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Complex fuzzy sets (CFSs), as an important extension of fuzzy sets, have been investigated in the literature. Operators of CFSs are
of high importance. In addition, α− migrativity for various fuzzy operations on [0, 1] has been well discussed, where α is a real
number and α ∈ [0, 1].+us, this paper studies α− migrativity for binary functions on the unit circle of the complex planeO, where
α is a complex number and α ∈ O. In particular, we show that a binary function is α− migrativity for all α ∈ O if and only if it is
α− migrativity for all α ∈ [0, 1]∪O, where O is the boundary point subset of O. Finally, we discuss the relationship between
migrativity and rotational invariance of binary operators on O.

1. Introduction

Complex fuzzy sets (CFSs) were introduced by Ramot et al.
[1, 2], whose membership degree is a complex number on
the unit disc of the complex plane O, where O � α ∈ C{

‖α|≤ 1}. Operations are of high importance in the theory of
CFSs. Various concepts and properties have been developed
for complex fuzzy operations. Dick [3] introduced the ro-
tational invariance of operators of CFSs. Dai [4, 5] gener-
alized Dick’s works on rotational invariance and order
induced by algebraic product operation. Zhang et al. [6]
studied operation properties and δ-equalities of CFSs. Dick,
Yager, and Yazdanbahksh [7] gave some complex fuzzy
operations based on Pythagorean fuzzy operations, which
was developed by Liu et al. [8]. +en Dick [9] considered
complex fuzzy S-implications. Hu et al. [10–13] discussed
orthogonality preserving operators and parallelity preserv-
ing operators of CFSs.

+e α-migrativity [14] as an important property of bi-
nary fuzzy operators has been discussed in the cases of
overlap/grouping functions [15, 16], uninorms [17–22],
triangular subnorm [23], t-norms [24], nullnorm [25],
copulas [26, 27], and aggregation functions [28–30]. In the
aforementioned migrative functions, their research domain
is limited to real numbers on [0, 1]. For example, a binary

function f: I2⟶ I is migrative if f(αx, y) � f(μ, α])

holds for all μ, ] ∈ I and α ∈ I, where I � [0, 1].
+is paper focuses on the α-migrativity of complex fuzzy

binary operations, i.e., functions f: O2⟶ O, where α ∈ O
is a complex number. Moreover, since a CFS is composed of
a magnitude term and a phase term, we consider magnitude-
migrativity and phase-migrativity, which respectively limits
α ∈ I and α ∈ O, whereO is the boundary point subset ofO,
i.e., O � α ∈ C‖α| � 1{ }.

As far as we know, migrativity including magnitude-
migrativity and phase-migrativity of complex fuzzy opera-
tions have not been studied yet. Moreover, we note that
phase-migrativity and rotational invariance [3, 4] of com-
plex fuzzy operations are similar with respect to angle ro-
tation operations. It is essential to straighten out the
relationship between phase-migrativity and rotational in-
variance for complex fuzzy operations.

+is article is structured as follows: in Section 2, we
introduce the concepts of migrativity, magnitude-migra-
tivity, and phase-migrativity for complex fuzzy binary op-
erations. In Section 3, we give characterizations of these
migrativity properties of complex fuzzy binary operations.
In Section 4, the relationship between rotational invariance
and migrativity is studied. In Section 5, concluding remarks
are given.
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2. Migrativity

Definition 1. Consider a fixed point α ∈ O, a binary oper-
ation f: O2⟶ O is said to be α− migrative if

f(αμ, ]) � f(μ, α]), for all μ, ] ∈ O. (1)

Note that α− migrativity refers to a fixed complex
number α. +is can be generalized as follows:

Definition 2. A binary operation f: O2⟶ O is said to be
migrative if and only if (briefly, iff)

f(αμ, ]) � f(μ, α]), for all μ, ] ∈ O and α ∈ O. (2)

A complex vector includes the amplitude term and the
phase part. So, we introduce the following concepts:

Definition 3. A binary operation f: O2⟶ O is said to be
amplitude-migrative iff

f(rμ, ]) � f(μ, r]), for all μ, ] ∈ O and r ∈ I. (3)

Definition 4. A binary operation f: O2⟶ O is said to be
phase-migrative if and only if

f e
jθμ, ]􏼐 􏼑 � f μ, e

jθ]􏼐 􏼑, for all μ, ] ∈ O and θ ∈ R, (4)

where j �
���
− 1

√
.

Note that phase-migrativity means α-migrativity for all
α ∈ O.

Theorem 1. A binary operation f: O2⟶ O is migrative
iff, for all r ∈ I and θ ∈ R, it holds that

f e
jθμ, ]􏼐 􏼑 � f μ, e

jθ]􏼐 􏼑

f(rμ, ]) � f(μ, r])

⎫⎬

⎭. (5)

Proof. (⇒) Trivial.
(⇐) For any α ∈ O, denote α � rα · ejθα where rα ∈ I.

+en f(αμ, ]) � f(rα · ejθαμ, ]) � f (ejθαμ, rα · ]) � f (μ,

ejθα · rα]) � f(μ, α]). □
For a complex fuzzy binary function f, as shown in

Figure 1(a) and 1(b), if it is phase-migrative, then we have
β1 � β2 for any θ and inputs μ, ] ∈ O.

A binary operation is migrative if and only if it is am-
plitude-migrative and phase-migrative. From this result, we
have the following result: □

Corollary 1. Let f: O2⟶ O be a binary operation. 6en
the following statements are equivalent.

(1) f(αμ, ]) � f(μ, α]), for all μ, ] ∈ O and α ∈ O;
(2) f(αμ, ]) � f(μ, α]), for all μ, ] ∈ O and α ∈ I∪O.

Note that f is α− migrative for all α ∈ O if and only if it is
α− migrative for all α ∈ I∪O. +is is very interesting because
I∪O is a proper subset ofO, i.e., (I∪O)⫋O, and the size of
I∪O is much smaller than that ofO. Obviously, in the above

corollary, I∪O could be replaced by other subsets, such as
[− 1, 0]∪O.

Example 1. 6e operations f1, f2, f3: O2⟶ O are re-
spectively defined by

f1(μ, ]) � μ · ],

f2(μ, ]) � |μ| · ],

f3(μ, ]) � |μ| · μ · ].

(6)

Obviously, f1 is migrative. Interestingly, for all r ∈ I, we
have f2(rμ, ]) � f2(μ, r]). +us f2 is amplitude-migrative.
Similarly, for all θ ∈ R, we have f3(ejθμ, ]) � f3(μ, ejθ]).
+us, f3 is phase-migrative. But f2 is not phase-migrative,
f3 is not amplitude-migrative, thus, they are not migrative.

3. Characterization of Migrativity

One of the important results of migrative real-valued
functions is the following theorem:

Theorem 2 (see [28]). A binary operation f: I2⟶ I is
migrative iff there exists a function g: I⟶ I such that
f(μ, ]) � g(xy) for all μ, ] ∈ I.

This result is not true for amplitude-migrative (or phase-
migrative) functions (see Example 1), but it is true for
migrative complex-valued functions.

Theorem 3. A binary operation f: O2⟶ O is migrative iff
there exists a function f: O⟶ O such that f(μ, ]) � g(xy)

for all μ, ] ∈ O.

Proof. (⇐) If g exists, then f(αμ, ]) � g(αμ]) � f(μ, α]).
(⇒) If f is migrative, then

f(μ, ]) � f(μ · 1, ]) � f(1, μ]), thus, g(μ]) � f(1, μ]) is
the function.

In this way, the function g is the migrative generator of
the migrative binary operation f.

+e following result is immediate: □

Theorem 4. Let f: O2⟶ O be a migrative binary oper-
ation. 6en

(1) f(1, 1) � 1 if and only of g(1) � 1;
(2) f(0, 0) � 0 if and only of g(0) � 0;

Example 2. We give some migrative functions and their
migrative generators.

(1) 6e migrative generator of f(μ, ]) � μ] is g(μ) � μ;
(2) 6e migrative generator of f(μ, ]) � |μ]| is

g(μ) � |μ|;
(3) 6e migrative generator of f(μ, ]) � 1 − |μ]| is

g(μ) � 1 − |μ|.

Moreover, we have the following results.
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Theorem 5. Let f: O2⟶ O be a migrative function. 6en
f is commutative, i.e., f(μ, ]) � f(], μ).

Proof. If f is migrative, then f(μ, ]) � f(μ · 1, ]) � f(1, μ])

� f(] · 1, μ) � f(], μ) for all μ, ] ∈ O.
+is result is not true for amplitude-migrative (or phase-

migrative) functions (see Example 1). +e following result is
true even for amplitude-migrative (or phase-migrative)
functions. □

Theorem 6. If a binary operation f: O2⟶ O is ampli-
tude-migrative (or phase-migrative), then for all μ, ] ∈ O,

(1) f(− μ, − ]) � f(μ, ]);
(2) f(− μ, ]) � f(μ, − ]).

Proof. Here we only give the proof of (1). If f is amplitude-
migrative, then

f(− μ, − ]) � f(μ, (− 1)(− 1)]) � f(μ, ]), (7)

for all μ, ] ∈ O.
If f is phase-migrative, then

f(− μ, − ]) � f e
jπμ, e

jπ]􏼐 􏼑 � f μ, e
jπ

e
jπ]􏼐 􏼑 � f(μ, ]), (8)

for all μ, ] ∈ O. □

Corollary 2. If a binary operation f: O2⟶ O is migrative,
then f(− μ, − ]) � f(μ, ]) for all μ, ] ∈ O.

Theorem 7. A binary operation f: O2⟶ O is phase-
migrative iff it is the convex sum of a finite family of phase-
migrative functions.

Proof. (⇒) f is the convex sum of itself.
(⇐) Let f(μ, ]) � 􏽐

n
i�1 wifi(μ, ]) with 􏽐

n
i�1 wi and

wi ∈ I. If fi (i � 12, . . . , n) is amplitude-migrative, then for
any θ ∈ R, f(ejθμ, ]) � 􏽐

n
i�1 wifi(ejθμ, ]) � 􏽐

n
i�1 wifi

(μ, ejθ]) � f(μ, ejθ]) for all μ, ] ∈ O.
Similarly, we have the following results. □

Theorem 8. A binary operation f: O2⟶ O is amplitude-
migrative iff it is the convex sum of a finite family of am-
plitude-migrative functions.

Corollary 3. A binary operationf: O2⟶ O is migrative iff
it is the convex sum of a finite family of migrative functions.

4. Migrativity and Rotational Invariance

Now we consider the relation between migrativity and ro-
tational invariance [3, 4].

Definition 5. (see [3]). Let f: O2⟶ O be a binary func-
tion, then f is rotationally invariant if

f μ · e
jθ

, ] · e
jθ

􏼐 􏼑 � f(μ, ]) · e
jθ

, (9)

for any θ ∈ R and μ, ] ∈ O.
Dick’s concept of rotational invariance was generalized

as follows:

Definition 6. (see [4]). Let f: O2⟶ O be a binary func-
tion, then f is h-rotationally invariant if, for a function
h: R2⟶ R,

f μ · e
jθ1 , ] · e

jθ2􏼐 􏼑 � f(μ, ]) · e
jh θ1 ,θ2( ), (10)

for any θ1, θ2 ∈ R and μ, ] ∈ O.

Theorem 9. A binary operation f: O2⟶ O is h-rota-
tionally invariant iff it is the convex sum of a finite family of
h-rotationally invariant functions.

Proof. (⇒) f is the convex sum of itself.
(⇐) Let f(μ, ]) � 􏽐

n
i�1 wifi(μ, ]) with 􏽐

n
i�1 wi and

wi ∈ I. If fi (i � 12, . . . , n) is h-rotationally invariant, then
for any θ1, θ2 ∈ R, f(ejθ1μ, ejθ2]) � 􏽐

n
i�1 wifi(ejθ1μ, ejθ2]) �

􏽐
n
i�1 wifi(μ, ])ejh(θ1 ,θ2) � f(μ, ])ejh(θ1 ,θ2) for all μ, ] ∈ O.
□ □

Corollary 4. A binary operation f: O2⟶ O is rotationally
invariant iff it is the convex sum of a finite family of rota-
tionally invariant functions.

First, for binary operations, there is no direct relation
betweenmigrativity and Dick’s rotational invariance [3]. For
example, f(μ, ]) � μ] is migrative but not rotational in-
variance. f(μ, ]) � (μ + ])/2 is rotational invariance but not
migrative.

Theorem 10. Let f: O2⟶ O be a migrative binary op-
eration and g: O⟶ O be its migrative generator, then g is
rotationally invariant iff

f μ · e
jθ1 , ] · e

jθ2􏼐 􏼑 � f(μ, ]) · e
j θ1+θ2( ), (11)

Rotate θ
New
Input

f
Input μ

Input ν

Output β1

(a)

Rotate θ New
Input

Input μ

Input ν

Output β2

f

(b)

Figure 1: Phase-migrative function (a) f(μ · ejθ, ]) and (b) f(μ, ] · ejθ).
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for any θ1, θ2 ∈ R and μ, ] ∈ O.

Proof. (⇒) g is rotationally invariant, i.e., g(μ · ejθ) � g

(μ) · ejθ for any θ ∈ R and μ, ] ∈ O. +en
f(μ · ejθ1 , ] · ejθ2) � g (μ · ejθ1 · ] · ejθ2) � ej(θ1+θ2) ·g(μ]) �

ej(θ1+θ2) ·f(μ, ]).
(⇐) If f satisfies equation (11), then for any θ ∈ R and

μ ∈ O, we have
g(μ · ejθ) � f(1, μ · ejθ) � f(1, μ) · ejθ � g(μ) · ejθ.

Moreover, we consider the relation between phase-
migrativity and conditional rotational invariance [4]. □

Theorem 11. A binary operation f: O2⟶ O satisfies

f μ · e
jθ1 , ] · e

jθ2􏼐 􏼑 � f(μ, ]) · e
j θ1+θ2( ), (12)

for any θ1, θ2 ∈ R and μ, ] ∈ O. 6en it is phase-migrative.
But the converse is not true.

Proof. For any θ ∈ R and μ, ] ∈ O,
f(ejθμ, ]) � f(μ, ]) · ejθ � f(μ, ejθ]). Moreover,
f(μ, ]) � (μ])2 is phase-migrative but does not satisfy
equation (12). □

Corollary 5. A binary operation f: O2⟶ O satisfies

f μ · e
jθ1 , ]􏼐 􏼑 � f(μ, ]) · e

jθ1

f μ, ] · e
jθ2􏼐 􏼑 � f(μ, ]) · e

jθ2

⎫⎪⎬

⎪⎭
, (13)

for any θ1, θ2 ∈ R and μ, ] ∈ O. 6en it is phase-migrative.
But the converse is not true.

Proof. Because equation (12) is equivalent to equation
(13), □

Theorem 12. Let f: O2⟶ O be a commutative binary
operation, if it satisfies f(ejθμ, ]) � f(μ, ]) · ejθ for all θ ∈ R
and μ, ] ∈ O. 6en

(1) it is phase-migrative;
(2) it is h− rotationally invariant, where h(θ1, θ2) �

θ1 + θ2.

Proof
(1) For any θ ∈ R and μ, ] ∈ O, we have f(μ, ejθ]) � f

(ejθ], μ) � f(], μ) · ejθ � f(μ, ]) · ejθ � f(μ · ejθ, ]).
(2) For any θ1, θ2 ∈ R and μ, ] ∈ O, we havef(μ · ejθ1 , ] ·

ejθ2) � f(μ, ] · ejθ2) · ejθ1 � f(] · ejθ2 , μ) · ejθ1 � f

(], μ) · ejθ1 · ejθ2 � f(μ, ]) · ej(θ1+θ2).

We give a binary operation f without commutativity,
f(μ, ]) � μ|]| satisfies f(ejθμ, ]) � f(μ, ]) · ejθ for all θ ∈ R
and μ, ] ∈ O. But it is neither commutative nor phase-
migrative. Moreover, it is h′− rotationally invariant, where
h′(θ1, θ2) � θ2.

+e relations between complex-valued migrativity of
complex fuzzy operations, amplitude migrativity of complex
fuzzy operations, phase valued migrativity of complex fuzzy
operations, rotational invariance of complex fuzzy opera-
tions, and the migrativity of fuzzy operations are shown in
Figure 2. □

Theorem 13. Let f: O2⟶ O be a commutative binary
operation, if it satisfies f(rμ, ]) � rf(μ, ]) for all r ∈ I and
μ, ] ∈ O. 6en

(1) it is amplitude-migrative;
(2) it satisfies f(r1μ, r2]) � r1r2f(μ, ]). for all r1, r2 ∈ I

and μ, ] ∈ O.

Proof. For any r ∈ I and μ, ] ∈ O, we have

(1) f(μ, r]) � f(r], μ) � r · f(], μ) � r · f(μ, ]) � f(r

μ, ]).
(2) f(r1μ, r2]) � r1 · f(μ, r2]) � r1 · f(r2], μ) � r2 · r1

·f(], μ) � r1r2 · f(μ, ]).

Complex-valued migrativity of
complex fuzzy operations

Phase-migrativity of
complex fuzzy operations

Amplitude-migrativity of
complex fuzzy operations

Migrativity of fuzzy operations

Rotational invariance of
complex fuzzy operations

Figure 2: Relations between complex-valued migrativity of complex fuzzy operations, amplitude migrativity of complex fuzzy operations,
phase valued migrativity of complex fuzzy operations, rotational invariance of complex fuzzy operations, and the migrativity of fuzzy
operations.
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We observe that it is homogeneous of order 2, i.e.,
f(rμ, r]) � r2f(μ, ]) when r1 � r2.

We give a binary operation f without commutativity,
f(μ, ]) � μ · ] · |]| satisfies f(rμ, ]) � r · f(μ, ]) for all r ∈ I
and μ, ] ∈ O. But it is neither commutative nor amplitude-
migrative. Moreover, it is homogeneous of order 3, i.e.,
f(rμ, r]) � r3f(μ, ]). □

Corollary 6. Let f: O2⟶ O be a commutative binary
operation, if it satisfies f(αμ, ]) � α · f(μ, ]) for all α ∈ O
and μ, ] ∈ O. 6en it is migrative

Theorem 14. If a binary operation f: O2⟶ O is
h− rotationally invariant where h1(θ1, θ2) � k(θ1, θ2) for
some k> 0. 6en f is phase-migrative,

Proof. For any θ ∈ R and μ, ] ∈ O, we have f(μ · ejθ, ]) �

f(μ, ]) · ejkθ � f(μ, ] · ejθ) for some k> 0. □

Theorem 15. If a binary operation f: O2⟶ O satisfies
f(r1μ, r2]) � (r1 · r2)

kf(μ, ]) for all r1, r2 ∈ I, all μ, ] ∈ O,
and some k> 0. 6en f is amplitude-migrative.

Proof. For any r ∈ I and μ, ] ∈ O, we have
f(rμ, ]) � rkf(μ, ]) � f(μ, r]) for some k> 0. □

Corollary 7. If a binary operation f: O2⟶ O satisfies
f(α1μ, α2]) � (α1 · α2)

kf(μ, ]) for all α1, α2 ∈ O, all
μ, ] ∈ O, and some k> 0. 6en f is migrative.

5. Conclusions

In this paper, we study the migrative binary complex fuzzy
operators

f(αμ, ]) � f(μ, α]), ∀μ, ] ∈ O, (14)

for three cases α ∈ I, α ∈ O, and α ∈ O. Interestingly, this
equation holds for all α ∈ O if and only if it holds for all
α ∈ I∪O (see+eorem 1). Note that the size of I∪O is much
smaller than that of O. +en we give the relationship among
phase-migrativity, amplitude-migrativity, migrativity, and
rotational invariance for complex fuzzy operations (see
Figure 1). We show that phase-migrativity is a special case of
conditional rotational invariance (see +eorem 12).

Note that this paper focused on binary complex fuzzy
operators. Future research should consider the migrativity of
n-dimensional complex fuzzy aggregation operators. Nat-
urally, other properties of complex fuzzy operators are
possible topics for future consideration.

In [31], Yager and Abbasov used complex numbers of
the form r · ejθ as Pythagorean membership grades, where
r ∈ [0, 1] and θ ∈ [0, π/2].+ese complex numbers are called
π − i numbers, which belong to the upper-right quadrant of
the unit disk in the complex plane. Viewed in this way,
studying the migrativity of Pythagorean fuzzy operators is a
special case of migrativity of complex fuzzy operators by
limiting the domain to π − i numbers. Obviously, a more
detailed discussion of the migrativity of Pythagorean fuzzy

aggregation operators [32], Pythagorean t-norm [33], will be
both necessary and interesting.
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