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�e idea of composition relations on Fermatean fuzzy sets based on the maximum-extreme values approach has been investigated
and applied in decision making problems. However, from the perspective of the measure of central tendency, this approach is not
reliable because of the information loss occasioned by the use of extreme values. Based on this limitation, we introduce an
enhanced Fermatean fuzzy composition relation with a better performance rating based on the maximum-average approach. An
easy-to-follow algorithm based on this approach is presented with numerical computations. An application of Fermatean fuzzy
composition relations is discussed in diagnostic analysis where diseases and patients are mirrored as Fermatean fuzzy pairs
characterized with some related symptoms. To ascertain the veracity of the novel Fermatean fuzzy composition relation, a
comparative analysis is presented to showcase the edge of this novel Fermatean fuzzy composition relation over the existing
Fermatean fuzzy composition relation.

1. Introduction

Diagnostic analysis of patients’ medical samples is a delicate
assignment enmeshed with vagueness and hesitation. Many
approaches have been posited to ameliorate this problem,
like the introduction of fuzzy sets [1]. �ough the fuzzy set
seems to be promising in tackling uncertainties, it is un-
reliable because it considers the membership degree Υ (MD)
of the case under consideration without minding the pos-
sibility of hesitation. Sequel to this weakness, some gener-
alized varieties of fuzzy sets have been put forward such as
the intuitionistic fuzzy set (IFS) [2], the Pythagorean fuzzy
set (PFS) [3, 4], and the Fermatean fuzzy set (FFS) [5, 6]. By
including nonmembership degree Φ (NMD) to Υ of fuzzy
set, the idea of IFSs was proposed and applied in numerous
applicative areas. Boran and Akay [7] explored pattern
recognition using a biparametric similarity measure. Some
techniques of similarity measures and distance measures of

IFSs have been used to handle pattern recognition problems
[8–10]. In [11], a medical diagnosis was carried out based on
composite relations. Similarly, in [12, 13], a diagnostic
analysis was done based on a similarity measure approach.

�e noticeable inadequacy of IFSs is that it only handles
the scenario where the summation of membership degree Υ
(MD) and nonmembership degree Φ (NMD) is not more
than unity. Because of this drawback, intuitionistic fuzzy set
of second type (IFSST) was proposed [3, 14], which is widely
called Pythagorean fuzzy sets (PFSs) [4]. In PFS, the pa-
rameters Υ and Φ are characterized by Υ +Φ≥ 1 such that
Υ2 +Φ2 ≤ 1. PFS has been applied to solve some hands-on
problems such as medical diagnosis based on composite
relation [15] and other sundry problems [16, 17]. A method
for undertaking multi-attribute decision-making (MADM)
under interval-valued Pythagorean fuzzy linguistic infor-
mation was deliberated in [18]. A number of aggregation
operators using Einstein t-conorm, Einstein operator, and
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Einstein t-norm under the Pythagorean fuzzy environment
for decision-making were deliberated in [19, 20]. A new
extension of the TOPSIS (technique for order preference by
similarity to ideal solution) approach for multiple criteria
decision-making (MCDM) with hesitant PFSs was discussed
in [21]. Wang and Garg [22] developed some aggregation
operators for PFS based on interactive Archimedean norm
processes with application to MADM. In [23], a Choquet
integral based interval type-2 trapezoidal fuzzy approach
was applied in MCDM involving sustainable selection of
supplier. A group decision-making approach was discussed
in a dynamic feedback mechanism with an attitudinal
consensus threshold for minimum adjustment cost [24].

In the same way as IFSs, the construct of PFSs is limited
to handle a situation when Υ �

�
63

√
/2 andΦ � 1/2. In a quest

to resolve this brainteaser, the intuitionistic fuzzy set of third
type (IFSTT) also known as the Fermatean fuzzy set (FFS)
was introduced [5, 6]. FFS has a broader scopes include
Υ +Φ≥ 1, Υ2 +Φ2 ≥ 1 and Υ3 +Φ3 ≤ 1 with the ability to
certainly handle indeterminate information in decision
making. A number of operators on FFSs were elaborated in
[25], and differential calculus of Fermatean fuzzy functions
have been introduced [26]. A number of applications of FFSs
in MCDM problems based on TOPSIS method, distance
measures and certain weighted aggregated operators have
been explored [6, 27–29]. Sari et al. [30] studied interval-
valued Fermatean fuzzy sets and applied them to capital
budgeting techniques. Jeevaraj [31] imposed ordering on
interval-valued FFSs with application. A novel decision-
making method based on Fermatean fuzzy WASPAS
(weighted aggregated sum product assessment) for green
construction supplier evaluation was discussed in [32]. In
[33], some TOPSIS techniques via Fermatean fuzzy soft sets
were discussed with application. Sahoo [34] presented
certain score functions on FFSs with application to bride
selection. Aydin [35] discussed a fuzzy MCDM method
using Fermatean fuzzy theories, and Zhou et al. [36] applied
the Fermatean fuzzy ELECTRE (Elimination Et Choix
Traduisant la Realite) method to tackle multiple-criteria
group decision making. Shahzadi et al. [37] discussed
MADM via Fermatean fuzzy Hamacher interactive geo-
metric operators.

)e applications of FFSs based on TOPSIS and MCDM
methods have been discussed in [33–37]. Some applications
of FFSs in the selection of COVID-19 testing centres using
aggregation operators, the SAW (simple additive weighting)
approach, the VIKOR (VIekriterijumsko KOmpromisno
Rangiranje) approach, and the ARAS (additive ratio as-
sessment) approach were considered in [38, 39].)e concept
of Fermatean fuzzy composition relations has been studied
based on maximum-extreme values with application to
diagnostic analysis using simulated data [40].

)e idea of composition relation has been presented in
intuitionistic fuzzy settings [11], Pythagorean fuzzy setting
[41] and Fermatean fuzzy settings [40] based on the max-
imum-extreme values approach with applications. )is
approach, though presented in different frameworks, cannot
be reliable because it makes use of only minimum and
maximum values. )is present work puts forward a new

composition relation under the Fermatean fuzzy domain
based on the maximum-average approach. To express the
applicability of the new Fermatean fuzzy composition re-
lation, a case of diagnostic analysis is considered via the
approach where diseases and patients are viewed as Fer-
matean fuzzy pairs. More concepts related to this study have
been studied in [42–45].

)e specific objectives of the work are to (i) reiterate the
max-min-max approach of composition relation [11, 40, 41]
in a Fermatean fuzzy setting, (ii) present an enhanced
Fermatean fuzzy composition relation based on the max-
average approach, (iii) numerically demonstrate the max-
min-max approach in conjunction with the new Fermatean
fuzzy composition relation, (iv) decide patients’ medical
status in a Fermatean fuzzy environment based on Fer-
matean fuzzy composition relations via max-min-max ap-
proach and maximum-average approach, respectively, and
(v) present a comparative analysis to showcase the edge of
the new Fermatean fuzzy composition relation over the
approach in [11, 40, 41]. )e summary of the paper follows:
Section 2 presents the basis of FFSs and the existing Fer-
matean fuzzy composition relation [40], Section 3 discusses
the new Fermatean fuzzy composition relation via the
maximum-average approach, Section 4 dwells on diagnostic
analysis of patients’ medical status where diseases and pa-
tients are presented as Fermatean fuzzy values, and Section 5
synopses the paper with recommendations for future work.

2. Fermatean Fuzzy Sets

Some fundamentals of FFSs have been presented in
[6, 28, 29, 40]. Let S≠∅ designates a fixed set for this work.

Definition 1. A FFS X in S is a generalized fuzzy set of the
form

X � 〈s,ΥX(s),ΦX(s)〉|s ∈ S􏼈 􏼉, (1)

whereΥX,ΦX: S⟶ [0, 1] defineMD andNMDof s ∈ S for
0≤Υ3X(s) +Φ3X(s)≤ 1. For a FFS X in S,

ΨX(s) ∈ [0, 1] �

����������������

1 − Υ3X(s) − Φ3X(s)
3

􏽱

, (2)

represents the FFS index or hesitation margin of X.
In an IFS, 0≤Υ +Φ≤ 1, Ψ � 1 − Υ − Φ and
Υ +Φ + Ψ � 1. For PFS, 0≤Υ2 +Φ2 ≤ 1, Ψ �

����������
1 − Υ2 − Φ2

√

and Υ2 +Φ2 + Ψ2 � 1. For the case of FFS, we have
0≤Υ3 +Φ3 ≤ 1, Ψ �

����������
1 − Υ3 − Φ33

√
and Υ3 +Φ3 + Ψ3 � 1.

Now, some properties of FFSs are presented including
equality, inclusion, complement, union, and intersection.

Definition 2. Suppose X and Y in S are FFSs, then

(i) X � 〈s,ΦX(s),ΥX(s)〉|s ∈ S􏼈 􏼉

(ii) X � Y iff ΥX(s) � ΥY(s), ΦX(s) � ΦY(s),∀s ∈ S

(iii) X⊆Y iff ΥX(s)≤ΥY(s), ΦX(s)≥ΦY(s),∀s ∈ S

(iv) X≺Y iff ΥX(s)≤ΥY(s), ΦX(s)≤ΦY(s), ∀s ∈ S

(v) X∪Y �

〈s, max(ΥX(s),ΥY(s)), min(ΦX(s),ΦY(s))〉|s ∈ S􏼈 􏼉
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(vi) X∩Y � 〈s, min(ΥX(s),ΥY(s)), max(ΦX(s),􏼈

ΦY(s))〉|s ∈ S}

Now, we present a Fermatean fuzzy pairs (FFPs) thus

Definition 3. FFP is designated by 〈α, β〉 such that α3 +

β3 ≤ 1 where α, β ∈ [0, 1]. A FFP evaluates the FFS for which
the components (α and β) are interpreted as MD and NMD.

For simplicity sake, we write a FFS
X � 〈s,ΥX(s),ΦX(s)〉|s ∈ S􏼈 􏼉 as X � (ΥX(s),ΦX(s)).

2.1. Fermatean Fuzzy Composite Relation. Composite rela-
tion has been established under IFS, PFS, and FFS [11, 40, 41]
to enhance the applications of IFSs, PFSs, and FFSs in de-
cision making. Suppose S1 and S2 are two sets. A Fermatean
fuzzy relation (FFR) Δ from S1 to S2 is a FFS in S1 × S2
comprises of MD ΥΔ and NMD ΦΔ. A FFR from S1 to S2 is
denoted by Δ(S1⟶ S2) or Δ ∈ S1 × S2.

Definition 4. Suppose Δ1 and Δ2 are FFRs in S1 × S2 and
S2 × S3, which can also be written as Δ1(S1⟶ S2) and
Δ2(S2⟶ S3). )en, the Fermatean fuzzy composite rela-
tion (FFCR) Δ

⌣
� Δ1°Δ2 of S1 × S3 is defined by

Δ
⌣

� 〈〈 s1, s3( 􏼁,Υ
Δ
⌣ s1, s3( 􏼁,Φ

Δ
⌣ s1, s3( 􏼁〉| s1, s3( 􏼁 ∈ S1 × S3〉􏽮 􏽯,

(3)

where

Υ
Δ
⌣ s1, s3( 􏼁 � max min ΥΔ1 s1, s2( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

Φ
Δ
⌣ s1, s3( 􏼁 � min max ΦΔ1 s1, s2( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑,

(4)

∀(s1, s2) ∈ S1 × S2 and (s2, s3) ∈ S2 × S3.
Using Definition 4, the FFCR Δ

⌣
� Δ1°Δ2 is computed by

Δ
⌣

� Υ
Δ
⌣ s1, s3( 􏼁 − Φ

Δ
⌣ s1, s3( 􏼁ΨΔ⌣ s1, s3( 􏼁, ∀ s1, s3( 􏼁 ∈ S1 × S3.

(5)

)e composite relation presented in [11, 40, 41] uses the
extreme values, i.e., the maximum of the minimum of the

membership degrees and the minimum of the maximum of
the nonmembership degrees. )e result from this approach
is not reliable, judging from the knowledge of the measure of
central tendency. Because of this limitation, we modify the
technique in [11, 40, 41] based on the maximum-average
approach.

3. Enhanced Fermatean Fuzzy
Composite Relation

)is section presents a FFCR based on the maximum of the
mean values of membership degrees, and the minimum of
the mean values of nonmembership degrees to enhance
better performance.

Definition 5. Let Δ1 and Δ2 be FFRs of S1 × S2 and S2 × S3,
which can also be written as Δ1(S1⟶ S2) and
Δ2(S2⟶ S3). )en, the FFCR Π

⌣
� Δ1°Δ2 of S1 × S3 is

defined by

Π
⌣

� 〈 s1, s3( 􏼁,Υ
Π
⌣ s1, s3( 􏼁,Φ

Π
⌣ s1, s3( 􏼁〉| s1, s3( 􏼁 ∈ S1 × S3〉􏽮 􏽯,

(6)

where

Υ
Π
⌣ s1, s3( 􏼁 � max average ΥΔ1 s1, s2( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

Φ
Π
⌣ s1, s3( 􏼁 � min average ΦΔ1 s1, s2( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑,

(7)

for 0≤Υ3
Π
⌣ (s1, s3) +Φ3

Π
⌣ (s1, s3)≤ 1,∀(s1, s3) ∈ S1 × S3.

Certainly,

Ψ
Π
⌣ s1, s3( 􏼁 �

����������������������

1 − Υ3
Π
⌣ s1, s3( 􏼁 − Φ3

Π
⌣ s1, s3( 􏼁

3
􏽱

. (8)

From Definition 5, the new FFCR Π
⌣
is computed by

Π
⌣

� Υ
Π
⌣ s1, s3( 􏼁 − Φ

Π
⌣ s1, s3( 􏼁ΨΠ⌣ s1, s3( 􏼁, ∀ s1, s3( 􏼁 ∈ S1 × S3.

(9)

Definition 6. Suppose Δ is a FFR in S1 × S2, then the inverse
of Δ denoted as Δ− 1 in (S2 × S1) is defined by

ΥΔ− 1 s2, s1( 􏼁 � ΥΔ s1, s2( 􏼁,ΦΔ− 1 s2, s1( 􏼁 � ΦΔ s1, s2( 􏼁, ∀ s1, s2( 􏼁 ∈ S1 × S2. (10)

Definition 7. Suppose Δ1 and Δ2 are FFRs in S1 × S2, then

(i) Δ1 ≤Δ2 iff ΥΔ1(s1, s2)≤ΥΔ2(s1, s2) and
ΦΔ1(s1, s2)≥ΦΔ2(s1, s2),∀(s1, s2) ∈ S1 × S2

(ii) Δ1 ≺Δ2 iff ΥΔ1(s1, s2)≤ΥΔ2(s1, s2) and
ΦΔ1(s1, s2)≤ΦΔ2(s1, s2),∀(s1, s2) ∈ S1 × S2

(iii) Δ1∧Δ2 � 〈(s1, s2), min(ΥΔ1􏽮

(s1, s2),ΥΔ2(s1, s2)), max(ΦΔ1(s1, s2),ΦΔ2(s1, s2))〉}

(iv) Δ1∨Δ2 � 〈(s1, s2),􏼈 max(ΥΔ1(s1, s2),ΥΔ2(s1, s2)),

min(ΦΔ1(s1, s2),ΦΔ2(s1, s2))〉}

(v) Δ1 � 〈(s1, s2),ΦΔ1(s1, s2),ΥΔ1(s1, s2)〉􏽮 􏽯,
Δ2 � 〈(s1, s2),ΦΔ2(s1, s2),ΥΔ2(s1, s2)〉􏽮 􏽯

Theorem 1. If Δ1, Δ2 and Δ3 are FFRs in S1 × S2, then

(i) Δ1 ≤Δ2⇒Δ− 1
1 ≤Δ

− 1
2

(ii) (Δ1∨Δ2)
− 1 � Δ− 1

1 ∨Δ
− 1
2

(iii) (Δ1∧Δ2)
− 1 � Δ− 1

1 ∧Δ
− 1
2

(iv) (Δ− 1
1 )− 1 � Δ1

(v) Δ1∧(Δ2∨Δ3) � (Δ1∧Δ2)∨(Δ1∧Δ3)
(vi) Δ1∨(Δ2∧Δ3) � (Δ1∨Δ2)∧(Δ1∨Δ3)
(vii) if Δ1 ≥Δ2 and Δ1 ≥Δ3 then Δ1 ≥Δ2∨Δ3
(viii) if Δ1 ≤Δ2 and Δ1 ≤Δ3 then Δ1 ≤Δ2∧Δ3
(ix) If Δ1∧Δ2 ≤Δ1 then Δ1∧Δ2 ≤Δ2
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(x) If Δ1∨Δ2 ≥Δ1 then Δ1∨Δ2 ≥Δ2

Proof. (i) Assume Δ1 ≤Δ2, then

ΥΔ− 1
1

s2, s1( 􏼁 � ΥΔ1 s1, s2( 􏼁≤ΥΔ2 s1, s2( 􏼁 � ΥΔ− 1
2

s2, s1( 􏼁, (11)

and similarly we have

ΦΔ− 1
1

s2, s1( 􏼁 � ΦΔ1 s1, s2( 􏼁≥ΦΔ2 s1, s2( 􏼁 � ΦΔ− 1
2

s2, s1( 􏼁, ∀ s1, s2( 􏼁 ∈ S1 × S2. (12)

To prove (ii), we have

Υ Δ1∨Δ2( )
− 1 s2, s1( 􏼁 � ΥΔ1∨Δ2 s1, s2( 􏼁

� max ΥΔ1 s1, s2( 􏼁,ΥΔ2 s1, s2( 􏼁􏼐 􏼑

� max ΥΔ− 1
1

s2, s1( 􏼁,ΥΔ− 1
2

s2, s1( 􏼁􏼐 􏼑

� ΥΔ− 1
1 ∨Δ

− 1
2

s2, s1( 􏼁, ∀ s1, s2( 􏼁 ∈ S1 × S2.

(13)

Similarly, we have

Φ Δ1∨Δ2( )
− 1 s2, s1( 􏼁 � ΦΔ1∨Δ2 s1, s2( 􏼁

� min ΦΔ1 s1, s2( 􏼁,ΦΔ2 s1, s2( 􏼁􏼐 􏼑

� min ΦΔ− 1
1

s2, s1( 􏼁,ΦΔ− 1
2

s2, s1( 􏼁􏼐 􏼑

� ΦΔ− 1
1 ∨Δ

− 1
2

s2, s1( 􏼁, ∀ s1, s2( 􏼁 ∈ S1 × S2.

(14)

)e proof of (iii) is similar to (ii). )e proof of (iv)
follows:

Υ Δ− 1
1( )

− 1 s2, s1( 􏼁 � ΥΔ− 1
1

s1, s2( 􏼁 � ΥΔ1 s2, s1( 􏼁 � ΥΔ1 s1, s2( 􏼁.

(15)

Similarly, Φ(Δ− 1
1 )− 1(s2, s1) � ΦΔ1(s1, s2).

Now, we prove (v) as follows:

ΥΔ1∧ Δ2∨Δ3( ) s1, s2( 􏼁 � min ΥΔ1 s1, s2( 􏼁, max ΥΔ2 s1, s2( 􏼁,ΥΔ3 s1, s2( 􏼁􏼐 􏼑􏼐 􏼑

� max min ΥΔ1 s1, s2( 􏼁,ΥΔ2 s1, s2( 􏼁􏼐 􏼑, min ΥΔ1 s1, s2( 􏼁,ΥΔ3 s1, s2( 􏼁􏼐 􏼑􏼐 􏼑

� max ΥΔ1∧Δ2 s1, s2( 􏼁,ΥΔ1∧Δ3 s1, s2( 􏼁􏼐 􏼑 � Υ Δ1∧Δ2( )∨ Δ1∧Δ3( ) s1, s2( 􏼁,

∀ s1, s2( 􏼁 ∈ S1 × S2.

(16)

Similarly, by using Definition 7 we have

ΦΔ1∧ Δ2∨Δ3( ) s1, s2( 􏼁 � Φ Δ1∧Δ2( )∨ Δ1∧Δ3( ) s1, s2( 􏼁, ∀ s1, s2( 􏼁 ∈ S1 × S2. (17)

)e proofs of (vi)–(x) are straightforward. □

Theorem 2. Suppose we have two FFRs Δ1 in S1 × S2 and Δ2
in S2 × S3, respectively, then (Δ1°Δ2)

− 1 � Δ− 1
1 °Δ− 1

2 .

Proof. Firstly, we show the result with respect to the
membership degree. )en,

Υ Δ1°Δ2( )
− 1 s3, s1( 􏼁 � ΥΔ1°Δ2 s1, s3( 􏼁

� max average ΥΔ1 s1, s2( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max average ΥΔ− 1
1

s2, s1( 􏼁,ΥΔ− 1
2

s3, s2( 􏼁􏼐 􏼑􏼐 􏼑

� max average ΥΔ− 1
2

s3, s2( 􏼁,ΥΔ− 1
1

s2, s1( 􏼁􏼐 􏼑􏼐 􏼑

� ΥΔ− 1
1 °Δ− 1

2
s3, s1( 􏼁, ∀ s3, s1( 􏼁 ∈ S3 × S1.

(18)
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Similarly, we have

Φ Δ1°Δ2( )
− 1 s3, s1( 􏼁 � ΦΔ1°Δ2 s1, s3( 􏼁

� min average ΦΔ1 s1, s2( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min average ΦΔ− 1
1

s2, s1( 􏼁,ΦΔ− 1
2

s3, s2( 􏼁􏼐 􏼑􏼐 􏼑

� min average ΦΔ− 1
2

s3, s2( 􏼁,ΦΔ− 1
1

s2, s1( 􏼁􏼐 􏼑􏼐 􏼑

� ΦΔ− 1
1 °Δ− 1

2
s3, s1( 􏼁, ∀ s3, s1( 􏼁 ∈ S3 × S1.

(19)□

Theorem 3. Suppose Δ is a FFR in S1 × S2, and Δ1 is a FFR in
S2 × S3 and Δ2 ≤Δ1. 8en,

(i) Δ1°Δ � Δ°Δ1
(ii) (Δ2°Δ1)°Δ � Δ2°(Δ1°Δ)

Proof. (i) We show that the FFRs are commutative as
follows:

ΥΔ1°Δ s1, s3( 􏼁 � max average ΥΔ s1, s2( 􏼁,ΥΔ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max average ΥΔ1 s2, s3( 􏼁,ΥΔ s1, s2( 􏼁􏼐 􏼑􏼐 􏼑

� ΥΔ°Δ1 s1, s3( 􏼁, ∀ s1, s3( 􏼁 ∈ S1 × S3.

(20)

Similarly,

ΦΔ1°Δ s1, s3( 􏼁 � min average ΦΔ s1, s2( 􏼁,ΦΔ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min average ΦΔ1 s2, s3( 􏼁,ΦΔ s1, s2( 􏼁􏼐 􏼑􏼐 􏼑

� ΦΔ°Δ1 s1, s3( 􏼁, ∀ s1, s3( 􏼁 ∈ S1 × S3.

(21)

(ii) Now, we proof the associativity as the FFRs as
follows:

Υ Δ2°Δ1( )°Δ s1, s3( 􏼁 � max average ΥΔ s1, s2( 􏼁,ΥΔ2°Δ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max average ΥΔ s1, s2( 􏼁, max average ΥΔ1 s2, s3( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

� max average max average ΥΔ s1, s2( 􏼁,ΥΔ1 s2, s( 􏼁􏼐 􏼑􏼐 􏼑,ΥΔ2 s, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max average ΥΔ1°Δ s1, s( 􏼁,ΥΔ2 s, s3( 􏼁􏼐 􏼑􏼐 􏼑 � ΥΔ2° Δ1°Δ( ) s1, s3( 􏼁,

(22)

for all (s1, s3) ∈ S1 × S3. On the contrary, we get

Φ Δ2°Δ1( )°Δ s1, s3( 􏼁 � min average ΦΔ s1, s2( 􏼁,ΦΔ2°Δ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min average ΦΔ s1, s2( 􏼁, min average ΦΔ1 s2, s3( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

� min average min average ΦΔ s1, s2( 􏼁,ΦΔ1 s2, s( 􏼁􏼐 􏼑􏼐 􏼑,ΦΔ2 s, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min average ΦΔ1°Δ s1, s( 􏼁,ΦΔ2 s, s3( 􏼁􏼐 􏼑􏼐 􏼑 � ΦΔ2° Δ1°Δ( ) s1, s3( 􏼁,

(23)

for all (s1, s3) ∈ S1 × S3. □

Theorem 4. Let Δ1 and Δ2 be FFRs of S1 × S2, and Δ3 and Δ4
be FFRs of S2 × S3, then we have the following properties:

(i) Δ1 ≤Δ2⇒Δ1°Δ∗ ≤Δ2°Δ∗ for every FFR Δ∗ in S2 × S3

(ii) Δ3 ≤Δ4⇒Δ∗°Δ3 ≤Δ∗°Δ4 for every FFR Δ∗ in S1 × S2

(iii) Δ1 ≺Δ2⇒Δ1°Δ∗ ≺Δ2°Δ∗ for every FFR Δ∗ in S2 × S3

(iv) Δ3 ≺Δ4⇒Δ∗°Δ3 ≺Δ∗°Δ4 for every FFR Δ∗ in S1 × S2

(v) Δ∗ ≤Δ∗⇒Δ∗°Δ∗ ≤Δ∗°Δ∗ if Δ∗ and Δ∗ are FFRs in
S1 × S1

Proof. (i) Assume Δ1 ≤Δ2. )en, ΥΔ1(s1, s2)≤ΥΔ2(s1, s2)

and ΦΔ1(s1, s2)≥ΦΔ2(s1, s2). Now, we have

ΥΔ1°Δ∗ s1, s3( 􏼁 � max average ΥΔ∗ s1, s2( 􏼁,ΥΔ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

≤max average ΥΔ∗ s1, s2( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� ΥΔ2°Δ∗ s1, s3( 􏼁.

(24)

Similarly,

ΦΔ1°Δ∗ s1, s3( 􏼁 � min average ΦΔ∗ s1, s2( 􏼁,ΦΔ1 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

≥min average ΦΔ∗ s1, s2( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� ΦΔ2°Δ∗ s1, s3( 􏼁.

(25)

)e proofs of (ii)–(iv) are similar.
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(v) If Δ∗ ≤Δ∗, then ΥΔ∗(s1, s1)≤ΥΔ∗(s1, s1) and
ΦΔ∗(s1, s2)≥ΦΔ∗(s1, s2). )en,

ΥΔ∗°Δ∗ s1, s1( 􏼁 � max average ΥΔ∗ s1, s1( 􏼁,ΥΔ∗ s1, s1( 􏼁􏼐 􏼑􏼐 􏼑

≤max average ΥΔ∗ s1, s1( 􏼁,ΥΔ∗ s1, s1( 􏼁( 􏼁( 􏼁

� ΥΔ∗°Δ∗ s1, s1( 􏼁.

(26)

Similarly,
ΦΔ∗°Δ∗ s1, s1( 􏼁 � min average ΦΔ∗ s1, s1( 􏼁,ΦΔ∗ s1, s1( 􏼁􏼐 􏼑􏼐 􏼑

≥min average ΦΔ∗ s1, s1( 􏼁,ΦΔ∗ s1, s1( 􏼁( 􏼁( 􏼁

� ΦΔ∗°Δ∗ s1, s1( 􏼁.

(27)□
Theorem 5. Let Δ1,Δ2 be FFRs in S2 × S3, and Δ be FFR in
S1 × S2. 8en, we have

(i) (Δ1∨Δ2)°Δ≥ (Δ1°Δ)∨(Δ2°Δ)
(ii) (Δ1∧Δ2)°Δ≤ (Δ1°Δ)∧(Δ2°Δ)

Proof. By )eorem 1, we have Δ1∨Δ2 ≥Δ1 and Δ1∨Δ2 ≥Δ2.
)us, (Δ1∨Δ2)°Δ≥ (Δ1°Δ) and (Δ1∨Δ2)°Δ≥ (Δ2°Δ). Hence,
we get (Δ1∨Δ2)°Δ≥ (Δ1°Δ)∨(Δ2°Δ), which proves (i). )e
proof of (ii) is similar. □

Theorem 6. Suppose Δ1,Δ2 are FFRs in S2 × S3, and Δ is a
FFR in S1 × S2. 8en, we have

(i) (Δ1∨Δ2)°Δ � (Δ1°Δ)∨(Δ2°Δ)
(ii) (Δ1∧Δ2)°Δ � (Δ1°Δ)∧(Δ2°Δ)

Proof. We first proof (i) as follows:

Υ Δ1∨Δ2( )°Δ s1, s3( 􏼁 � max averge ΥΔ s1, s2( 􏼁ΥΔ1∨Δ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max averge ΥΔ s1, s2( 􏼁,ΥΔ1 s2, s3( 􏼁􏼐 􏼑, averge ΥΔ s1, s2( 􏼁,ΥΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� max ΥΔ°Δ1 s1, s3( 􏼁,ΥΔ°Δ2 s1, s3( 􏼁􏼐 􏼑 � Υ Δ1°Δ( )∨ Δ2°Δ( ) s1, s3( 􏼁.

(28)

Similarly, we obtain

Φ Δ1∨Δ2( )°Δ s1, s3( 􏼁 � min averge ΦΔ s1, s2( 􏼁,ΦΔ1∨Δ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min averge ΦΔ s1, s2( 􏼁,ΦΔ1 s2, s3( 􏼁􏼐 􏼑, averge ΦΔ s1, s2( 􏼁,ΦΔ2 s2, s3( 􏼁􏼐 􏼑􏼐 􏼑

� min ΦΔ°Δ1 s1, s3( 􏼁,ΦΔ°Δ2 s1, s3( 􏼁􏼐 􏼑 � Φ Δ1°Δ( )∨ Δ2°Δ( ) s1, s3( 􏼁.

(29)

)e proof of (ii) is similar. □

3.1. Numerical Illustration of FFCRs. An example is given to
show the supremacy of the new FFCR over the existing
FFCR [11, 40, 41].

Given that X and Y are FFSs in S � s1, s2, s3􏼈 􏼉 defined by

X � 〈s1, 0.6, 0.2〉, 〈s2, 0.4, 0.6〉, 〈s3, 0.5, 0.3〉􏼈 􏼉,

Y � 〈s1, 0.8, 0.1〉, 〈s2, 0.7, 0.3〉, 〈s3, 0.6, 0.1〉􏼈 􏼉.
(30)

Using the existing FFCR Δ
⌣
, the minimum of the

membership degrees between FFSs X and Y for s1, s2, s3 are
0.6, 0.4, 0.5 implying that

Υ
Δ
⌣(s) � max(0.6, 0.4, 0.5) � 0.6. (31)

Similarly, the maximum of the nonmembership degrees
between FFSs X and Y for s1, s2, s3 are 0.2, 0.6, 0.3, implying
that

Φ
Δ
⌣(s) � min(0.2, 0.6, 0.3) � 0.2. (32)

Now, the FFCR between X and Y is
Δ
⌣

� 0.6 − (0.2 × 0.9189) � 0.4162.
Using the new FFCR Π

⌣
in Definition 5, the mean values

of the membership degrees between FFSs X and Y for
s1, s2, s3 are 0.7, 0.55, 0.55. )us,

ΥΠ⌣ (s) � max(0.7, 0.55, 0.55) � 0.7. (33)

Again, the mean values of the nonmembership de-
grees between FFSs X and Y for s1, s2, s3 are 0.15, 0.45, 0.2.
)us,

Φ
Π
⌣ (s) � min(0.15, 0.45, 0.2) � 0.15. (34)

Again, the mean values of the nonmembership degrees
between FFSs X and Y for s1, s2, s3 are 0.15, 0.45, 0.2. )us,

Φ
Π
⌣ (s) � min(0.15, 0.45, 0.2) � 0.15. (35)

)e new FFCR between FFSs X and Y is
Π
⌣

� 0.7 − (0.15 × 0.8678) � 0.5698.
From the results, it is certain that the new FFCR is better

than the approach in [11, 40, 41] because the FFCR betweenX

and Y is greater for the new approach (i.e., while the existing
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approach yields 0.4162, the new approach yields 0.5698). )is
justifies the advantage of taking the mean values of the pa-
rameters of FFS over taking the extreme values.

4. Fermatean Fuzzy Composite Relation in
Determination of Patients’ Medical Status

)is section discusses an application of FFCRs in diagnosis
analysis of a patient’s medical status using a simulated
database of disease diagnosis. For the sake of simulation,
takeS as a set of symptoms,D as a set of diseases, andP as a
set of patients. )en, we represent a medical knowledge in
Fermatean fuzzy pairs based on a FFR Δ from S to D in-
dicated by S × D to bespeak the grades of association and
otherwise betweenS andD. In the Fermatean fuzzy medical
diagnostic process, the symptoms of the diseases are de-
termined, the medical knowledge of the patients based on
Fermatean fuzzy values is formulated, and the diagnosis on
the basis of the composition using the existing FFCR and the
new FFCR are determined.

4.1. New FFCR between Patients and Diseases. Suppose the
medical condition of a patientP is described in terms of a
set of symptoms S, then P is taken to be assigned a
diagnosis based onΠ

⌣
via a FFR Δ1 fromS toD designated

as S⟶ D as simulated by medical knowledge in terms
of degrees of association and otherwise.

We construct a FFRΔ2 fromP toS represented byP⟶
S as Δ1. )en, the FFCR Π

⌣
of Δ1 and Δ2 (i.e., Π

⌣
� Δ1°Δ2)

signifies themedical condition of the patients with regards to the
ailments given by the MD and NMD in equation (36).

Υ
Π
⌣ (p, d) � max average ΥΔ2(p, s),ΥΔ1(s, d)􏼐 􏼑􏼐 􏼑,

Φ
Π
⌣ (p, d) � min average ΦΔ2(p, s),ΦΔ1(s, d)􏼐 􏼑􏼐 􏼑,

(36)

for all the patients and ailments.
)e result for which Π

⌣
� Υ
Π
⌣ (p, d) − Φ

Π
⌣ (p, d)Ψ

Π
⌣ (p, d)

is the greatest determines the diagnosis of the patient P. For
easy computation of the FFCR, the algorithm which de-
scribes the step-to-step computational processes of the
composite relation between the patients and the diseases is
given as follows:

Step 1: Institute a relation between S and D as FFPs
Step 2: Institute a relation between P and S as FFPs
Step 3: Find MD and NMD of Δ1°Δ2 between the pa-
tients and diseases with respect to the clinical symptoms
Step 4: Calculate FFCR Π

⌣
between the patients and

diseases using the information from Step 3
Step 5: Decide the diagnosis on the basis of the relation
for which the FFCR Π

⌣
is maximum

)e algorithm can be represented as a flowchart.

Find ΥΠ̆  (p, d), ΦΠ̆ (p, d)

Start

Compute FFCR

Decide
diagnosis
guided by

the
maximum

FFCR

End

Set P,
D and S

Institute
Δ2 (P →

S)

Institute
Δ1 (S →

D)

4.2. Application Example. Assume patients P � P1,􏼈

P2,P3, P4} visit a medical lab to ascertain their health
conditions. After the vital signs of the patients were collected,
the following symptoms S, namely, high temperature,
headache, stomach pain, cough, and chest pain were ob-
served. From medical knowledge of the consultation, we
simulate FFR Δ2(P⟶ S), as shown in Table 1.

After the medical consultations guided by the vital
signs, the patients are suspected to be infected by viral
fever (V), malaria (M), typhoid fever (T), stomach
problem (S), and heart problem (H). Similarly, FFR
Δ1(S⟶ D) is given in Table 2. )e simulated data in
Tables 1 and 2 were used in [11] (S. K. De, R. Biswas, A. R.
Roy (2001) An application of intuitionistic fuzzy sets in
medical diagnosis, Fuzzy Sets and Systems 117(2)
209–213) to demonstrate the application of IFSs in
medical diagnosis. However, the data are extended to
Fermatean fuzzy values in this work.
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By applying our new approach, we get the parameters
MD and NMD, as shown in Table 3.

By applying the approach of [11] in a Fermatean fuzzy
setting, the parameters MD and NMD of FFCR Δ

⌣
are

computed, as shown in Table 4.

After calculating the indexes of the FFPs, the results for
FFCRs using the existing approach [11] are contained in the
following matrix:

(37)

From the matrix, the following diagnosis are deduced:

(i) Patient P1 is diagnosed with malaria fever with a
reasonable proportion of typhoid fever

(ii) Patient P2 is diagnosed with stomach problem
(iii) Patient P3 is diagnosed with malaria fever with a

reasonable proportion of typhoid fever
(iv) Patient P4 is diagnosed with malaria fever

None of the patient is suffering from viral fever and heart
problem. P1 has negative relation with stomach problem
and heart problem;P2 has negative relation with viral fever,
malaria fever, and heart problem; P3 has negative relation
with stomach problem and heart problem; and P4 also has
negative relation with stomach problem and heart problem.
From the analysis, it is sensible the physician administers the
same treatment to patientsP1 andP3 because they have the
same infection load of malaria fever and typhoid fever.

Similarly, the results using the new FFCR Π
⌣

are con-
tained in the following matrix:

(38)

From the matrix, we obtain the following diagnosis:

(i) Patient P1 is suffering from malaria fever with a
reasonable proportion of viral fever and typhoid
fever

(ii) Patient P2 is suffering from stomach problem only
(iii) Patient P3 is suffering from malaria fever with a

reasonable proportion of typhoid fever and viral fever
(iv) Patient P4 is suffering from malaria fever with a

reasonable proportion of viral fever

In order to show the edge of FFSs over IFSs and PFSs in
terms of the ability to restrict uncertainties based on the new
composition approach, wemake use of the data in Tables 1–3
to compute the composite relation between each patients
and diseases. By using the data as intuitionistic fuzzy data,
we get the results in the matrix that follows:

(39)

Table 1: Δ2(P⟶ S).

Δ2 Temp Headache Stomach pain Cough Chest pain

ΥP1
ΦP1

0.8000
0.1000

0.6000
0.1000

0.2000
0.8000

0.6000
0.1000

0.1000
0.6000

ΥP2
ΦP2

0.0000
0.8000

0.4000
0.4000

0.6000
0.1000

0.1000
0.7000

0.1000
0.8000

ΥP3
ΦP3

0.8000
0.1000

0.8000
0.1000

0.0000
0.6000

0.2000
0.7000

0.0000
0.5000

ΥP4
ΦP4

0.6000
0.1000

0.5000
0.4000

0.3000
0.4000

0.7000
0.2000

0.3000
0.4000

Table 2: Δ1(S⟶ D).

Δ1 Temp Headache Stomach pain Cough Chest pain

ΥV

ΦV

0.4000
0.0000

0.3000
0.5000

0.1000
0.7000

0.4000
0.3000

0.1000
0.7000

ΥM

ΦM

0.7000
0.0000

0.2000
0.6000

0.0000
0.9000

0.7000
0.0000

0.1000
0.8000

ΥT

ΦT

0.3000
0.3000

0.6000
0.1000

0.2000
0.7000

0.2000
0.6000

0.1000
0.9000

ΥS

ΦS

0.1000
0.7000

0.2000
0.4000

0.8000
0.0000

0.2000
0.7000

0.2000
0.7000

ΥH

ΦH

0.1000
0.8000

0.0000
0.8000

0.2000
0.8000

0.2000
0.8000

0.8000
0.1000

Table 3: MD and NMD for FFCR Π
⌣
.

P vs D V M T S H

P1
0.6000
0.0500

0.7500
0.0500

0.6000
0.1000

0.5000
0.2500

0.4500
0.3500

P2
0.3500
0.4000

0.4000
0.3500

0.5000
0.2500

0.7000
0.0500

0.4500
0.4500

P3
0.6000
0.0500

0.7500
0.0500

0.7000
0.1000

0.5000
0.2500

0.4500
0.3000

P4
0.5500
0.0500

0.7000
0.0500

0.5500
0.2000

0.5500
0.2000

0.5500
0.2500

Table 4: MD and NMD for FFCR Δ
⌣
.

P vs D V M T S H

P1
0.4000
0.1000

0.7000
0.1000

0.6000
0.1000

0.2000
0.4000

0.2000
0.6000

P2
0.3000
0.5000

0.2000
0.6000

0.4000
0.4000

0.6000
0.1000

0.2000
0.8000

P3
0.4000
0.1000

0.7000
0.1000

0.6000
0.1000

0.2000
0.4000

0.2000
0.5000

P4
0.4000
0.1000

0.7000
0.1000

0.5000
0.3000

0.3000
0.4000

0.3000
0.4000

8 Journal of Mathematics



From the results using intuitionistic fuzzy data, the
following diagnoses are given: patient P1 is suffering from
the same disease as given by our approach; patient P2 is
suffering from stomach problem with a reasonable pro-
portion of viral fever, which is different from the diagnosis of
our approach (because of the inability of IFS to reasonably
curb uncertainties); patient P3 is suffering from the same
diseases as given by our approach; patient P4 is suffering
from malaria fever with a reasonable proportion of viral
fever, and equal proportion of typhoid fever, stomach
problem, and heart problem (different from the diagnoses of
our approach due to the inability of IFS to reasonably curb
uncertainties). )ough the values of the composite relation
using intuitionistic fuzzy data are greater than our approach,

it is certainly because of the inability of IFS to reasonably
restrict the uncertainties in the process of diagnosis.

In addition, by using the data as Pythagorean fuzzy data,
we get the following results:

(40)

Because the concept of PFSs is better than IFSs in terms
of the ability to control uncertainties, the diagnoses gotten
from the Pythagorean fuzzy data using our approach are the
same as with our new Fermatean fuzzy composite relation
approach. )ough the values of the composite relation using

(P1V) (P1M)
Classifications

eFFCR

nFFCR

(P1T) (P1S) (P1H)

−0.4

−0.2

0

0.2

FF
CR

s

0.4

0.6

0.8

Figure 1: P1 vs diseases.

eFFCR

nFFCR

(P2V) (P2M)
Classifications

(P2T) (P2S) (P2H)

−0.4

−0.2

0

0.2

FF
CR

s

0.4

0.6

Figure 2: P2 vs diseases.
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Pythagorean fuzzy data based on our approach are slightly
greater than our Fermatean fuzzy data approach, it is cer-
tainly because of the failure of PFSs to reasonably restrain
the uncertainties of the diagnostic process.

4.3. Comparative Analysis of the FFCRs. To establish the
superiority of the new FFCR (nFFCR) over the existing
FFCR (eFFCR) [11, 40, 41], a comparative analysis is pre-
sented in Figures 1–4 and Table 5.

From Figures 1–4 and Table 5, the new FFCR is superior
to the existing FFCR because it provides better relation
between the patients and ailments, and thus will guide
physician on the suitable treatment. )e existing FFCR uses
extreme values (the max-min-max approach), whereas the
new FFCR uses the maximum-average approach to augment
the performance rating.)e diagnostic analysis derived from
the existing FFCR and the new FFCR are the same, although
the new FFCR shows more additional diagnosis with grade
of severities. In fact, while the approach in [11, 40, 41] shows
that patients P1 and P3 should be treated for malaria fever
and typhoid fever only, the new approach suggested treat-
ment for viral fever for the patients in addition to malaria
fever and typhoid fever. Similarly, while the existing FFCR
suggested that patientP4 should be treated formalaria fever,
the new approach included treatment for viral fever.

5. Conclusion

tIn this paper, we have introduced an enhanced FFCR with a
better performance rating and applied it in determining the
medical diagnosis of certain patients.)emodified FFCR was
introduced to promote the application of FFSs in decision-
making. An algorithm for the modified FFCR was presented
to ease computation. To validate the advantage of the new
FFCR over the existing approach [11, 40, 41], a comparative
analysis was presented in Table 5, from which the modified
FFCR approach outperformed the existing approach. Diag-
nostic analysis on some patients wasconducted based on the
modified FFCR where the patients and ailments were pre-
sented in FFPs. )e medical diagnosis via the modified FFCR
will improve suitable drug administration and therapy. )e
new FFCR will foster further application of FFSs in practical
areas of decision making. Although the proposed method
enhances reliability with a better performance rating com-
pared to the extreme values method, it has some limitations,
which include the following: (i) it cannot be used to model
cases involving picture fuzzy information and spherical fuzzy
information because it only admits three parameters, and (ii)
themaximum-average approach of composite relation cannot
be determined bymere inspection like themaximum-extreme
values approach.
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Table 5: Comparative table.

P vs D V M T S H

P1
0.3022
0.5539

0.6131
0.7084

0.5078
0.5078

− 0.1902
0.2623

− 0.3513
0.1164

P2
− 0.1733
−0.0352

− 0.3513
−0.0352

0.0178
0.2623

0.5078
0.6565

− 0.4264
0.0292

P3
0.3022
0.5539

0.6131
0.7084

0.5078
0.6131

− 0.1902
0.2623

− 0.2768
0.1623

P4
0.3022
0.5029

0.6131
0.6584

0.2161
0.3624

− 0.0875
0.3624

− 0.0875
0.3162
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