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The logarithmic coefficients y,, of a normalized analytic functions f are defined by (log f (z)/z) =2,

oo, 2" For certain close-

to-convex functions f (z) = z + a,z> + - -+, Cho et al. (on the third logarithmic coefficient in some subclasses of close-to-convex
functions) has obtained the upper bound of the third logarithmic coefficient y; when the second coeflicient a, is real. In the
present paper, the upper bound of the third logarithmic coefficient y; is computed with no restriction on the second coefficient a,.

1. Introduction and Preliminaries

LetD := {z € C: |z| < 1} be the open unit disk in the complex
plane C and let &/ be the set of all analytic normalized
functions f: D — C of the form

f@)=z+)az", zeD. 1)
n=2

Let & be its subclass consisting of functions that are
univalent in D. Given a function f € &, the coefficients y,,
are defined by

o0

log@ =2 Z v,2",  z € D\{0}, log 1 :=0. (2)
n=1

For example (see Figure 1), for the Koebe function k
given by k(z) = (z/(1 - 2)%), the logarithmic coeflicients
Y, = (1/n) are as follows

k(z) <1,
log7=ZZZz . (3)
n=1

The Milin conjecture ([1] and ([2] p. 155)) gives an
inequality satisfied by the logarithmic coefhicients. For
f € &, the logarithmic coefficients satisfy

n m ) 1
22 (Klvef - ) <o. (4)

The Milin conjecture was confirmed (e.g., ([2] p. 37), by
Branges [3] and implies the famous Bieberbach conjecture
that |a,| <n for f € &. Sharp estimates for the class & are
known only for the first two coefficients:

|Y1|51’

11 (5)
|y2|§§+;:0.635....

Note that Obradovi¢ and Tuneski [4] obtained an upper
bound of |y,]| for the class §. The problem of estimating the
modulus of the first three logarithmic coefficients is sig-
nificantly studied for the subclasses of &, and in some cases,
sharp bounds are obtained. For instance, sharp estimates for
the class of starlike functions & are given by the inequality
[yl < (1/n) holds for n € N ([5], p. 42).

Furthermore, for f € &, the class of strongly starlike
function of the order S, (0<f<1), it holds that
[y, < (B/n) (n € N) [6]. The bounds of y, for functions in
subclasses of & have been widely studied in recent years.
Sharp estimates for different subclasses are given in [6, 7]
and ([5], p. 116) and [8], respectively, while nonsharp
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F1GURE 1: Plot of log( f (2)/2), f(z) = (z/(1 - 2)%).

estimates for the class of Bazilevic and close-to-convex are
given in [9-11], respectively.

Let &,,%,, %5 be the subclasses of & satisfying, re-
spectively, the next conditions:

R{(1-2)f (2)}>0,

z €D,
R{1-2")f' (2} >0, zeD, (6)
ZR{(I —z+zz)f'(z)}>0, z € D.

Note that each class defined above is the subclass of the
well-known class of close-to-convex functions; conse-
quently, families &, i=1,2,3, contain only univalent
functions ([2], Vol. II, p. 2). The sharp bounds of y,, y, and
partial results for y; of the subclasses #,, F,, #5 of § were
determined by Pranav Kumar and Vasudevarao [12].

Moreover, Cho et al. [13] computed the sharp upper
bounds for the third logarithmic coefficient y; of f when a,
is a real number. Differentiating (1) and comparing the
coefficients with (2), we get y, = (1/2)a,, y, = (1/2)
(a; — (1/2)a?), and

1 1,
ys = > <a4 —a,a; + 5612>. (7)

The main aim of this paper is to determine the upper
bound of the third logarithmic coefficient in the general case
of a,. The following lemma is needed to prove our main
results.

Lemma 1 (see [14]). Let w(z)=c,z+c,z2°+--- be a
Schwarz function. Then

CAESE

|Czl <1 —|cl|2,

(8)
o) <1 = ey e
<l =|c| —-——.
3 L +|cy
2. Main Results
Our main result is as follows:
Theorem 1. Let f € F,. Then
15.75
lys| <—g - 0328125, 9)

Proof. Since f € #, and for analytic function w in D with
w(0) = 0 satisfying the formula

(1-2)f (2) =%: 142w(z) + 202 (2) +---. (10)
We obtain
w(z) = cz+Cy2" + . (11)

Then, by using (10) along with (11) leads to
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1
=5 (1+2¢),
1
as = 5(1 +2¢, +2¢0 + 262), (12)

1 2 3
a, = Z(l +2¢; +2¢; +2¢;3 + 2¢] +4cic, + 2c1).
From (7) and (12), we obtain
1 3
Ys = §(3 +2¢; +4cy + 12¢5 + 8cyc, + 4c1). (13)

In view of Lemma 1, we attain

48|y3| <3+ 2|c1| + 4|c2| + 12|c3| + 8|c1||c2| + 4|c1|3

2
S3+2|c1|+4|c2|+12<1—|c1|2— iz ) (14)

1+|cy|

+ 8|CII|CZ| + 4|cll3 =: f1(|c1|, lcz|),

where

2
fl(x,y)=3+2x+4y+12(l—x2— E4 )

1+x
15
+8xy+4x3, (15)
(x,9) € E: 0<x<1,0<y<1-x"
The system
2
M:z—zz}xﬂz(L) +8y+12x7 =0,
0x 1+x
5 (16)
O oy 20 gy,
oy x
has a unique solution (x;, y;) = ((1/4), (5/16)) € E\OE with
f1(x1, y1) = 15.75. (17)

The maximum value of f, is obtained when (x, y) is a
point on the boundary of E. In view of this, we have

f1(x,0) =15+ 2x — 12x” + 4x°

10+/30
9

9+ =15.08580...,

(18)
f100,y) =3 +4y+12(1-y)

, 46
=15+4y-12)"< = =1533 .,

and

fi(e1-x%) =7+ 22x - 4x” - 16x° <15.304035. ..
(19)

Using (14) and (17)-(19), we conclude the following
outcome:

48|y, <1575, ie., |ys|<0.328125. (20)

This completes the proof. O

Remark 1. If f € &, where f11(0) is a real number, then we
get the result in [13]

1
|y3|sﬁ(ll+15\/%) = 0.323466. . .. (21)

Theorem 2. Let f € F,. Then
|ys| <0.258765 . ... (22)

Proof. Since f € F,, then there exists an analytic function w
in D with w(0) = 0 and

(1 —zz)f' (2) = 1+w(2)

j— 2 e
1_w(z)—1+2w(z)+2w (2)+---.

(23)

The coefficients can be determined by comparing the
information in (11) and (23)

a, =cp,
a —l(1+26 +2c2)
373 2 1) (24)

1
a, = 3 (c1 +c3+2c6, + c?)
From (7) and (24), we have the following conclusion:
1 3
V=15 (c1 +3c5+2¢ic, + C1)~ (25)

Moreover, according to Lemma 1, we get the following
inequality:

12]y;| < e)] + 3Jes| + 2]ey ]| +|C1|3

2
SIcll+3<1—lc1|2— iz > (26)

1+|c1|

2ol +erf = fa(lea) Jeal),

where
2

fz(x,y)=3(1—x2—1j_:—x)+2xy+x+x3,

(27)

(x,y) € E:0<x<1,0<y<l-x"



From the system,

9f,(x,y)
ox

J

:6x+3<—
1+x

2
) +2y+1+3x* =0,

(28)

of,(x,y) _ 6y

+2x =0,
oy T+x

only one solution (x,,y,) lies in the interior of E,
where

x, = 4_6\/7 =0.22570. . .,
(29)
Y, = % =0.092217. ..,
and
£, (%5 ;) = 3.10518.. .. (30)

On the boundary of E, we have the next property

4
f,(x,0) =3(1—x2)+x+x3§2+§\/g=3.08866,
for0<x<1,

f2(0,)=3(1-y*)<3, for0<y<l,

fa(o1-x%) = 6x - 4x> <2V2 = 2.82842 .. ..
(31)
Consequently, (26), (30), and (31) yield
12]y;|<3.10518..., ie., |y;|<0.258765.... (32D)

Remark 2. If f € &,, where f1(0) is a real number, then
(13]

1
|y3|sﬁ (95 +23V/46) = 0.258223 ... .. (33)
Theorem 3. Let f € F. Then
17.75
lys| < 5 - 036979 (34)

Proof. Let f € #; and an analytic function w in D with
w(0) = 0 such that

1+w(z)

— 2
m—l*‘ZU)(Z)*‘ZLU (Z)+ .

(1 —z+zz)f'(z) =
(35)

Substituting (11) into (35), we have
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1
a =5 (1+2¢),

as :%(c1 +c, +cf), (36)

3
1
ay = Z(2c2 +2¢; + 2cf + 2cf +4cic, — 1).

By using (7) and (36), we obtain

1
Vs = (=5 = 2¢, +4c, + 12¢5 + 8c,¢, + 4c)). (37)

48
According to Lemma 1, we conclude that

48|y3| <5+ 2|c1| + 4|c2| + 12|c3| + 8|c1||c2| + 4|c1|3

2
<5+2/c| +4c,| + 12(1 e - 1|i2|lc |> (38)
1

+ 8|c1||cz| + 4|cll3 =: f3(|c1|, lcz|),

where

2

f3(x,y)=5+2x+4y+12(1—x2—#>+8xy+4x3,
X

(x,y) € E: OSXSI,OS)/SI—XZ.

(39)
The system
2

Mzz—zztx“z(L) +8y+12x> =0,

Ox 1+x
) (40)
f3(x,y):4_ 24y +8x =0,

ay 1+x

admits a unique solution (xs, y5) = ((1/4), (5/16)) in the
interior of E such that

f1(x3,3) =17.75.

On the boundary of E, the following cases are observed:

(41)

f3(x,0) =17 + 2x — 12x” + 4x°

10+/30
<11+ ;/_=17.08580...,
(42)
f5(0,y) =3+4y+12(1- )
, 46
=17+4y-12)°s—=17.33..,
and
fa(61—x%) = 9+ 22x — 4x” - 20x° <16.56455 ... (43)
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Equations (38), (41)-(43) show that

17.75
48

=0.36979.... (44)

O

lys| <

Remark 3. Let f € &5, where f1(0) is a real number. Then
(13]

1

— V262) =0. 45

|y3|S7776 (743 + 131V262) = 0.368238 (45)
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