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�e logarithmic coecients cn of a normalized analytic functions f are de
ned by (log f(z)/z) � 2∑∞n�1 cnzn. For certain close-
to-convex functions f(z) � z + a2z2 + · · ·, Cho et al. (on the third logarithmic coecient in some subclasses of close-to-convex
functions) has obtained the upper bound of the third logarithmic coecient c3 when the second coecient a2 is real. In the
present paper, the upper bound of the third logarithmic coecient c3 is computed with no restriction on the second coecient a2.

1. Introduction and Preliminaries

LetD :� z ∈ C: |z|< 1{ } be the open unit disk in the complex
plane C and let A be the set of all analytic normalized
functions f: D⟶ C of the form

f(z) � z +∑
∞

n�2
anz

n, z ∈ D. (1)

Let S be its subclass consisting of functions that are
univalent in D. Given a function f ∈ S, the coecients cn
are de
ned by

log
f(z)
z

� 2∑
∞

n�1
cnz

n, z ∈ D\ 0{ }, log 1 :� 0. (2)

For example (see Figure 1), for the Koebe function k
given by k(z) � (z/(1 − z)2), the logarithmic coecients
cn � (1/n) are as follows

log
k(z)
z

� 2∑
∞

n�1

1
n
zn. (3)

�e Milin conjecture ([1] and ([2] p. 155)) gives an
inequality satis
ed by the logarithmic coecients. For
f ∈ S, the logarithmic coecients satisfy

∑
n

m�1
∑
m

k�1
k ck
∣∣∣∣
∣∣∣∣2 −

1
k

( )≤ 0. (4)

�e Milin conjecture was con
rmed (e.g., ([2] p. 37), by
Branges [3] and implies the famous Bieberbach conjecture
that |an|≤ n for f ∈ S. Sharp estimates for the class S are
known only for the 
rst two coecients:

c1
∣∣∣∣
∣∣∣∣≤ 1,

c2
∣∣∣∣
∣∣∣∣≤

1
2
+
1
e
� 0.635 . . . .

(5)

Note that Obradović and Tuneski [4] obtained an upper
bound of |c3| for the class S. �e problem of estimating the
modulus of the 
rst three logarithmic coecients is sig-
ni
cantly studied for the subclasses of S, and in some cases,
sharp bounds are obtained. For instance, sharp estimates for
the class of starlike functions S∗ are given by the inequality
|cn|≤ (1/n) holds for n ∈ N ([5], p. 42).

Furthermore, for f ∈ SS∗, the class of strongly starlike
function of the order β, (0≤ β≤ 1), it holds that
|cn|≤ (β/n)(n ∈ N) [6]. �e bounds of cn for functions in
subclasses of S have been widely studied in recent years.
Sharp estimates for di�erent subclasses are given in [6, 7]
and ([5], p. 116) and [8], respectively, while nonsharp
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estimates for the class of Bazilevic and close-to-convex are
given in [9–11], respectively.

Let F1,F2,F3 be the subclasses of S satisfying, re-
spectively, the next conditions:

R (1 − z)f′(z){ }> 0, z ∈ D,

R 1 − z2( )f′(z){ }> 0, z ∈ D,

R 1 − z + z2( )f′(z){ }> 0, z ∈ D.

(6)

Note that each class de
ned above is the subclass of the
well-known class of close-to-convex functions; conse-
quently, families Fi, i � 1, 2, 3, contain only univalent
functions ([2], Vol. II, p. 2). �e sharp bounds of c1, c2 and
partial results for c3 of the subclasses F1,F2,F3 of S were
determined by Pranav Kumar and Vasudevarao [12].

Moreover, Cho et al. [13] computed the sharp upper
bounds for the third logarithmic coecient c3 of f when a2
is a real number. Di�erentiating (1) and comparing the
coecients with (2), we get c1 � (1/2)a1, c2 � (1/2)
(a3 − (1/2)a2), and

c3 �
1
2
a4 − a2a3 +

1
3
a32( ). (7)

�e main aim of this paper is to determine the upper
bound of the third logarithmic coecient in the general case
of a2. �e following lemma is needed to prove our main
results.

Lemma 1 (see [14]). Let w(z) � c1z + c2z2 + · · · be a
Schwarz function. �en

c1
∣∣∣∣
∣∣∣∣≤ 1,

c2
∣∣∣∣
∣∣∣∣≤ 1 − c1

∣∣∣∣
∣∣∣∣2,

c3
∣∣∣∣
∣∣∣∣≤ 1 − c1

∣∣∣∣
∣∣∣∣2 −

c2
∣∣∣∣
∣∣∣∣2

1 + c1
∣∣∣∣
∣∣∣∣
.

(8)

2. Main Results

Our main result is as follows:

Theorem 1. Let f ∈ F1. �en

c3
∣∣∣∣
∣∣∣∣≤

15.75
48

� 0.328125. (9)

Proof. Since f ∈F1, and for analytic function w in D with
w(0) � 0 satisfying the formula

(1 − z)f′(z) �
1 + w(z)
1 − w(z)

� 1 + 2w(z) + 2w2(z) + · · · . (10)

We obtain

w(z) � c1z + c2z
2 + · · · . (11)

�en, by using (10) along with (11) leads to
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Figure 1: Plot of log(f(z)/z), f(z) � (z/(1 − z)2).
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a2 �
1
2

1 + 2c1( ,

a3 �
1
3

1 + 2c1 + 2c
2
1 + 2c2 ,

a4 �
1
4

1 + 2c1 + 2c2 + 2c3 + 2c
2
1 + 4c1c2 + 2c

3
1 .

(12)

From (7) and (12), we obtain

c3 �
1
48

3 + 2c1 + 4c2 + 12c3 + 8c1c2 + 4c
3
1 . (13)

In view of Lemma 1, we attain

48 c3


≤ 3 + 2 c1


 + 4 c2


 + 12 c3


 + 8 c1


 c2


 + 4 c1



3

≤ 3 + 2 c1


 + 4 c2


 + 12 1 − c1



2

−
c2



2

1 + c1



⎛⎝ ⎞⎠

+ 8 c1


 c2


 + 4 c1



3

�: f1 c1


, c2


 ,

(14)

where

f1(x, y) � 3 + 2x + 4y + 12 1 − x
2

−
y
2

1 + x
 

+ 8xy + 4x
3
,

(x, y) ∈ E: 0≤x≤ 1, 0≤y≤ 1 − x
2
.

(15)

'e system

zf1(x, y)

zx
� 2 − 24x + 12

y

1 + x
 

2
+ 8y + 12x

2
� 0,

zf1(x, y)

zy
� 4 −

24y

1 + x
+ 8x � 0,

(16)

has a unique solution (x1, y1) � ((1/4), (5/16)) ∈ E\zE with

f1 x1, y1(  � 15.75. (17)

'e maximum value of f1 is obtained when (x, y) is a
point on the boundary of E. In view of this, we have

f1(x, 0) � 15 + 2x − 12x
2

+ 4x
3

≤ 9 +
10

��
30

√

9
� 15.08580 . . . ,

f1(0, y) � 3 + 4y + 12 1 − y
2

 

� 15 + 4y − 12y
2 ≤

46
3

� 15.33 . . . ,

(18)

and

f1 x, 1 − x
2

  � 7 + 22x − 4x
2

− 16x
3 ≤ 15.304035 . . . .

(19)

Using (14) and (17)–(19), we conclude the following
outcome:

48 c3


≤ 15.75, i.e., c3


≤ 0.328125. (20)

'is completes the proof. □

Remark 1. If f ∈F1, where f″(0) is a real number, then we
get the result in [13]

c3


≤
1
288

(11 + 15
��
30

√
) � 0.323466 . . . . (21)

Theorem 2. Let f ∈ F2. %en

c3


≤ 0.258765 . . . . (22)

Proof. Sincef ∈ F2, then there exists an analytic function w

in D with w(0) � 0 and

1 − z
2

 f′(z) �
1 + w(z)

1 − w(z)
� 1 + 2w(z) + 2w

2
(z) + · · · .

(23)

'e coefficients can be determined by comparing the
information in (11) and (23)

a2 � c1,

a3 �
1
3

1 + 2c2 + 2c
2
1 ,

a4 �
1
2

c1 + c3 + 2c1c2 + c
3
1 .

(24)

From (7) and (24), we have the following conclusion:

c3 �
1
12

c1 + 3c3 + 2c1c2 + c
3
1 . (25)

Moreover, according to Lemma 1, we get the following
inequality:

12 c3


≤ c1


 + 3 c3


 + 2 c1


 c2


 + c1



3

≤ c1


 + 3 1 − c1



2

−
c2



2

1 + c1



⎛⎝ ⎞⎠

+ 2 c1


 c2


 + c1



3

�: f2 c1


, c2


 ,

(26)

where

f2(x, y) � 3 1 − x
2

−
y
2

1 + x
  + 2xy + x + x

3
,

(x, y) ∈ E: 0≤ x≤ 1, 0≤y≤ 1 − x
2
.

(27)
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From the system,

zf2(x, y)

zx
� 6x + 3

y

1 + x
 

2
+ 2y + 1 + 3x

2
� 0,

zf2(x, y)

zy
� −

6y

1 + x
+ 2x � 0,

(28)

only one solution (x2, y2) lies in the interior of E,
where

x2 �
4 −

�
7

√

6
� 0.22570 . . . ,

y2 �
47 − 14

�
7

√

108
� 0.092217 . . . ,

(29)

and

f2 x2, y2(  � 3.10518 . . . . (30)

On the boundary of E, we have the next property

f2(x, 0) � 3 1 − x
2

  + x + x
3 ≤ 2 +

4
9

�
6

√
� 3.08866,

for 0≤x≤ 1,

f2(0, y) � 3 1 − y
2

 ≤ 3, for 0≤y≤ 1,

f2 x, 1 − x
2

  � 6x − 4x
3 ≤ 2

�
2

√
� 2.82842 . . . .

(31)

Consequently, (26), (30), and (31) yield

12 c3


≤ 3.10518 . . . , i.e., c3


≤ 0.258765 . . . . (32)
□

Remark 2. If f ∈ F2, where f″(0) is a real number, then
[13]

c3


≤
1
972

(95 + 23
��
46

√
) � 0.258223 . . . . (33)

Theorem 3. Let f ∈F3. %en

c3


≤
17.75
48

� 0.36979 . . . . (34)

Proof. Let f ∈F3 and an analytic function w in D with
w(0) � 0 such that

1 − z + z
2

 f′(z) �
1 + w(z)

1 − w(z)
� 1 + 2w(z) + 2w

2
(z) + · · · .

(35)

Substituting (11) into (35), we have

a2 �
1
2

1 + 2c1( ,

a3 �
2
3

c1 + c2 + c
2
1 ,

a4 �
1
4

2c2 + 2c3 + 2c
2
1 + 2c

3
1 + 4c1c2 − 1 .

(36)

By using (7) and (36), we obtain

c3 �
1
48

− 5 − 2c1 + 4c2 + 12c3 + 8c1c2 + 4c
3
1 . (37)

According to Lemma 1, we conclude that

48 c3


≤ 5 + 2 c1


 + 4 c2


 + 12 c3


 + 8 c1


 c2


 + 4 c1



3

≤ 5 + 2 c1


 + 4 c2


 + 12 1 − c1



2

−
c2



2

1 + c1



⎛⎝ ⎞⎠

+ 8 c1


 c2


 + 4 c1



3

�: f3 c1


, c2


 ,

(38)

where

f3(x, y) � 5 + 2x + 4y + 12 1 − x
2

−
y
2

1 + x
  + 8xy + 4x

3
,

(x, y) ∈ E: 0≤x≤ 1, 0≤y≤ 1 − x
2
.

(39)

'e system

zf3(x, y)

zx
� 2 − 24x + 12

y

1 + x
 

2
+ 8y + 12x

2
� 0,

zf3(x, y)

zy
� 4 −

24y

1 + x
+ 8x � 0,

(40)

admits a unique solution (x3, y3) � ((1/4), (5/16)) in the
interior of E such that

f1 x3, y3(  � 17.75. (41)

On the boundary of E, the following cases are observed:

f3(x, 0) � 17 + 2x − 12x
2

+ 4x
3

≤ 11 +
10

��
30

√

9
� 17.08580 . . . ,

f3(0, y) � 3 + 4y + 12 1 − y
2

 

� 17 + 4y − 12y
2 ≤

46
3

� 17.33 . . . ,

(42)

and

f3 x, 1 − x
2

  � 9 + 22x − 4x
2

− 20x
3 ≤ 16.56455 . . . . (43)
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Equations (38), (41)–(43) show that

c3


≤
17.75
48

� 0.36979 . . . . (44)
□

Remark 3. Let f ∈F3, where f″(0) is a real number. 'en
[13]

c3


≤
1

7776
(743 + 131

���
262

√
) � 0.368238 . . . . (45)
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cercle unité,” Arkiv för Matematik, Astronomi och Fysik,
vol. 27A, no. 1, p. 8, 1940.

[15] N. M. Alarifi, “'e third logarithmic coefficient for the
subclasses of close-to-convex functions,” 2020, https://arxiv.
org/abs/2008.01861.

Journal of Mathematics 5

https://arxiv.org/abs/2002.12865
https://arxiv.org/abs/2008.01861
https://arxiv.org/abs/2008.01861

