

k , k �

1, 2, 3, 4, 5, (ψ1,ψ2,ψ3,ψ4,ψ5) � (α, β, λ, S(t), h(t))

as ψ(1)
k <ψ

(2)
k · · · <ψ(N)

k , then the 100(1 − c)% CRIs
of ψk is

ψk(Nc/2),ψk(N(1− c/2))􏼐 􏼑. (41)

-e first M simulated variants are discarded in order to
ensure convergence, and the affection of initial value se-
lection is removed. -en, the selected samples are
ψ(i)

k , j � M + 1, . . . , N, for sufficiently large N.
Based on SEL function, the approximate Bayes estimates

of ψk are given by

􏽢ψk �
1

N − M
􏽘

N

j�M+1
ψ(j)

. (42)

-e approximate Bayes estimates for ψk, under LINEX loss
function, from equation (33), are

􏽢ψk �
− 1
c
log

1
N − M

􏽘

N

j�M+1
e

− cφ(j)⎡⎢⎢⎣ ⎤⎥⎥⎦, k � 1, 2, 3, 4, 5. (43)

6. Applications

In this section, the proposed estimation methods are applied
to the failure data for a group of 30 patients with bladder
cancer. Bladder cancer is where a growth of abnormal tissue,

known as a tumor, develops in the bladder lining.-e tumor
may migrate into the bladder muscle in some cases (see Lee
and Wang [36]). -e Kolmogorov-Smirnov (K-S) distance
between the empirical distribution of failure data and the
CDF of the FRL-IL distribution is 0.111778 with P-value that
equals 0.0755062. Hence, the FRL-IL distribution fits well to
the given data. A progressive type-II censored sample of
effective size m � 15 was randomly selected from 30 failure
observations with a progressive censored scheme
R � (8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

-e MLEs of parameters, reliability, and hazard
functions based on progressive type-II data presented in
Table 1 are obtained to be 􏽢α, 􏽢β, 􏽢λ, 􏽢S(t) and 􏽢h(t) at t � 0.4
and are displayed in Table 2. Using the algorithms de-
scribed in Section 4 of the bootstrap methods, the mean of
1000 Boot-p (Bp) and Boot-t (Bt) samples of the lifetime
parameters is also displayed in Table 2. -e Bayes esti-
mates relative to both SEL and LINEX functions are
computed, for different values of the shape parameter c of
LINEX loss function for the parameters α, β, and λ and the
reliability and hazard functions at t � 0.4, and are also
displayed in Table 2.

-e 95% ACIs and CRIs for the parameters α, β, and λ
are computed. Moreover, the delta method is used to obtain
the 95% ACIs and CRIs for the reliability and hazard
functions, and the results are displayed in Table 3. Also, the
95% bootstrap (Boot-p and Boot-t) confidence intervals
(CIs) are displayed in Table 3.

It is known that the LINEX loss function becomes
symmetric for c tending to zero. From Table 3, the results of
SEL and LINEX loss functions, at c � 0.0001, are the same,
indicating that the recommended approaches are accurate.
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7. Simulation Study

In order to compare the estimators of parameters and
some lifetime parameters’ reliability function and hazard
function of the FRL-IL distribution, a simulation study
was performed utilizing 1,000 progressive type-II cen-
sored samples for each simulation. To generate progres-
sive type-II censored samples from the FRL-IL
distribution, with initial values α∘ � 1, β∘ � 0.5 and
λ∘ � 0.6, the comparison of the different approaches of the
estimators of the results α, β, λ, S(t) and h(t), at t � 0.4, has
been considered in their mean square error (MSE), which
is computed for k � 1, 2, 3, 4, 5(ψ1 � α,ψ2 � β,ψ3 � λ,ψ4 �

S(0.4),ψ5 � h(0.4)) and MSE(ψk) � (1/M) 􏽐
M
i�1

(􏽢ψ(i)
k − ψk)2, where M � 100 is the number of simulated

samples. Another criterion is used to compare the 95% CIs
obtained by using asymptotic distributions of the MLEs
and CRIs. -e comparison between them is made in terms
of the average confidence interval lengths (ACLs) and
coverage probability (CP). A confidence interval’s CP is
the percentage of time the interval contains the starting
value of interest. -e following progressive schemes are
studied in this study:

Scheme I: R1 � n − m, Ri � 0 for i≠ 1.
Scheme II: R(m/2) � R(m/2)+1 � ((n − m)/2), Ri � 0 for
i≠ (m/2) and i≠ (m/2) + 1.
Scheme III: Rm � n − m, Ri � 0 for i≠m.

Table 1: Progressive type-II failure data.

0.08 2.09 3.48 4.87 6.94 8.66
13.11 23.63 0.20 2.23 3.52 4.98
6.97 2.26 3.57 5.06 7.09 9.22
13.80 25.74 0.50 2.46 6.64 5.09
7.26 9.47 2.54 3.70 5.17 7.28

Table 2: Point estimates for the parameters, reliability, and hazard functions.

Parameters MLE Boot-p Boot-t SEL
Bayesian
LINEX

c � − 2 c � 0.0001 c � 2
α 1.02846 1.3246 1.20124 1.04334 1.04429 1.04239 1.04334
β 1.87912 2.5121 2.0113 2.26516 2.29264 2.23607 2.26516
λ 2.05285 2.2451 2.0121 2.03647 2.03791 2.03496 2.03647
S 0.869866 0.9781 0.7584 0.891858 0.891913 0.891804 0.891858
h 0.261585 0.34252 0.20114 0.219842 0.220028 0.219659 0.219842

Table 3: 95% CIs of α, β, λ, S(t) and h(t).

Parameter MLE Boot-p Boot-t MCMC
α (− 0.104132, 2.16105) (1.24132, 2.56203) (1.1132, 1.86203) (0.987764, 1.10752)

β (− 1.07228, 4.83052) (2.43012, 2.85061) (1.90212, 2.75121) (1.95853, 2.56552)

λ (0.800404, 3.30531) (2.1234, 2.9451) (1.9871, 2.3894) (1.9339, 2.09541)

S(t) (0.727598, 1.01213) (0.7542, 0.9978) (0.7234, 0.8754) (0.875696, 0.90264)

h(t) (0.0631523, 0.460017) (0.2543, 0.4234) (0.1653, 0.3572) (0.200505, 0.250584)

Table 4: MSE of ML and Bayesian estimates for the parameter αwith α∘ � 1.

(n, m) CS MLE SEL
LINEX

c � − 2 c � 2

(30, 20)

I 0.876 (0.0453) 0.866 (0.0437) 0.865 (0.0431) 0.866 (0.0437)

II 0.9292 (0.0453) 0.9243 (0.0452) 0.9254 (0.0447) 0.9131 (0.0449)

III 0.8468 (0.0523) 0.8399 (0.0522) 0.8355 (0.0523) 0.8329 (0.0517)

(40, 20)

I 0.8692 (0.041) 0.8681 (0.041) 0.8681 (0.041) 0.8681 (0.041)

II 0.8887 (0.034) 0.8873 (0.0332) 0.8573 (0.0324) 0.8858 (0.0327)

III 0.8858 (0.0414) 0.8853 (0.0413) 0.8845 (0.0412) 0.8849 (0.0413)

(40, 30)

I 0.8877 (0.0481) 0.8852 (0.0481) 0.8858 (0.048) 0.8845 (0.048)

II 0.9379 (0.0485) 0.9378 (0.0471) 0.9378 (0.0473) 0.9377 (0.0472)

III 0.9143 (0.0483) 0.9129 (0.0482) 0.9129 (0.0481) 0.9128 (0.048)
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Table 7: MSE of ML and Bayesian estimates for the S(t)with t � 0.4.

(n, m) CS MLE SEL
LINEX

c � − 2 c � 2

(30, 20)

I 0.6066 (0.0084) 0.6058 (0.0082) 0.606 (0.0081) 0.606 (0.0082)

II 0.6119 (0.0048) 0.6118 (0.0047) 0.6118 (0.0047) 0.6117 (0.0047)

III 0.6139 (0.0068) 0.6135 (0.0064) 0.6134 (0.0064) 0.6136 (0.0064)

(40, 20)

I 0.4323 (0.0357) 0.4322 (0.0357) 0.4322 (0.0357) 0.4322 (0.0357)

II 0.4607 (0.0279) 0.4606 (0.0271) 0.4606 (0.0271) 0.4605 (0.0271)

III 0.4838 (0.0229) 0.4862 (0.0228) 0.4869 (0.0228) 0.4869 (0.0228)

(40, 30)

I 0.6143 (0.0048) 0.6142 (0.0043) 0.6142 (0.0043) 0.6142 (0.0043)

II 0.6063 (0.0039) 0.6062 (0.0038) 0.6062 (0.0038) 0.6062 (0.0038)

III 0.6162 (0.0046) 0.6161 (0.0045) 0.6161 (0.0049) 0.6161 (0.0043)

Table 5: MSE of ML and Bayesian estimates for the parameter βwith β0 � 0.5.

(n, m) CS MLE SEL
LINEX

c � − 2 c � 2

(30, 20)

I 0.7553 (0.1976) 0.752 (0.1974) 0.752 (0.1975) 0.751 (0.1775)

II 0.6947 (0.123) 0.6942 (0.1228) 0.6944 (0.1229) 0.6943 (0.1229)

III 0.7641 (0.1724) 0.7639 (0.1723) 0.7638 (0.1723) 0.7639 (0.1724)

(40, 20)

I 0.3344 (0.0374) 0.3341 (0.6736) 0.3343 (0.6736) 0.3343 (0.6737)

II 0.3775 (0.0331) 0.3774 (0.0329) 0.3773 (0.033) 0.3772 (0.0329)

III 0.4143 (0.0308) 0.4142 (0.0307) 0.4141 (0.0306) 0.4142 (0.0307)

(40, 30)

I 0.6381 (0.1582) 0.6372 (0.1581) 0.6372 (0.1581) 0.6372 (0.1581)

II 0.6643 (0.1395) 0.6632 (0.1308) 0.6631 (0.1307) 0.6632 (0.1305)

III 0.7449 (0.1367) 0.7431 (0.1356) 0.7434 (0.1357) 0.7434 (0.1358)

Table 6: MSE of ML and Bayesian estimates for the parameter λwith λ0 � 0.6.

(n, m) CS MLE SEL
LINEX

c � − 2 c � 2

(30, 20)

I 0.4455 (0.1653) 0.4453 (0.1651) 0.4452 (0.1652) 0.4453 (0.1652)
II 0.43 (0.1707) 0.4278 (0.1698) 0.4285 (0.1701) 0.4285 (0.1695)

III 0.5491 (0.1802) 0.5435 (0.1773) 0.5462 (0.1786) 0.5462 (0.1756)

(40, 20)

I 0.4844 (0.1753) 0.4843 (0.1749) 0.4843 (0.1749) 0.4843 (0.1749)

II 0.5376 (0.1822) 0.5373 (0.1815) 0.5374 (0.1812) 0.5374 (0.1811)

III 0.4973 (0.1789) 0.4944 (0.1783) 0.4941 (0.1788) 0.4941 (0.1766)

(40, 30)

I 0.4704 (0.1468) 0.4695 (0.1458) 0.4694 (0.1459) 0.4695 (0.1459)

II 0.5183 (0.1871) 0.5111 (0.1861) 0.5117 (0.1862) 0.5117 (0.1863)

III 0.4772 (0.2073) 0.4765 (0.2042) 0.4766 (0.2042) 0.4766 (0.2041)

Table 8: MSE of ML and Bayesian estimates for the h(t)with t � 0.4.

(n, m) CS MLE SEL
LINEX

c � − 2 c � 2

(30, 20)

I 0.922 (0.0514) 0.9212 (0.0522) 0.921 (0.0521) 0.921 (0.0522)

II 0.9326 (0.0364) 0.9321 (0.0362) 0.9322 (0.0363) 0.9322 (0.0362)

III 0.9001 (0.0412) 0.8997 (0.0411) 0.8998 (0.041) 0.8998 (0.0411)

(40, 20)

I 1.3626 (0.1806) 1.3625 (0.1805) 1.3625 (0.1805) 1.3625 (0.1805)

II 1.2988 (0.1434) 1.2987 (0.1432) 1.2986 (0.1431) 1.2987 (0.1432)

III 1.2398 (0.1098) 1.2396 (0.1091) 1.2396 (0.1094) 1.2392 (0.1094)

(40, 30)

I 0.9093 (0.0334) 0.9093 (0.0332) 0.9093 (0.0331) 0.9093 (0.0332)

II 0.9476 (0.0309) 0.9473 (0.0307) 0.9473 (0.0307) 0.9473 (0.0307)

III 0.9129 (0.0289) 0.9129 (0.0289) 0.9126 (0.0284) 0.9126 (0.0287)
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-e results of estimate parameters and their MSE are
shown in Tables 4–8, and the results of ACL and CP of 95%
CIs are shown in Tables 9 and 10.

From the results, the following conclusions can be
drawn:

(1) It is observed that from Tables 4–8, as sample size
increases, the MSEs decrease and Bayes estimates
have the smallest MSEs for α, β, λ, S(t) and h(t).
Hence, Bayes estimates perform better than the MLE
methods in all cases considered.

(2) Bayes estimates under LINEX with c � 2 provide
better estimates in the sense of having smaller MSEs.

(3) For fixed values of the sample n and effective sizes m,
scheme I performs better than schemes II and III in
the sense of having smaller MSEs.

(4) From Tables 9 and 10 for various sample sizes,
observed failures, and schemes, it can be seen that the
CRIs provide more accurate results than the ACIs.

8. Conclusions

-e aim of this study is to develop various methods for
estimating and deriving confidence intervals for parameters
of the FRL-IL distribution under progressive type-II sam-
ples. -e different estimation methods proposed in this
study were used to calculate the time period (in months) to
recovery for some patients with bladder cancer. Using as-
ymptotic distributions and parametric bootstrap methods,
the MLEs of the unknown parameters are obtained and

different confidence intervals proposed. On the other hand,
the estimation results were used to calculate the failure risk
of these components. A simulation study was conducted to
evaluate the quality of the proposed estimations, and this
study showed that Bayesian methods have good perfor-
mance in all different cases. In addition, scheme I performs
better than schemes II and III in the sense of having smaller
MSEs. Since the distribution of FRL-IL is well suited to the
applied data, this study can effectively contribute to the study
of failure analysis of patients with bladder cancer.

In future works, we are going to do an estimation of the
parameters of the flexible reduced logarithmic-inverse
Lomax distribution under adaptive progressive type-II
censored data, and also, we will make the comparison to all
types of censored algorithms that we applied.
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