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�e logarithmic coe­cients cn of a normalized analytic functions f are de
ned by (log f(z)/z) � 2∑∞n�1 cnzn. For certain close-
to-convex functions f(z) � z + a2z2 + · · ·, Cho et al. (on the third logarithmic coe­cient in some subclasses of close-to-convex
functions) has obtained the upper bound of the third logarithmic coe­cient c3 when the second coe­cient a2 is real. In the
present paper, the upper bound of the third logarithmic coe­cient c3 is computed with no restriction on the second coe­cient a2.

1. Introduction and Preliminaries

LetD :� z ∈ C: |z|< 1{ } be the open unit disk in the complex
plane C and let A be the set of all analytic normalized
functions f: D⟶ C of the form

f(z) � z +∑
∞

n�2
anz

n, z ∈ D. (1)

Let S be its subclass consisting of functions that are
univalent in D. Given a function f ∈ S, the coe­cients cn
are de
ned by

log
f(z)
z

� 2∑
∞

n�1
cnz

n, z ∈ D\ 0{ }, log 1 :� 0. (2)

For example (see Figure 1), for the Koebe function k
given by k(z) � (z/(1 − z)2), the logarithmic coe­cients
cn � (1/n) are as follows

log
k(z)
z

� 2∑
∞

n�1

1
n
zn. (3)

�e Milin conjecture ([1] and ([2] p. 155)) gives an
inequality satis
ed by the logarithmic coe­cients. For
f ∈ S, the logarithmic coe­cients satisfy

∑
n

m�1
∑
m

k�1
k ck
∣∣∣∣
∣∣∣∣2 −

1
k

( )≤ 0. (4)

�e Milin conjecture was con
rmed (e.g., ([2] p. 37), by
Branges [3] and implies the famous Bieberbach conjecture
that |an|≤ n for f ∈ S. Sharp estimates for the class S are
known only for the 
rst two coe­cients:

c1
∣∣∣∣
∣∣∣∣≤ 1,

c2
∣∣∣∣
∣∣∣∣≤

1
2
+
1
e
� 0.635 . . . .

(5)

Note that Obradović and Tuneski [4] obtained an upper
bound of |c3| for the class S. �e problem of estimating the
modulus of the 
rst three logarithmic coe­cients is sig-
ni
cantly studied for the subclasses of S, and in some cases,
sharp bounds are obtained. For instance, sharp estimates for
the class of starlike functions S∗ are given by the inequality
|cn|≤ (1/n) holds for n ∈ N ([5], p. 42).

Furthermore, for f ∈ SS∗, the class of strongly starlike
function of the order β, (0≤ β≤ 1), it holds that
|cn|≤ (β/n)(n ∈ N) [6]. �e bounds of cn for functions in
subclasses of S have been widely studied in recent years.
Sharp estimates for di�erent subclasses are given in [6, 7]
and ([5], p. 116) and [8], respectively, while nonsharp
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estimates for the class of Bazilevic and close-to-convex are
given in [9–11], respectively.

Let F1,F2,F3 be the subclasses of S satisfying, re-
spectively, the next conditions:

R (1 − z)f′(z){ }> 0, z ∈ D,

R 1 − z2( )f′(z){ }> 0, z ∈ D,

R 1 − z + z2( )f′(z){ }> 0, z ∈ D.

(6)

Note that each class de
ned above is the subclass of the
well-known class of close-to-convex functions; conse-
quently, families Fi, i � 1, 2, 3, contain only univalent
functions ([2], Vol. II, p. 2). �e sharp bounds of c1, c2 and
partial results for c3 of the subclasses F1,F2,F3 of S were
determined by Pranav Kumar and Vasudevarao [12].

Moreover, Cho et al. [13] computed the sharp upper
bounds for the third logarithmic coe­cient c3 of f when a2
is a real number. Di�erentiating (1) and comparing the
coe­cients with (2), we get c1 � (1/2)a1, c2 � (1/2)
(a3 − (1/2)a2), and

c3 �
1
2
a4 − a2a3 +

1
3
a32( ). (7)

�e main aim of this paper is to determine the upper
bound of the third logarithmic coe­cient in the general case
of a2. �e following lemma is needed to prove our main
results.

Lemma 1 (see [14]). Let w(z) � c1z + c2z2 + · · · be a
Schwarz function. �en

c1
∣∣∣∣
∣∣∣∣≤ 1,

c2
∣∣∣∣
∣∣∣∣≤ 1 − c1

∣∣∣∣
∣∣∣∣2,

c3
∣∣∣∣
∣∣∣∣≤ 1 − c1

∣∣∣∣
∣∣∣∣2 −

c2
∣∣∣∣
∣∣∣∣2

1 + c1
∣∣∣∣
∣∣∣∣
.

(8)

2. Main Results

Our main result is as follows:

Theorem 1. Let f ∈ F1. �en

c3
∣∣∣∣
∣∣∣∣≤

15.75
48

� 0.328125. (9)

Proof. Since f ∈F1, and for analytic function w in D with
w(0) � 0 satisfying the formula

(1 − z)f′(z) �
1 + w(z)
1 − w(z)

� 1 + 2w(z) + 2w2(z) + · · · . (10)

We obtain

w(z) � c1z + c2z
2 + · · · . (11)

�en, by using (10) along with (11) leads to
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Figure 1: Plot of log(f(z)/z), f(z) � (z/(1 − z)2).
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a2 �
1
2

1 + 2c1( 􏼁,

a3 �
1
3

1 + 2c1 + 2c
2
1 + 2c2􏼐 􏼑,

a4 �
1
4

1 + 2c1 + 2c2 + 2c3 + 2c
2
1 + 4c1c2 + 2c

3
1􏼐 􏼑.

(12)

From (7) and (12), we obtain

c3 �
1
48

3 + 2c1 + 4c2 + 12c3 + 8c1c2 + 4c
3
1􏼐 􏼑. (13)

In view of Lemma 1, we attain

48 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 3 + 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 12 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 8 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

≤ 3 + 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 12 1 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠

+ 8 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

�: f1 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

(14)

where

f1(x, y) � 3 + 2x + 4y + 12 1 − x
2

−
y
2

1 + x
􏼠 􏼡

+ 8xy + 4x
3
,

(x, y) ∈ E: 0≤x≤ 1, 0≤y≤ 1 − x
2
.

(15)

'e system

zf1(x, y)

zx
� 2 − 24x + 12

y

1 + x
􏼒 􏼓

2
+ 8y + 12x

2
� 0,

zf1(x, y)

zy
� 4 −

24y

1 + x
+ 8x � 0,

(16)

has a unique solution (x1, y1) � ((1/4), (5/16)) ∈ E\zE with

f1 x1, y1( 􏼁 � 15.75. (17)

'e maximum value of f1 is obtained when (x, y) is a
point on the boundary of E. In view of this, we have

f1(x, 0) � 15 + 2x − 12x
2

+ 4x
3

≤ 9 +
10

��
30

√

9
� 15.08580 . . . ,

f1(0, y) � 3 + 4y + 12 1 − y
2

􏼐 􏼑

� 15 + 4y − 12y
2 ≤

46
3

� 15.33 . . . ,

(18)

and

f1 x, 1 − x
2

􏼐 􏼑 � 7 + 22x − 4x
2

− 16x
3 ≤ 15.304035 . . . .

(19)

Using (14) and (17)–(19), we conclude the following
outcome:

48 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 15.75, i.e., c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 0.328125. (20)

'is completes the proof. □

Remark 1. If f ∈F1, where f″(0) is a real number, then we
get the result in [13]

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
288

(11 + 15
��
30

√
) � 0.323466 . . . . (21)

Theorem 2. Let f ∈ F2. %en

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 0.258765 . . . . (22)

Proof. Sincef ∈ F2, then there exists an analytic function w

in D with w(0) � 0 and

1 − z
2

􏼐 􏼑f′(z) �
1 + w(z)

1 − w(z)
� 1 + 2w(z) + 2w

2
(z) + · · · .

(23)

'e coefficients can be determined by comparing the
information in (11) and (23)

a2 � c1,

a3 �
1
3

1 + 2c2 + 2c
2
1􏼐 􏼑,

a4 �
1
2

c1 + c3 + 2c1c2 + c
3
1􏼐 􏼑.

(24)

From (7) and (24), we have the following conclusion:

c3 �
1
12

c1 + 3c3 + 2c1c2 + c
3
1􏼐 􏼑. (25)

Moreover, according to Lemma 1, we get the following
inequality:

12 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 3 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

≤ c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 3 1 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠

+ 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

�: f2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

(26)

where

f2(x, y) � 3 1 − x
2

−
y
2

1 + x
􏼠 􏼡 + 2xy + x + x

3
,

(x, y) ∈ E: 0≤ x≤ 1, 0≤y≤ 1 − x
2
.

(27)
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From the system,

zf2(x, y)

zx
� 6x + 3

y

1 + x
􏼒 􏼓

2
+ 2y + 1 + 3x

2
� 0,

zf2(x, y)

zy
� −

6y

1 + x
+ 2x � 0,

(28)

only one solution (x2, y2) lies in the interior of E,
where

x2 �
4 −

�
7

√

6
� 0.22570 . . . ,

y2 �
47 − 14

�
7

√

108
� 0.092217 . . . ,

(29)

and

f2 x2, y2( 􏼁 � 3.10518 . . . . (30)

On the boundary of E, we have the next property

f2(x, 0) � 3 1 − x
2

􏼐 􏼑 + x + x
3 ≤ 2 +

4
9

�
6

√
� 3.08866,

for 0≤x≤ 1,

f2(0, y) � 3 1 − y
2

􏼐 􏼑≤ 3, for 0≤y≤ 1,

f2 x, 1 − x
2

􏼐 􏼑 � 6x − 4x
3 ≤ 2

�
2

√
� 2.82842 . . . .

(31)

Consequently, (26), (30), and (31) yield

12 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 3.10518 . . . , i.e., c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 0.258765 . . . . (32)
□

Remark 2. If f ∈ F2, where f″(0) is a real number, then
[13]

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
972

(95 + 23
��
46

√
) � 0.258223 . . . . (33)

Theorem 3. Let f ∈F3. %en

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
17.75
48

� 0.36979 . . . . (34)

Proof. Let f ∈F3 and an analytic function w in D with
w(0) � 0 such that

1 − z + z
2

􏼐 􏼑f′(z) �
1 + w(z)

1 − w(z)
� 1 + 2w(z) + 2w

2
(z) + · · · .

(35)

Substituting (11) into (35), we have

a2 �
1
2

1 + 2c1( 􏼁,

a3 �
2
3

c1 + c2 + c
2
1􏼐 􏼑,

a4 �
1
4

2c2 + 2c3 + 2c
2
1 + 2c

3
1 + 4c1c2 − 1􏼐 􏼑.

(36)

By using (7) and (36), we obtain

c3 �
1
48

− 5 − 2c1 + 4c2 + 12c3 + 8c1c2 + 4c
3
1􏼐 􏼑. (37)

According to Lemma 1, we conclude that

48 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 5 + 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 12 c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 8 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

≤ 5 + 2 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 12 1 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠

+ 8 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 4 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

�: f3 c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

(38)

where

f3(x, y) � 5 + 2x + 4y + 12 1 − x
2

−
y
2

1 + x
􏼠 􏼡 + 8xy + 4x

3
,

(x, y) ∈ E: 0≤x≤ 1, 0≤y≤ 1 − x
2
.

(39)

'e system

zf3(x, y)

zx
� 2 − 24x + 12

y

1 + x
􏼒 􏼓

2
+ 8y + 12x

2
� 0,

zf3(x, y)

zy
� 4 −

24y

1 + x
+ 8x � 0,

(40)

admits a unique solution (x3, y3) � ((1/4), (5/16)) in the
interior of E such that

f1 x3, y3( 􏼁 � 17.75. (41)

On the boundary of E, the following cases are observed:

f3(x, 0) � 17 + 2x − 12x
2

+ 4x
3

≤ 11 +
10

��
30

√

9
� 17.08580 . . . ,

f3(0, y) � 3 + 4y + 12 1 − y
2

􏼐 􏼑

� 17 + 4y − 12y
2 ≤

46
3

� 17.33 . . . ,

(42)

and

f3 x, 1 − x
2

􏼐 􏼑 � 9 + 22x − 4x
2

− 20x
3 ≤ 16.56455 . . . . (43)
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Equations (38), (41)–(43) show that

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
17.75
48

� 0.36979 . . . . (44)
□

Remark 3. Let f ∈F3, where f″(0) is a real number. 'en
[13]

c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

7776
(743 + 131

���
262

√
) � 0.368238 . . . . (45)
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