Minimal Doubly Resolving Sets of Some Classes of Convex Polytopes

Muhammad Ahmad (©), Dalal Alrowaili ${ }^{1}$, ${ }^{\mathbf{2}}$ Zohaib Zahid $\left(\mathbb{D},{ }^{1}\right.$ Imran Siddique ${ }^{(\mathbb{C}},{ }^{1}$ and Aiyared Iampan (${ }^{3}{ }^{3}$
${ }^{1}$ Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
${ }^{2}$ Department of Mathematics, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
${ }^{3}$ Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

Correspondence should be addressed to Imran Siddique; imransmsrazi@gmail.com
Received 1 December 2021; Accepted 26 January 2022; Published 22 February 2022
Academic Editor: Gohar Ali
Copyright © 2022 Muhammad Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Source localization is one of the most challenging problems in complex networks. Monitoring and controlling complex networks is of great interest for understanding different types of systems, such as biological, technological, and complex physical systems. Modern research has made great developments in identifying sensors through which we can monitor or control complex systems. For this task, we choose a set of sensors with the smallest possible size so that the source may be identified. The problem of locating the source of an epidemic in a network is equivalent to the problem of finding the minimal doubly resolving sets (MDRSs) in a network. In this paper, we calculate the minimal doubly resolving sets (MDRSs) of some classes of convex polytopes in order to compute their double metric dimension (DMD).

1. Introduction and Preliminaries

Graph theory is the most natural and essential method for utilizing and studying these disciplines in fields of research where networks are the fundamental building blocks. For example, (1) in database designing, computer networking, clustering of web documents, mobile phone networks, image processing, and resource allocation; (2) cell biology structure, population genetics, bioinformatics, and cell-sample sequencing are only a few examples in biology; (3) minimal sum coloring, traveling salesman problem, optimization utilizing PERT (project evaluation review technique), game theory, and task and time table scheduling, are all terms used in operations research; and (4) some study blocks in chemistry include the three-dimensional sophisticated simulated structure of atoms, molecular bonds, chemoinformatics, and molecular descriptors.

For a simple, connected, and undirected graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$, the distance $d(f, g)$ is the number of edges in the shortest path between two vertices $f, g \in V_{\Gamma}$. A vertex
$e \in V_{\Gamma}$ is said to resolve two vertices f and g, if $d(e, f) \neq d(e, g)$. The representation of a vertex $g \in \Gamma$ with respect to the ordered subset $L_{\Gamma}=\left\{l_{\imath} \mid 1 \leq \iota \leq \rho\right\}$ is defined as a ρ vector $\left(d\left(g, l_{l}\right)\right)_{l=1}^{\rho}$ (also known as vector of metric coordinates) and is denoted by $r\left(g \mid L_{\Gamma}\right)$. If any pair of distinct vertices of Γ has a unique vector of metric coordinates with respect to L_{Γ}, then L_{Γ} is called a resolving set of Γ. A resolving set or metric generator of minimum number of entries is called a basis for the graph Γ, and its count is known as the metric dimension (MD) of Γ, represented by $\operatorname{dim}(\Gamma)$.

The MD was first described in 1953 for general metric space [1]. Later, for the simple and undirected graph Γ, Slater [2] introduced the concept of a resolving set, in 1975. In 1976, Harary and Melter [3] individually introduced this graph theoretic parameter. A network intruder was the original purpose of the resolving sets, but Chartrand and Zhang [4] have published numerous uses of this technology in the method of positioning robot networks, chemical structures, and biological sciences. The findings of [5] discuss the applications of this invariant to chemistry, those of
[6] discuss applications to robot navigation in networks, and those of [7] discuss applications to pattern recognition and image processing. Several coin-weighing difficulties, such as those presented in [8, 9], as well as the full analysis of the game Mastermind, which is described in [10], have a strong link to the MD of Hamming graphs. Because of its wide applications in various branches of mathematics, such as discovery and verification in networks [11], methods of positioning robot networks [6], routing protocols geographically [12], optimization problems in combinatorics [13], and problems of sonar and coast guard LORAN [2], graph resolvability has become an important parameter in graph theory.

The MD of arbitrary graphs is a computationally challenging problem to solve. This has led to the discovery of useful boundaries for a number of graph classes. For instance, the bounds of MD for certain classes of Petersen graphs were evaluated by Shao et al. [14]. All the graphs with MD $n-1, n-2$, and 1 were classified by Chartrand et al. [5]. Tomescu et al. and Buczkowski et al. have researched the MD of specific distance-regular graph families, such as Jahangir graphs [15] and wheel graphs [16]. The MD for kayak paddle graphs and chorded cycles was determined by Ahmad et al. [17]. The MD of Mobius ladders was investigated by Ali et al. [18]. It has been shown that Mobius ladders are a family of cubic graphs with constant MD. The MD of regular bipartite graphs was calculated by Baca et al. (see [19]). Resolving sets were used to compute the MD for various classes of convex polytopes [20, 21]. Several years ago, Imran et al. [22] evaluated the MD of some plane graph families, and the MD of necklace graphs was computed using resolving sets in [23].

It is an intriguing task to determine the origins of propagation in complex networks. If a mysterious source of viral propagation is spreading throughout a network, the only information required to detect it is the infection time of a set of nodes known as sensing devices (or sensors). These devices may be able to track the shortest period of time they were contaminated. The only thing left to do is figure out how many devices will be required to ensure that the infection source is precisely located. The answer to this problem is a property called as double metric dimension [24, 25].

Identifying the infection source may be easy if one can watch the entire virus spreading process. However, the entire procedure may be too expensive due to the expense of data acquisition. Unless the initial timing of virus propagation is unclear, a doubly resolving sensor set may be able to reliably identify the sources of infection [26].

Detecting the virus source in a starlike network is more challenging than in a pathlike network [25]. For a star network with n vertices, the DMD is $n-1$, while for a path network it is 2. Furthermore, this indicates that the DMD is always dependent on the network's topology.

When we are interested in finding upper bounds on the MD of graphs, then DRSs are very helpful. DRSs were introduced by Caceres et al. [27] by proving their connection with the MD of the Cartesian product of the graph Γ and by showing that the least cardinality of a DRS is the upper limit
of the MD of the graph under consideration. Let v_{1}, v_{2}, y_{1}, and y_{2} be four distinct vertices of Γ; we say that v_{1}, v_{2} doubly resolves y_{1}, y_{2} or y_{1}, y_{2} doubly resolves v_{1}, v_{2}, if $d\left(v_{1}, y_{1}\right)-$ $d\left(v_{1}, y_{2}\right) \neq d\left(v_{2}, y_{1}\right)-d\left(v_{2}, y_{2}\right)$. A vertex set $D=\left\{v_{l} \mid 1 \leq\right.$ $t \leq \rho\} \subseteq V_{\Gamma}$ is termed as DRS of the graph Γ if any pair of distinct vertices of Γ are doubly resolved by some two vertices in $D \subseteq V_{\Gamma}$. A DRS having a minimum size is called the MDRS, and its size is called the DMD of Γ represented by $\psi(\Gamma)$. It is obvious that every DRS is a resolving set, which gives $\psi(\Gamma) \geq \operatorname{dim}(\Gamma)$ for all graphs Γ. The computational complexity of the DRSs and MD was investigated in [6, 28], respectively.

Thus, DRSs play a very important role while studying Cartesian products of graphs. The concept of finding upper bounds in the Cartesian product of graphs motivated us to work on DRSs of various classes of graphs. Ahmad et al. have created MDRSs for a number of Harary graph families [29]. The families of circulant graphs were found to have the same MD and MDRS [30]. The DMD and DRSs for the line graph of prism graphs and n-sunlet graphs have also been examined (for details, see [31]). The first explicit approximations of lower and upper bounds for the MDRSs problem were published by Chen et al. [32]. Ahmad et al. [33] have constructed the MD and MDRSs for the line graph of kayak paddle graphs. Lu et al. [34] developed a linear-time approach for the MDRS problem of all graphs, where each block represents a cycle or complete graph. In the case of prism and Hamming graphs and some convex polytopes, the MDRSs have been derived in [35-37], respectively. Liu et al. [38] considered the family of layer-sun graphs and their line graphs for the investigation of MDRSs. A recent study in [39] investigated the MDRSs for a variety of convex polytopes by Pan et al. The MD and MDRSs of jellyfish graphs and cocktail party graphs were evaluated by Liu et al. [40, 41]. Additionally, in [42], the line graphs of necklace graphs have been computed for the MDRS problem, as well as for the MD problem.

In the last few years, solving convex polytopes for the DMD has proven to be a tough problem. The DMD of double antiprism graphs A_{n}^{*} and convex polytopes U_{n}, described by Baca [43] and Imran et al. [21], respectively, are computed in this article. The MD of the convex polytopes A_{n}^{*} and U_{n} presented in the following theorems were calculated by Imran et al. [21, 44].

Theorem 1. Let A_{n}^{*} be the graph of double antiprism, then $\operatorname{dim}\left(A_{n}^{*}\right)=3$ for $n \geq 6$.

Theorem 2. Let U_{n} be the graph of convex polytopes, then $\operatorname{dim}\left(U_{n}\right)=3$ for $n \geq 6$.

In this paper, we computed the MDRSs for double antiprism graphs A_{n}^{*} and convex polytope U_{n}. In Section 2, we computed the MDRSs of double antiprism graphs A_{n}^{*} for $n \geq 6$. In Section 3, the MDRSs for the convex polytope U_{n}, where $n \geq 6$ have been conjectured. Section 4 concludes that the MDRSs for the double antiprism graphs A_{n}^{*} and convex polytopes U_{n} are constant.

2. Minimal Doubly Resolving Sets for the Double Antiprism Graphs A_{n}^{*}

Here, in this section, we computed the MDRSs for the double antiprism graphs A_{n}^{*}.

As demonstrated in Figure 1, the double antiprism graph A_{n}^{*} has 3 -sided and n-sided faces.

We define the inner cycle vertices which are represented by $\left\{q_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$, the middle cycle vertices which are represented by $\left\{r_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$, and the outer cycle vertices which are represented by $\left\{s_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$ as displayed in Figure 1.

Here, the DMD $\psi\left(A_{n}^{*}\right) \geq 3$, for $n \geq 3$ by applying Theorem 1. We are going to prove the $\operatorname{DMD} \psi\left(A_{n}^{*}\right)=3$, for $n \geq 3$
as well. To calculate the distances for the double antiprism graph A_{n}^{*}, let $S_{\mu}\left(r_{0}\right)=\left\{r \in V_{A_{n}^{*}}: d\left(r_{0}, r\right)=\mu\right\}$ be a vertex set in $V_{A_{n}^{*}}$ at a distance μ from r_{0}. Table 1 can be easily formulated for $S_{\mu}\left(r_{0}\right)$, and it will be used to calculate the distances between any two vertices in $V_{A_{n}^{*}}$.

The symmetry of A_{n}^{*}, for $n \geq 3$ shows that

$$
\begin{align*}
d\left(q_{\mu}, q_{\nu}\right) & =d\left(r_{\mu}, r_{\nu}\right)=d\left(s_{\mu}, s_{\nu}\right) \tag{1}\\
& =d\left(r_{0}, r_{|\mu-\nu|}\right), \quad \text { if } 0 \leq|\mu-\nu| \leq n-1
\end{align*}
$$

When n is odd, we have

$$
\begin{align*}
& d\left(s_{\mu}, r_{\nu}\right)= \begin{cases}d\left(r_{0}, s_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \nu>\mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \mu \geq v,\end{cases} \\
& d\left(q_{\mu}, r_{\nu}\right)= \begin{cases}d\left(r_{0}, q_{|\mu-\nu|}\right)+1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, q_{|\mu-\nu|}\right)-1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \nu>\mu, \\
d\left(r_{0}, q_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \mu \geq \nu,\end{cases} \\
& d\left(q_{\mu}, s_{v}\right)= \begin{cases}d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=1 \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right), & \text { if } 2 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=\frac{n+1}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+2, & \text { if } \frac{n+3}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+2, & \text { if } 0 \leq|\mu-\nu| \leq \frac{n-3}{2} \text { for } \nu \geq \mu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=\frac{n-1}{2} \text { for } v>\mu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right), & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-2 \text { for } \nu>\mu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=n-1 \text { for } \nu>\mu .\end{cases} \tag{2}
\end{align*}
$$

Figure 1: : Double antiprism graph A_{n}^{*}.

Table 1: $S_{\mu}\left(r_{0}\right)$ for A_{n}^{*}.

n	μ	$S_{\mu}\left(r_{0}\right)$
	1	$\left\{q_{0}, q_{1}, r_{1}, r_{n-1}, s_{0}, s_{n-1}\right\}$
Even	$2 \leq \mu \leq\lfloor n / 2\rfloor-1$	$\left\{q_{\mu}, q_{n-\mu+1}, r_{\mu}, r_{n-\mu}, s_{\mu-1}, s_{n-\mu}\right\}$
Odd	$n / 2$	$\left\{q_{n / 2}, q_{n+2 / 2}, r_{n / 2}, s_{n-2 / 2}, s_{n / 2}\right\}$
	$n-1 / 2$	$\left\{q_{n-1 / 2}, q_{n+3 / 2}, r_{n-1 / 2}, r_{n+1 / 2}, s_{n-3 / 2}, s_{n+1 / 2}\right\}$
	$n+1 / 2$	$\left\{q_{n+1 / 2}, s_{n-1 / 2}\right\}$

When n is even, we have

$$
\begin{align*}
& d\left(q_{j}, r_{k}\right)= \begin{cases}d\left(r_{0}, q_{|\mu-\nu|}\right)+1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, q_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, q_{|\mu-\nu|}\right)-1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \nu>\mu, \\
d\left(r_{0}, q_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \mu \geq \nu,\end{cases} \\
& d\left(s_{\mu}, r_{\nu}\right)= \begin{cases}d\left(r_{0}, s_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \nu>\mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \nu>\mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \mu \geq \nu,\end{cases} \tag{3}\\
& d\left(q_{\mu}, s_{\nu}\right)= \begin{cases}d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=1 \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right), & \text { if } 2 \leq|\mu-\nu| \leq \frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+2, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, r_{|\mu-v|}\right)+2, & \text { if } 0 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \nu \geq \mu, \\
d\left(r_{0}, r_{|\mu-v|}\right), & \text { if } \frac{n}{2} \leq|\mu-\nu| \leq n-2 \text { for } \nu>\mu, \\
d\left(r_{0}, r_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=n-1 \text { for } \nu>\mu .\end{cases}
\end{align*}
$$

As a result, if we know the distance $d\left(r_{0}, r\right)$ for each $r \in V_{A_{n}^{*}}$, we can rebuild the distances between any two vertices in $V_{A_{n}^{*}}$.

Lemma 1. For $n \geq 3, \psi\left(A_{n}^{*}\right)=3$, whenever n is even.
Proof. In order to prove $\psi\left(A_{n}^{*}\right)=3$, for even $n \geq 3$, it is sufficient to find a DRS of cardinality 3. Now, from Table 1, using the sets $S_{\mu}\left(r_{0}\right)$, Table 2 demonstrates the vectors of metric coordinates for each vertex of A_{n}^{*} in relation to the set $D=\left\{q_{0}, r_{n-2 / 2}, s_{n-1}\right\}$.

From Table 2, we can verify that if two vertices $a_{1}, a_{2} \in S_{\mu}$ $\left(r_{0}\right)$ for some $\mu=1,2, \ldots, 1 / 2$, then $r\left(a_{1}, D\right)-r\left(a_{2}, D\right) \neq 0$. Thus, if there are two vertices $a_{1} \in S_{\mu}\left(r_{0}\right)$ and $a_{2} \in S_{v}\left(r_{0}\right)$ for any $\mu, v=1,2, \ldots, 1 / 2, \mu \neq v$, then $r\left(a_{1}, D\right)-r\left(a_{2}, D\right) \neq$ $\mu-v$. Therefore, the set $D=\left\{q_{0}, r_{n-2 / 2}, s_{n-1}\right\}$ is the MDRS. Thus, Lemma 1 holds.

Lemma 2. For $n \geq 3, \psi\left(A_{n}^{*}\right)=3$, whenever n is odd.
Proof. Here, the MDRS for A_{3}^{*} is $D=\left\{q_{0}, r_{1}, r_{2}\right\}$. In order to prove $\psi\left(A_{n}^{*}\right)=3$, for odd $n \geq 5$, it is sufficient to find a DRS of cardinality 3 . Now, from Table 1 , using the sets $S_{\mu}\left(r_{0}\right)$, Table 3 demonstrates the vectors of metric coordinates for each vertex of A_{n}^{*} in relation to the set $D=\left\{q_{0}, r_{1}, r_{n+1 / 2}\right\}$.

From Table 3, we can verify that if two vertices $a_{1}, a_{2} \in S_{\mu} \quad\left(r_{0}\right)$ for some $\mu=1,2, \ldots, n+1 / 2$, then $r\left(a_{1}, D\right)-r\left(a_{2}, D\right) \neq 0$. Thus, if there are two vertices $a_{1} \in S_{\mu}\left(r_{0}\right)$ and $a_{2} \in S_{v}\left(r_{0}\right)$ for any $\mu, v \in 1,2, \ldots, n+1 / 2$, $\mu \neq v$, then $r\left(a_{1}, D\right)-r\left(a_{2}, D\right) \neq \mu-v$. Therefore, the set $D=\left\{q_{0}, r_{1}, r_{n+1 / 2}\right\}$ is the MDRS. Thus, Lemma 2 holds.

Using the entire technique, it is clearly shown $\psi\left(A_{n}^{*}\right)=3$, for $n \geq 3$. Using Lemmas 1 and 2 , the main theorem is stated as follows:

Theorem 3. Let A_{n}^{*} be the double antiprism graph, then $\psi\left(A_{n}^{*}\right)=3$ for $n \geq 3$.

3. Minimal Doubly Resolving Sets for the Convex Polytope U_{n}

Here, in this section, we computed the MDRSs for convex polytope U_{n}.

As demonstrated in Figure 2, the convex polytope U_{n} has 4 -sided, 5 -sided, and n-sided faces.

We define, the inner cycle vertices are represented by $\left\{q_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$, the interior cycle vertices are represented by $\left\{r_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$, the set of exterior vertices are represented by $\left\{s_{\mu}: \forall 0 \leq \mu \leq n-1\right\} \cup\left\{t_{\mu}: \forall 0 \leq \mu \leq n-1\right\}$, and the outer cycle vertices are represented by $\left\{w_{\mu}: \forall 0 \leq \mu\right.$ $\leq n-1\}$ as displayed in Figure 2.

Here, $\psi\left(U_{n}\right) \geq 3$, for $n \geq 6$ by applying Theorem 2 . We are going to prove $\psi\left(U_{n}\right)=3$, for $n \geq 6$ as well. To calculate the distances for the convex polytope U_{n}, let $S_{\mu}\left(r_{0}\right)=\left\{r \in V_{U_{n}}\right.$: $\left.d\left(r_{0}, r\right)=\mu\right\}$ be a vertex set in $V_{U_{n}}$ at a distance μ from r_{0}. Table 4 can be easily formulated for $S_{\mu}\left(r_{0}\right)$, and it will be used to calculate the distances between any two vertices in $V_{U_{n}}$.

The symmetry of U_{n}, where $n \geq 6$, shows that

$$
\begin{align*}
& d\left(q_{\mu}, s_{\nu}\right)=d\left(r_{0}, s_{|\mu-\nu|}\right)+1, \quad \text { if } 0 \leq|\mu-\nu| \leq n-1, \\
& d\left(r_{\mu}, q_{\nu}\right)=d\left(r_{\mu}, s_{\nu}\right)=d\left(t_{\mu}, w_{\nu}\right)=d\left(r_{0}, q_{|\mu-\nu|}\right), \quad \text { if } 0 \leq|\mu-\nu| \leq n-1, \\
& d\left(r_{\mu}, r_{\nu}\right)=d\left(q_{\mu}, q_{\nu}\right)=d\left(w_{\mu}, w_{\nu}\right)=d\left(r_{0}, r_{|\mu-\nu|}\right), \quad \text { if } 0 \leq|\mu-\nu| \leq n-1, \\
& d\left(s_{\mu}, s_{\nu}\right)= \begin{cases}d\left(r_{0}, s_{|\mu-\nu|}\right)-1, & \text { if }|\mu-\nu|=0, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=1, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } 2 \leq|\mu-\nu| \leq n-2, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=n-1,\end{cases} \tag{4}
\end{align*}
$$

When n is odd, we have

$$
d\left(q_{\mu}, t_{\nu}\right)=d\left(r_{\mu}, w_{\nu}\right)= \begin{cases}d\left(r_{0}, w_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \mu>\nu \\ d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu \\ d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu\end{cases}
$$

Table 2: Vectors of metric coordinates for A_{n}^{*} for even $n \geq 3$.

μ	$S_{\mu}\left(r_{0}\right)$	$D=\left\{q_{0}, r_{n-2 / 2}, s_{n-1}\right\}$
0	r_{0}	$(1,(n-2 / 2), 1)$
	q_{0}	$(0,(n / 2), 2)$
	q_{1}	$(1,(n-2 / 2), 2)$
1	r_{1}	$(2,(n-4 / 2), 2)$
	r_{n-1}	$(1,(n / 2), 1)$
	s_{0}	$(2,(n-2 / 2), 1)$
	s_{n-1}	$(2,(n / 2), 0)$
	q_{μ}	$(\mu,(n-2 \mu / 2), \mu+1)$
	$q_{n-\mu+1}$	$(\mu-1,(n-2 \mu+4 / 2), \mu)$
$2 \leq \mu \leq(n-2 / 2)$	r_{μ}	$(\mu+1,(n-2 \mu-2 / 2), \mu+1)$
	$r_{n-\mu}$	$(\mu, n-2 \mu+2 / 2, \mu)$
	$s_{\mu-1}$	$(\mu+1,(n-2 \mu / 2), \mu)$
	$s_{n-\mu}$	$(\mu,(n-2 \mu+4 / 2), \mu-1)$
	$q_{n / 2}$	$((n / 2), 1,(n+2 / 2))$
	$q_{n+2 / 2}$	$(n-2 / 2,1, n / 2)$
$n / 2$	$r_{n / 2}$	$(n / 2,1, n / 2)$
	$s_{n-2 / 2}$	$(n+2 / 2,1, n / 2)$
	$s_{n / 2}$	$(n / 2,2, n-2 / 2)$

Table 3: : Vectors of metric coordinates for A_{n}^{*} for odd $n \geq 5$.

μ	$S_{\mu}\left(f_{0}\right)$	$D=\left\{q_{0}, r_{1}, r_{n+1 / 2}\right\}$
0	r_{0}	$(1,1, n-1 / 2)$
	q_{0}	$(0,2, n-1 / 2)$
	q_{1}	$(1,1, n+1 / 2)$
1	r_{1}	$(2,0, n-1 / 2)$
	r_{n-1}	$(1,2, n-3 / 2)$
	s_{0}	$(2,1, n+1 / 2)$
	s_{n-1}	$(2,2, n-1 / 2)$
	q_{μ}	$(\mu, \mu-1,(n-2 \mu+3 / 2))$
	$q_{n-\mu+1}$	$(\mu-1, \mu+1,(n-2 \mu+1 / 2))$
$2 \leq \mu \leq(n-3 / 2)$	r_{μ}	$(\mu+1, \mu-1,(n-2 \mu+1 / 2))$
	$r_{n-\mu}$	$(\mu, \mu+2,(n-2 \mu-1 / 2))$
	$s_{\mu-1}$	$(\mu+1, \mu-1,(n-2 \mu+3 / 2))$
	$s_{n-\mu}$	$(\mu, \mu+1,(n-2 \mu+1 / 2))$
	$q_{n-1 / 2}$	$(n-1 / 2, n-3 / 2,2)$
	$q_{n+3 / 2}$	$(n-3 / 2, n+1 / 2,1)$
$n-1 / 2$	$r_{n-1 / 2}$	$(n+1 / 2, n-3 / 2,1)$
	$r_{n+1 / 2}$	$(n-1 / 2, n-1 / 2,0)$
	$s_{n-3 / 2}$	$(n+1 / 2, n-3 / 2,2)$
	$s_{n+1 / 2}$	$(n-1 / 2, n+1 / 2,1)$
$1 / 2$	$q_{n+1 / 2}$	$(n-1 / 2, n-1 / 2,1)$
	$s_{n-1 / 2}$	$(n+1 / 2, n-1 / 2,1)$

Figure 2: : Convex polytope U_{n}.

Table 4: $S_{\mu}\left(r_{0}\right)$ for U_{n}.

n	μ	$S_{\mu}\left(r_{0}\right)$
	1	$\left\{q_{0}, r_{1}, r_{n-1}, s_{0}\right\}$
Even	$2 \leq \mu \leq\lfloor n / 2\rfloor-1$	$\left\{q_{1}, q_{n-1}, r_{2}, r_{n-2}, t_{0}, t_{n-1}, s_{1}, s_{n-1}\right\}$
	$n / 2$	$\left\{q_{\mu-1}, q_{n-\mu+1}, r_{\mu}, r_{n-\mu}, s_{\mu-1}, s_{n-\mu+1}, t_{\mu-2}, t_{n-\mu+1}, w_{\mu-3}, w_{n-\mu+2}\right\}$
	$n+2 / 2$	$\left\{q_{n-2 / 2}, q_{n+2 / 2}, r_{n / 2}, s_{n-2 / 2}, s_{n+2 / 2}, t_{n-4 / 2}, t_{n+2 / 2}, w_{n-6 / 2}, w_{n+4 / 2}\right\}$
	$n+4 / 2$	$\left\{q_{n / 2}, s_{n / 2}, t_{n-2 / 2}, t_{n / 2}, w_{n-4 / 2}, w_{n+2 / 2}\right\}$
Odd	$n-1 / 2$	$\left\{w_{n-2 / 2}, w_{n / 2}\right\}$
	$n+1 / 2$	$\left\{q_{n-3 / 2}, q_{n+3 / 2}, r_{n-1 / 2}, r_{n+1 / 2}, s_{n-3 / 2}, s_{n+3 / 2}, t_{n-5 / 2}, t_{n+3 / 2}, w_{n-7 / 2}, w_{n+5 / 2}\right\}$
	$n+3 / 2$	$\left\{q_{n-1 / 2}, q_{n+1 / 2}, s_{n-1 / 2}, s_{n+1 / 2}, t_{n-3 / 2}, t_{n+1 / 2}, w_{n-5 / 2}, w_{n+3 / 2}\right\}$
	$n+5 / 2$	$\left\{t_{n-1 / 2}, w_{n-3 / 2}, w_{n+1 / 2}\right\}$
	$\left\{w_{n-1 / 2}\right\}$	

$$
\begin{aligned}
& d\left(r_{\mu}, t_{\nu}\right)= \begin{cases}d\left(r_{0}, t_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& d\left(q_{\mu}, w_{\nu}\right)= \begin{cases}d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+2, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu,\end{cases}
\end{aligned}
$$

$$
\begin{align*}
& d\left(t_{\mu}, t_{\nu}\right)= \begin{cases}d\left(r_{0}, t_{|\mu-\nu|}\right)-2, & \text { if }|\mu-\nu|=0, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)-1, & \text { if }|\mu-\nu|=1, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if } 2 \leq|\mu-\nu| \leq \frac{n-1}{2}, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-2, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=n-1,\end{cases} \\
& d\left(s_{\mu}, w_{\nu}\right)= \begin{cases}d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } 0 \leq|\mu-\nu| \leq \frac{n-1}{2} \text { for } v \geq \mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } \frac{n+1}{2} \leq|\mu-\nu| \leq n-1 \text { for } v>\mu,\end{cases} \tag{5}
\end{align*}
$$

When n is even, we have

$$
\begin{aligned}
& d\left(q_{\mu}, t_{\nu}\right)=d\left(r_{\mu}, w_{\nu}\right)= \begin{cases}d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu,\end{cases} \\
& d\left(s_{\mu}, t_{\nu}\right)= \begin{cases}d\left(r_{0}, w_{|\mu-\nu|}\right)-3, & \text { if }|\mu-\nu|=1 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-2, & \text { if }|\mu-\nu|=2 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-1, & \text { if } 3 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-2 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-2, & \text { if }|\mu-\nu|=0 \text { for } v \geq \mu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-1, & \text { if }|\mu-\nu|=1 \text { for } \nu>\mu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if } 2 \leq|\mu-\nu| \leq n-3 \text { for } \nu>\mu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-1, & \text { if }|\mu-\nu|=n-2 \text { for } \nu>\mu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)-2, & \text { if }|\mu-\nu|=n-1 \text { for } \nu>\mu,\end{cases}
\end{aligned}
$$

$$
\begin{align*}
& d\left(r_{j}, t_{k}\right)= \begin{cases}d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)-1, & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu,\end{cases} \\
& d\left(q_{j}, w_{k}\right)= \begin{cases}d\left(r_{0}, w_{|\mu-\nu|}\right), & \text { if } 1 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if }|\mu-\nu|=\frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+2, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, w_{|\mu-\nu|}\right)+1, & \text { if } 0 \leq|\mu-\nu| \leq n-1 \text { for } \nu \geq \mu,\end{cases} \\
& d\left(t_{j}, t_{k}\right)= \begin{cases}d\left(r_{0}, t_{|\mu-\nu|}\right)-2, & \text { if }|\mu-\nu|=0, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)-1, & \text { if }|\mu-\nu|=1, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if } 2 \leq|\mu-\nu| \leq \frac{n-2}{2}, \\
d\left(r_{0}, t_{|\mu-\nu|}\right)+1, & \text { if } \frac{n}{2} \leq|\mu-\nu| \leq n-2, \\
d\left(r_{0}, t_{|\mu-\nu|}\right), & \text { if }|\mu-\nu|=n-1,\end{cases} \\
& d\left(s_{j}, w_{k}\right)= \begin{cases}d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } 1 \leq|\mu-\nu| \leq \frac{n}{2} \text { for } \mu>\nu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } \frac{n+2}{2} \leq|\mu-\nu| \leq n-1 \text { for } \mu>\nu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right)+1, & \text { if } 0 \leq|\mu-\nu| \leq \frac{n-2}{2} \text { for } \nu \geq \mu, \\
d\left(r_{0}, s_{|\mu-\nu|}\right), & \text { if } \frac{n}{2} \leq|\mu-\nu| \leq n-1 \text { for } \nu>\mu .\end{cases} \tag{6}
\end{align*}
$$

As a result, if we know the distance $d\left(r_{0}, r\right)$ for each $r \in V_{U_{n}}$, we can rebuild the distances between any two vertices in $V_{U_{n}}$.

Lemma 3. For $n \geq 6, \psi\left(U_{n}\right)=3$, whenever n is even.
Proof. In order to prove $\psi\left(U_{n}\right)=3$, for even $n \geq 6$, it is sufficient to find a DRS of cardinality 3. Now, from Table 4, using the sets $S_{\mu}\left(r_{0}\right)$, Table 5 demonstrates the vectors of metric coordinates for each vertex of U_{n} in relation to the set $D=\left\{q_{0}, q_{n / 2}, w_{0}\right\}$.

From Table 5, we can verify that if two vertices $b_{1}, b_{2} \in S_{\mu}$ $\left(r_{0}\right)$ for some $\mu=1,2, \ldots, n+4 / 2$, then $r\left(b_{1}, D\right)-r\left(b_{2}, D\right)$ $\neq 0$. Thus, if there are two vertices $b_{2} \in S_{\mu}\left(r_{0}\right)$ and $b_{2} \in S_{v}$ $\left(r_{0}\right)$ for any $\mu=1,2, \ldots, n+4 / 2, \mu \neq v$, then $r\left(b_{1}, D\right)-r\left(b_{2}\right.$, D) $\neq \mu-v$. Therefore, the set $D=\left\{q_{0}, q_{n / 2}, w_{0}\right\}$ is the MDRS. Thus, Lemma 3 holds.

Lemma 4. For $n \geq 6, \psi\left(U_{n}\right)=3$, whenever n is odd.
Proof. In order to prove $\psi\left(U_{n}\right)=3$, for odd $n \geq 6$, it is sufficient to find a DRS of cardinality 3. Now, from Table 4, using the sets $S_{\mu}\left(r_{0}\right)$, Table 6 demonstrates the vectors of metric coordinates for each vertex of U_{n} in relation to the set $D=\left\{q_{0}, q_{n-1 / 2}, w_{n+7 / 2}\right\}$.

From Table 6, we can verify that if two vertices $b_{1}, b_{2} \in S_{\mu}$ $\left(r_{0}\right)$ for some $\mu=1,2, \ldots, n+5 / 2$, then $r\left(b_{1}, D\right)-r\left(b_{2}\right.$, $D) \neq 0$. Thus, if there are two vertices $b_{2} \in S_{\mu}\left(r_{0}\right)$ and $b_{2} \in S_{v}$ $\left(r_{0}\right)$ for any $\mu=1,2, \ldots, n+5 / 2, \mu \neq v$, then $r\left(b_{1}, D\right)-r\left(b_{2}\right.$, D) $\neq \mu-v$. Therefore, the set $D=\left\{q_{0}, q_{n-1 / 2}, w_{n+7 / 2}\right\}$ is the MDRS. Thus, Lemma 4 holds.

Using the entire technique, it is clearly shown $\psi\left(U_{n}\right)=3$, for $n \geq 6$. Using Lemmas 3 and 4 , the main theorem is stated as follows:

Table 5: Vectors of metric coordinates for U_{n} for even $n \geq 6$.

μ	$S_{\mu}\left(r_{0}\right)$	$D=\left\{q_{0}, q_{n / 2}, w_{0}\right\}$
0	r_{0}	(1, $n+2 / 2,3$)
	q_{0}	$(0, n / 2,4)$
	r_{1}	$(2, n / 2,3)$
1	r_{n-1}	$(2, n / 2,4)$
	s_{0}	(2, $n+4 / 2,1)$
2	q_{1}	$(1, n-2 / 2,4)$
	q_{n-1}	$(1, n-2 / 2,5)$
	r_{2}	(3, $n-2 / 2,4$)
	r_{n-2}	(3, $n-2 / 2,5$)
	s_{1}	(3, $n+2 / 2,2)$
	s_{n-1}	(3, $n+2 / 2,3$)
	t_{0}	(3, $n+4 / 2,1$)
	t_{n-1}	(3, $n+4 / 2,2)$
$3 \leq \mu \leq n-2 / 2$	$q_{\mu-1}$	$(\mu-1, n-2 \mu+2 / 2, \mu+2)$
	$q_{n-\mu+1}$	$(\mu-1, n-2 \mu+2 / 2, \mu+3)$
	r_{μ}	$(\mu+1, n-2 \mu+2 / 2, \mu+2)$
	$r_{n-\mu}$	$(\mu+1, n-2 \mu+2 / 2, \mu+3)$
	$s_{\mu-1}$	$(\mu+1, n-2 \mu+6 / 2, \mu)$
	$s_{n-\mu+1}$	$(\mu+1, n-2 \mu+6 / 2, \mu+1)$
	$t_{\mu-2}$	$(\mu+1, n-2 \mu+8 / 2, \mu-1)$
	$t_{n-\mu+1}$	$(\mu+1, n-2 \mu+8 / 2, \mu)$
	$w_{\mu-3}$	$(\mu+1, n-2 \mu+12 / 2, \mu-3)$
	$w_{n-\mu+2}$	$(\mu+1, n-2 \mu+12 / 2, \mu-2)$
$n / 2$	$q_{n-2 / 2}$	($n-2 / 2,1, n+4 / 2)$
	$q_{n+2 / 2}$	$(n-2 / 2,1, n+6 / 2)$
	$r_{n / 2}$	$(n+2 / 2,1, n+4 / 2)$
	$s_{n-2 / 2}$	$(n+2 / 2,3, n / 2)$
	$s_{n+2 / 2}$	$(n+2 / 2,3, n+2 / 2)$
	$t_{n-4 / 2}$	$(n+2 / 2,4, n-2 / 2)$
	$t_{n+2 / 2}$	($n+2 / 2,4, n / 2)$
	$w_{n-6 / 2}$	$(n+2 / 2,6, n-6 / 2)$
	$w_{n+4 / 2}$	$(n+2 / 2,6, n-4 / 2)$
$n+2 / 2$	$q_{n / 2}$	($n / 2,0, n+6 / 2)$
	$s_{n / 2}$	$(n+4 / 2,2, n+2 / 2)$
	$t_{n-2 / 2}$	$(n+4 / 2,3, n / 2)$
	$t_{n / 2}$	$(n+4 / 2,3, n+2 / 2)$
	$w_{n-4 / 2}$	$(n+4 / 2,5, n-4 / 2)$
	$w_{n+2 / 2}$	$(n+4 / 2,5, n-2 / 2)$
$n+4 / 2$	$w_{n-2 / 2}$	$(n+6 / 2,4, n-2 / 2)$
	$w_{n / 2}$	$(n+6 / 2,4, n / 2)$

Table 6: Vectors of metric coordinates for U_{n} for odd $n \geq 6$.

μ	$S_{\mu}\left(r_{0}\right)$	$D=\left\{q_{0}, q_{n-1 / 2}, w_{n+7 / 2}\right\}$
0	r_{0}	$(1, n+1 / 2, n-3 / 2)$
	q_{0}	$(0, n-1 / 2, n-1 / 2)$
1	r_{1}	$(2, n-1 / 2, n-1 / 2)$
	r_{n-1}	$(2, n+1 / 2, n-5 / 2)$
	s_{0}	$(2, n+3 / 2, n-5 / 2)$
	q_{1}	$(1, n-3 / 2, n+1 / 2)$
	q_{n-1}	$(1, n-1 / 2, n-3 / 2)$
2	r_{2}	$(3, n-3 / 2, n+1 / 2)$
	r_{n-2}	$(3, n-1 / 2, n-7 / 2)$
	s_{1}	$(3, n+1 / 2, n-3 / 2)$
	s_{n-1}	$(3, n+3 / 2, n-7 / 2)$
	t_{0}	$(3, n+5 / 2, n-5 / 2)$
	t_{n-1}	$(3, n+5 / 2, n-7 / 2)$

Table 6: Continued.

μ	$S_{\mu}\left(r_{0}\right)$	$D=\left\{q_{0}, q_{n-1 / 2}, w_{n+7 / 2}\right\}$
$3 \leq \mu \leq n-3 / 2$	$q_{\mu-1}$	$= \begin{cases}(\mu-1, n-2 \mu+1 / 2, n+2 \mu-3 / 2), & \text { if } \mu \leq 5 \\ (\mu-1, n-2 \mu+1 / 2, n-2 \mu+17 / 2), & \text { if } \mu>5\end{cases}$
	$q_{n-\mu+1}$	$= \begin{cases}(\mu-1, n-2 \mu+3 / 2, n-2 \mu+1 / 2), & \text { if } \mu \leq n-7 / 2 \\ (\mu-1, n-2 \mu+3 / 2,2 \mu-n-11 / 2), & \text { if } \mu>n-7 / 2\end{cases}$
	r_{μ}	$=\left\{\begin{array}{ll} (\mu+1, n-2 \mu+1 / 2, n+2 \mu-3 / 2), & \text { if } \mu \leq 4 \\ (\mu+1, n-2 \mu+1 / 2, n-2 \mu+9 / 2), & \text { if } \mu>4 \end{array} .\right.$
	$r_{n-\mu}$	$= \begin{cases}(\mu+1, n-2 \mu+3 / 2, n-2 \mu-3 / 2), & \text { if } \mu<n-7 / 2 \\ (\mu+1, n-2 \mu+3 / 2,2 \mu-n+13 / 2), & \text { if } \mu \geq n-7 / 2\end{cases}$
	$s_{\mu-1}$	$= \begin{cases}(\mu+1, n-2 \mu+5 / 2, n+2 \mu-7 / 2), & \text { if } j \leq 5 \\ (j+1, n-2 j+5 / 2, n-2 \mu+13 / 2), & \text { if } j>5\end{cases}$
	$s_{n-\mu+1}$	$= \begin{cases}(\mu+1, n-2 \mu+7 / 2, n-2 \mu-3 / 2), & \text { if } \mu \leq n-7 / 2 \\ (\mu+1, n-2 \mu+7 / 2,2 \mu-n+9 / 2), & \text { if } \mu>n-7 / 2\end{cases}$
	$t_{\mu-2}$	$= \begin{cases}(\mu+1, n-2 \mu+7 / 2, n+2 \mu-9 / 2), & \text { if } \mu \leq 5 \\ (\mu+1, n-2 \mu+7 / 2, n-2 \mu+13 / 2), & \text { if } \mu>5\end{cases}$
	$t_{n-\mu+1}$	$= \begin{cases}(\mu+1, n-2 \mu+9 / 2, n-2 \mu-3 / 2), & \text { if } \mu \neq n-3 / 2 \\ (n-1 / 2,6,2), & \text { if } \mu=n-3 / 2\end{cases}$
	$\begin{gathered} w_{\mu-3} \\ w_{n-\mu+2} \end{gathered}$	$=\left\{\begin{array}{cl} (\mu+1, n-2 \mu+11 / 2, n+2 \mu-13 / 2), & \text { if } \mu \leq 6 \\ (\mu+1, n-2 \mu+11 / 2, n-2 \mu+5 / 2), & \text { if } \mu>6 \\ (\mu+1, n-2 \mu+13 / 2, n-2 \mu-3 / 2) \end{array} .\right.$
$n-1 / 2$	$q_{n-3 / 2}$	$(n-3 / 2,1,9)$
	$q_{n+3 / 2}$	($n-3 / 2,2,6$)
	$r_{n-1 / 2}$	$(n+1 / 2,1,7)$
	$r_{n+1 / 2}$	$(n+1 / 2,2,6)$
	$s_{n-3 / 2}$	$(n+1 / 2,3,7)$
	$s_{n+3 / 2}$	$(n+3 / 2,3,5)$
	$t_{n-5 / 2}$	$(n+1 / 2,4,7)$
	$t_{n+3 / 2}$	$(n+1 / 2,5,3)$
	$w_{n-7 / 2}$	$(n+1 / 2,6,7)$
	$w_{n+5 / 2}$	$(n+1 / 2,7,1)$
$n+1 / 2$	$q_{n-1 / 2}$	$(n-1 / 2,0,8)$
	$q_{n+1 / 2}$	$(n-1 / 2,1,7)$
	$s_{n-1 / 2}$	$(n+3 / 2,2,6)$
	$s_{n+1 / 2}$	$(n+3 / 2,3,5)$
	$t_{n-3 / 2}$	$(n+3 / 2,3,6)$
	$t_{n+1 / 2}$	$(n+3 / 2,4,4)$
	$w_{n-5 / 2}$	$(n+3 / 2,5,6)$
	$w_{n+3 / 2}$	$(n+3 / 2,6,2)$
$n+3 / 2$	$t_{n-1 / 2}$	$(n+5 / 2,3,5)$
	$w_{n-3 / 2}$	$(n+5 / 2,4,5)$
	$w_{n+1 / 2}$	$(n+5 / 2,5,3)$
$n+5 / 2$	$w_{n-1 / 2}$	$(n+7 / 2,4,4)$

Theorem 4. Let U_{n} be the convex polytope for $n \geq 6$. Then $\psi\left(U_{n}\right)=3$.

4. Conclusion

In this article, we calculate the MDRSs for the double antiprism graphs A_{n}^{*} and convex polytopes U_{n}. Our results show that the DMD of these plane graph families is limited and does not depend on the parity of n. In order to resolve all the vertices of these plane graph families, only three appropriately selected vertices are necessary.

Data Availability

No data were used in this manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford, UK, 1953.
[2] P. J. Slater, "Leaves of trees," Congressus Numerantium, vol. 14, pp. 449-559, 1975.
[3] F. Harary and R. A. Melter, "On the metric dimension of a graph," Ars Combinatoria, vol. 2, pp. 191-195, 1976.
[4] G. Chartrand and P. Zhang, "The theory and applications of resolvability in graphs, A Survey," Congressus Numerantium, vol. 160, pp. 47-68, 2003.
[5] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, "Resolvability in graphs and the metric dimension of a graph," Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99-113, 2000.
[6] S. Khuller, B. Raghavachari, and A. Rosenfeld, "Landmarks in graphs," Discrete Applied Mathematics, vol. 70, no. 3, pp. 217-229, 1996.
[7] R. A. Melter and I. Tomescu, "Metric bases in digital geometry," Computer Vision, Graphics, and Image Processing, vol. 25, no. 1, pp. 113-121, 1984.
[8] P. Erdos and A. Renyi, "On two problems of information theory," Publication of Mathematical Institute of the Hungarian Academy of Sciences, vol. 8, pp. 241-254, 1963.
[9] B. Lindstrom, "On a combinatory detection problem I," Publication of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 9, pp. 195-207, 1964.
[10] V. Chvtal, "Mastermind," Combinatorica, vol. 3, pp. 325-329, 1983.
[11] Z. Beerliova, F. Eberhard, T. Erlebach et al., "Network discovery and verification," IEEE Journal on Selected Areas in Communications, vol. 24, no. 12, pp. 2168-2181, 2006.
[12] K. Liu and N. Abu-Ghazaleh, "Virtual coordinates with backtracking for void traversal in geographic routing," in Lecture Notes on Computer Science, T. Kunz and S. S. Ravi, Eds., vol. 4104pp. 46-59, 2006.
[13] A. Sebő and E. Tannier, "On metric generators of graphs," Mathematics of Operations Research, vol. 29, no. 2, pp. 383393, 2004.
[14] Z. Shao, S. M. Sheikholeslami, P. Wu, and J. Liu, "The metric dimension of some generalized Petersen graphs," Discrete Dynamics in Nature and Society, vol. 2018, Article ID 4531958, 10 pages, 2018.
[15] I. Tomescu and I. Javaid, "On the metric dimension of the Jahangir graph," Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, vol. 50, no. 98, pp. 371-376, 2007.
[16] P. S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, "On k-dimensional graphs and their bases," Periodica Mathematica Hungarica, vol. 46, no. 1, pp. 9-15, 2003.
[17] A. Ahmad, M. Bača, and S. Sultan, "Computing the metric dimension of kayak paddles graph and cycles with chord," Proyecciones (Antofagasta), vol. 39, no. 2, pp. 287-300, 2020.
[18] M. Ali, G. Ali, A. Q. Baig, and M. K. Shafiq, "On the metric dimension of Mobius ladders," Ars Combinatoria, vol. 105, pp. 403-410, 2012.
[19] M. Baca, E. T. Baskoro, A. N. M. Salman, S. W. Saputro, and D. Suprijanto, "The metric dimension of regular bipartite graphs," Bulletin mathematique de la Societe des Sciences Mathematiques de Roumanie Nouvelle Serie, vol. 54, pp. 1528, 2011.
[20] M. Imran and A. Q. Baig, "A special class of convex polytopes with constant metric dimension," Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 77, pp. 197-205, 2011.
[21] M. Imran, S. A. Ul Haq Bokhary, and A. Q. Baig, "On families of convex polytopes with constant metric dimension,"

Computers \& Mathematics with Applications, vol. 60, no. 9, pp. 2629-2638, 2010.
[22] M. Imran, A. Q. Baig, and A. Ahmad, "Families of plane graphs with constant metric dimension," Utilitas Mathematica, vol. 88, pp. 43-57, 2012.
[23] I. Tomescu and M. Imran, "R-Sets and metric dimension of necklace graphs," Applied Mathematics \& Information Sciences, vol. 9, no. 1, pp. 63-67, 2015.
[24] B. Spinelli, L. E. Celis, P. Thiran, and P. Thiran, "The effect of transmission variance on observer placement for source-localization," Applied network science, vol. 2, no. 1, pp. 20-26, 2017.
[25] B. Spinelli, L. E. Celis, and P. Thiran, "How many sensors to localize the source? The double metric dimension of random networks," Allertonia, vol. 1036-1043, 2018.
[26] A. Farooq, M. Habib, A. Mahboob, W. Nazeer, and S. M. Kang, "Zagreb polynomials and redefined zagreb indices of dendrimers and polyomino chains," Open Chemistry, vol. 17, no. 1, pp. 1374-1381, 2019.
[27] J. Cáceres, C. Hernando, M. Mora et al., "On the metric dimension of Cartesian products of graphs," SIAM Journal on Discrete Mathematics, vol. 21, no. 2, pp. 423-441, 2007.
[28] J. Kratica, M. Čangalović, and V. Kovačević-Vujčić, "Computing minimal doubly resolving sets of graphs," Computers \& Operations Research, vol. 36, no. 7, pp. 2149-2159, 2009.
[29] A. Ahmad, M. Baca, and S. Sultan, "On the minimal doubly resolving sets of Harary graph," Acta Mathematica Universitatis Comenianae, vol. 89, no. 1, pp. 123-129, 2019.
[30] A. Ahmad and S. Sultan, "On minimal doubly resolving sets of Circulant graphs," Acta Mechanica Slovaca, vol. 21, no. 1, pp. 6-11, 2017.
[31] M. Ahmad, Z. Zahid, and S. Zafar, "On minimal edge version of doubly resolving sets of a graph," 2018, https://arxiv.org/ pdf/1807.02365.pdf.
[32] X. Chen, X. Hu, and C. Wang, "Approximation for the minimum cost doubly resolving set problem," Theoretical Computer Science, vol. 609, no. 3, pp. 526-543, 2016.
[33] M. Ahmad, N. Ameen, Z. Zahid, and S. Zafar, "Computing edge version of metric and double metric dimensions of kayak paddle graphs," Discrete Mathematics, Algorithms and Applications, vol. 12, no. 05, Article ID 2050070, 2020.
[34] C. Lu, Q. Ye, and C. Zhu, "Algorithmic aspect on the minimum (weighted) doubly resolving set problem of graphs," in Proceedings of the International Conference on Algorithmic Applications in Management, pp. 212-222, Springer Cham, New York, NY, USA, August 2019.
[35] M. Cangalovic, J. Kratica, V. Kovacevic-Vujcic, and M. Stojanovic, "Minimal doubly resolving sets of prism graphs," Optimization, vol. 62, pp. 1037-1043, 2013.
[36] J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, and M. Stojanovic, "Minimal doubly resolving sets and the strong metric dimension of Hamming graphs," Applicable Analysis and Discrete Mathematics, vol. 6, no. 1, pp. 63-71, 2012.
[37] J. Kratica, V. Kovačević-Vujčić, M. Čangalović, and M. Stojanović, "Minimal doubly resolving sets and the strong metric dimension of some convex polytopes," Applied Mathematics and Computation, vol. 218, no. 19, pp. 97909801, 2012.
[38] J. B. Liu and A. Zafari, "Computing minimal doubly resolving sets and the strong metric dimension of layer sun graph and the line graph of layer sun graph," 2020, https://arxiv.org/abs/ 2006.00858.
[39] L. Pan, M. Ahmad, Z. Zahid, and S. Zafar, "Computation of the double metric dimension in convex polytopes," Journal of Mathematics, vol. 2021, Article ID 9958969, 11 pages, 2021.
[40] F. Deng, X. Zhang, M. Alaeiyan, A. Mehboob, and M. R. Farahani, "Topological indices of the pent-heptagonal nanosheets VC5C7 and HC5C7," Advances in Materials Science and Engineering, vol. 2019, Article ID 9594549, 12 pages, 2019.
[41] J.-B. Liu, A. Zafari, and H. Zarei, "Metric dimension, minimal doubly resolving sets, and the strong metric dimension for jellyfish graph and cocktail party graph," Complexity, vol. 2020, Article ID 9407456, 7 pages, 2020.
[42] J.-B. Liu, Z. Zahid, R. Nasir, and W. Nazeer, "Edge version of metric dimension and doubly resolving sets of the Necklace graph," Mathematics, vol. 6, no. 11, p. 243, 2018.
[43] M. Baca, "On magic labellings of convex polytopes," Annals Discrete Mathematics, vol. 51, pp. 13-16, 1992.
[44] M. Imran, A. Q. Baig, and M. K. shafiq, "Classes of convex polytopes with constant metric dimension," Utilitas Mathematica, vol. 90, pp. 85-99, 2013.

