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Source localization is one of the most challenging problems in complex networks. Monitoring and controlling complex networks
is of great interest for understanding different types of systems, such as biological, technological, and complex physical systems.
Modern research has made great developments in identifying sensors through which we can monitor or control complex systems.
For this task, we choose a set of sensors with the smallest possible size so that the source may be identified.)e problem of locating
the source of an epidemic in a network is equivalent to the problem of finding the minimal doubly resolving sets (MDRSs) in a
network. In this paper, we calculate the minimal doubly resolving sets (MDRSs) of some classes of convex polytopes in order to
compute their double metric dimension (DMD).

1. Introduction and Preliminaries

Graph theory is the most natural and essential method for
utilizing and studying these disciplines in fields of research
where networks are the fundamental building blocks. For
example, (1) in database designing, computer networking,
clustering of web documents, mobile phone networks, image
processing, and resource allocation; (2) cell biology struc-
ture, population genetics, bioinformatics, and cell-sample
sequencing are only a few examples in biology; (3) minimal
sum coloring, traveling salesman problem, optimization
utilizing PERT (project evaluation review technique), game
theory, and task and time table scheduling, are all terms used
in operations research; and (4) some study blocks in
chemistry include the three-dimensional sophisticated
simulated structure of atoms, molecular bonds, chemo-
informatics, and molecular descriptors.

For a simple, connected, and undirected graph
Γ � (VΓ, EΓ), the distance d(f, g) is the number of edges in
the shortest path between two vertices f, g ∈ VΓ. A vertex

e ∈ VΓ is said to resolve two vertices f and g, if
d(e, f)≠d(e, g). )e representation of a vertex g ∈ Γ with
respect to the ordered subset LΓ � lι|1≤ ι≤ ρ  is defined as a
ρ vector (d(g, lι))

ρ
ι�1 (also known as vector of metric co-

ordinates) and is denoted by r(g|LΓ). If any pair of distinct
vertices of Γ has a unique vector of metric coordinates with
respect to LΓ, then LΓ is called a resolving set of Γ. A resolving
set or metric generator of minimum number of entries is
called a basis for the graph Γ, and its count is known as the
metric dimension (MD) of Γ, represented by dim(Γ).

)e MD was first described in 1953 for general metric
space [1]. Later, for the simple and undirected graph Γ, Slater
[2] introduced the concept of a resolving set, in 1975. In
1976, Harary and Melter [3] individually introduced this
graph theoretic parameter. A network intruder was the
original purpose of the resolving sets, but Chartrand and
Zhang [4] have published numerous uses of this technology
in the method of positioning robot networks, chemical
structures, and biological sciences. )e findings of [5] dis-
cuss the applications of this invariant to chemistry, those of
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[6] discuss applications to robot navigation in networks, and
those of [7] discuss applications to pattern recognition and
image processing. Several coin-weighing difficulties, such as
those presented in [8, 9], as well as the full analysis of the
game Mastermind, which is described in [10], have a strong
link to the MD of Hamming graphs. Because of its wide
applications in various branches of mathematics, such as
discovery and verification in networks [11], methods of
positioning robot networks [6], routing protocols geo-
graphically [12], optimization problems in combinatorics
[13], and problems of sonar and coast guard LORAN [2],
graph resolvability has become an important parameter in
graph theory.

)e MD of arbitrary graphs is a computationally chal-
lenging problem to solve. )is has led to the discovery of
useful boundaries for a number of graph classes. For in-
stance, the bounds of MD for certain classes of Petersen
graphs were evaluated by Shao et al. [14]. All the graphs with
MD n − 1, n − 2, and 1 were classified by Chartrand et al. [5].
Tomescu et al. and Buczkowski et al. have researched theMD
of specific distance-regular graph families, such as Jahangir
graphs [15] and wheel graphs [16]. )eMD for kayak paddle
graphs and chorded cycles was determined by Ahmad et al.
[17].)eMD of Mobius ladders was investigated by Ali et al.
[18]. It has been shown that Mobius ladders are a family of
cubic graphs with constant MD.)eMD of regular bipartite
graphs was calculated by Baca et al. (see [19]). Resolving sets
were used to compute the MD for various classes of convex
polytopes [20, 21]. Several years ago, Imran et al. [22]
evaluated the MD of some plane graph families, and the MD
of necklace graphs was computed using resolving sets in
[23].

It is an intriguing task to determine the origins of
propagation in complex networks. If a mysterious source of
viral propagation is spreading throughout a network, the
only information required to detect it is the infection time of
a set of nodes known as sensing devices (or sensors). )ese
devices may be able to track the shortest period of time they
were contaminated. )e only thing left to do is figure out
how many devices will be required to ensure that the in-
fection source is precisely located. )e answer to this
problem is a property called as double metric dimension
[24, 25].

Identifying the infection source may be easy if one can
watch the entire virus spreading process. However, the entire
procedure may be too expensive due to the expense of data
acquisition. Unless the initial timing of virus propagation is
unclear, a doubly resolving sensor set may be able to reliably
identify the sources of infection [26].

Detecting the virus source in a starlike network is more
challenging than in a pathlike network [25]. For a star
network with n vertices, the DMD is n − 1, while for a path
network it is 2. Furthermore, this indicates that the DMD is
always dependent on the network’s topology.

When we are interested in finding upper bounds on the
MD of graphs, then DRSs are very helpful. DRSs were in-
troduced by Caceres et al. [27] by proving their connection
with the MD of the Cartesian product of the graph Γ and by
showing that the least cardinality of a DRS is the upper limit

of the MD of the graph under consideration. Let v1, v2, y1,

andy2 be four distinct vertices of Γ; we say that v1, v2 doubly
resolves y1, y2 or y1, y2 doubly resolves v1, v2, if d(v1, y1)−

d(v1, y2)≠ d(v2, y1) − d(v2, y2). A vertex set D � vι|1≤

ι≤ ρ}⊆VΓ is termed as DRS of the graph Γ if any pair of
distinct vertices of Γ are doubly resolved by some two
vertices in D⊆VΓ. A DRS having aminimum size is called the
MDRS, and its size is called the DMD of Γ represented by
ψ(Γ). It is obvious that every DRS is a resolving set, which
gives ψ(Γ)≥ dim(Γ) for all graphs Γ. )e computational
complexity of the DRSs and MD was investigated in [6, 28],
respectively.

)us, DRSs play a very important role while studying
Cartesian products of graphs. )e concept of finding upper
bounds in the Cartesian product of graphs motivated us to
work on DRSs of various classes of graphs. Ahmad et al. have
created MDRSs for a number of Harary graph families [29].
)e families of circulant graphs were found to have the same
MD and MDRS [30]. )e DMD and DRSs for the line graph
of prism graphs and n-sunlet graphs have also been ex-
amined (for details, see [31]). )e first explicit approxi-
mations of lower and upper bounds for the MDRSs problem
were published by Chen et al. [32]. Ahmad et al. [33] have
constructed the MD and MDRSs for the line graph of kayak
paddle graphs. Lu et al. [34] developed a linear-time ap-
proach for the MDRS problem of all graphs, where each
block represents a cycle or complete graph. In the case of
prism and Hamming graphs and some convex polytopes, the
MDRSs have been derived in [35–37], respectively. Liu et al.
[38] considered the family of layer-sun graphs and their line
graphs for the investigation of MDRSs. A recent study in
[39] investigated the MDRSs for a variety of convex poly-
topes by Pan et al. )e MD and MDRSs of jellyfish graphs
and cocktail party graphs were evaluated by Liu et al.
[40, 41]. Additionally, in [42], the line graphs of necklace
graphs have been computed for the MDRS problem, as well
as for the MD problem.

In the last few years, solving convex polytopes for the
DMD has proven to be a tough problem. )e DMD of
double antiprism graphs A∗n and convex polytopes Un, de-
scribed by Baca [43] and Imran et al. [21], respectively, are
computed in this article.)eMD of the convex polytopes A∗n
and Un presented in the following theorems were calculated
by Imran et al. [21, 44].

Theorem 1. Let A∗n be the graph of double antiprism, then
dim(A∗n ) � 3 for n≥ 6.

Theorem 2. Let Un be the graph of convex polytopes, then
dim(Un) � 3 for n≥ 6.

In this paper, we computed the MDRSs for double
antiprism graphs A∗n and convex polytope Un. In Section 2,
we computed the MDRSs of double antiprism graphs A∗n for
n≥ 6. In Section 3, the MDRSs for the convex polytope Un,
where n≥ 6 have been conjectured. Section 4 concludes that
the MDRSs for the double antiprism graphs A∗n and convex
polytopes Un are constant.
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2. Minimal Doubly Resolving Sets for the
Double Antiprism Graphs A∗n

Here, in this section, we computed the MDRSs for the
double antiprism graphs A∗n .

As demonstrated in Figure 1, the double antiprism graph
A∗n has 3-sided and n-sided faces.

We define the inner cycle vertices which are represented
by {qμ: ∀ 0≤ μ≤ n − 1}, the middle cycle vertices which are
represented by {rμ: ∀ 0≤ μ≤ n − 1}, and the outer cycle
vertices which are represented by {sμ: ∀ 0≤ μ≤ n − 1} as
displayed in Figure 1.

Here, the DMD ψ(A∗n )≥ 3, for n≥ 3 by applying )e-
orem 1.We are going to prove the DMD ψ(A∗n ) � 3, for n≥ 3

as well. To calculate the distances for the double antiprism
graph A∗n , let Sμ(r0) � r ∈ VA∗n

: d(r0, r) � μ  be a vertex set
in VA∗n

at a distance μ from r0. Table 1 can be easily for-
mulated for Sμ(r0), and it will be used to calculate the
distances between any two vertices in VA∗n

.
)e symmetry of A∗n , for n≥ 3 shows that

d qμ, q]  � d rμ, r]  � d sμ, s] 

� d r0, r|μ−]| , if 0≤ |μ − ]|≤ n − 1.
(1)

When n is odd, we have

d sμ, r]  �

d r0, s|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 1
2

for ]> μ,

d r0, s|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 1 for ]> μ,

d r0, s|μ−]| , if 0≤ |μ − ]|≤ n − 1 for μ≥ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qμ, r]  �

d r0, q|μ−]|  + 1, if 1≤ |μ − ]|≤
n − 1
2

for ]> μ,

d r0, q|μ−]|  − 1, if
n + 1
2
≤ |μ − ]|≤ n − 1 for ]> μ,

d r0, q|μ−]| , if 0≤ |μ − ]|≤ n − 1 for μ≥ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qμ, s]  �

d r0, r|μ−]|  + 1, if |μ − ]| � 1 for μ> ],

d r0, r|μ−]| , if 2≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, r|μ−]|  + 1, if |μ − ]| �
n + 1
2

for μ> ],

d r0, r|μ−]|  + 2, if
n + 3
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, r|μ−]|  + 2, if 0≤ |μ − ]|≤
n − 3
2

for ]≥ μ,

d r0, r|μ−]|  + 1, if |μ − ]| �
n − 1
2

for ]> μ,

d r0, r|μ−]| , if
n + 1
2
≤ |μ − ]|≤ n − 2 for ]> μ,

d r0, r|μ−]|  + 1, if |μ − ]| � n − 1 for ]> μ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)
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When n is even, we have

d qj, rk  �

d r0, q|μ−]|  + 1, if 1≤ |μ − ]|≤
n − 2
2

for ]> μ,

d r0, q|μ−]| , if |μ − ]| �
n

2
for ]> μ,

d r0, q|μ−]|  − 1, if
n + 2
2
≤ |μ − ]|≤ n − 1 for ]> μ,

d r0, q|μ−]| , if 0≤ |μ − ]|≤ n − 1 for μ≥ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d sμ, r]  �

d r0, s|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 2
2

for ]> μ,

d r0, s|μ−]| , if |μ − ]| �
n

2
for ]> μ,

d r0, s|μ−]|  + 1, if
n + 2
2
≤ |μ − ]|≤ n − 1 for ]> μ,

d r0, s|μ−]| , if 0≤ |μ − ]|≤ n − 1 for μ≥ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qμ, s]  �

d r0, r|μ−]|  + 1, if |μ − ]| � 1 for μ> ],

d r0, r|μ−]| , if 2≤ |μ − ]|≤
n

2
for μ> ],

d r0, r|μ−]|  + 2, if
n + 2
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, r|μ−]|  + 2, if 0≤ |μ − ]|≤
n − 2
2

for ]≥ μ,

d r0, r|μ−]| , if
n

2
≤ |μ − ]|≤ n − 2 for ]> μ,

d r0, r|μ−]|  + 1, if |μ − ]| � n − 1 for ]> μ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

s0

s1
r1

r0

r2

q2

q1 q0

q3

sn–1

sn–2

qn–1
qn–2

rn–2

rn–1

Figure 1: : Double antiprism graph A∗n .

Table 1: Sμ(r0) for A∗n .

n μ Sμ(r0)

1 {q0, q1, r1, rn−1, s0, sn−1}
2≤ μ≤ ⌊n/2⌋ − 1 {qμ, qn−μ+1, rμ, rn−μ, sμ−1, sn−μ}

Even n/2 {qn/2, qn+2/2, rn/2, sn−2/2, sn/2}
Odd n − 1/2 {qn−1/2, qn+3/2, rn−1/2, rn+1/2, sn−3/2, sn+1/2}

n + 1/2 {qn+1/2, sn−1/2}
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As a result, if we know the distance d(r0, r) for each
r ∈ VA∗n

, we can rebuild the distances between any two
vertices in VA∗n

.

Lemma 1. For n≥ 3, ψ(A∗n ) � 3, whenever n is even.

Proof. In order to prove ψ(A∗n ) � 3, for even n≥ 3, it is
sufficient to find a DRS of cardinality 3. Now, from Table 1,
using the sets Sμ(r0), Table 2 demonstrates the vectors of
metric coordinates for each vertex of A∗n in relation to the set
D � q0, rn−2/2, sn−1 .

From Table 2, we can verify that if two vertices a1, a2 ∈ Sμ
(r0) for some μ � 1, 2, . . . , 1/2, then r(a1, D) − r(a2, D)≠ 0.
)us, if there are two vertices a1 ∈ Sμ(r0) and a2 ∈ Sv(r0) for
any μ, v � 1, 2, . . . , 1/2, μ≠ v, then r(a1, D) − r(a2, D)≠
μ − v. )erefore, the set D � q0, rn−2/2, sn−1  is the MDRS.
)us, Lemma 1 holds. □

Lemma 2. For n≥ 3, ψ(A∗n ) � 3, whenever n is odd.

Proof. Here, the MDRS for A∗3 is D � q0, r1, r2 . In order to
prove ψ(A∗n ) � 3, for odd n≥ 5, it is sufficient to find a DRS
of cardinality 3. Now, from Table 1, using the sets Sμ(r0),
Table 3 demonstrates the vectors of metric coordinates for
each vertex of A∗n in relation to the set D � q0, r1, rn+1/2 .

From Table 3, we can verify that if two vertices
a1, a2 ∈ Sμ (r0) for some μ � 1, 2, . . . , n + 1/2, then
r(a1, D) − r(a2, D) ≠ 0. )us, if there are two vertices
a1 ∈ Sμ(r0) and a2 ∈ Sv (r0) for any μ, v ∈ 1, 2, . . . , n + 1/2,
μ≠ v, then r(a1, D) − r(a2, D)≠ μ − v. )erefore, the set
D � q0, r1, rn+1/2  is the MDRS. )us, Lemma 2 holds. □

Using the entire technique, it is clearly shown ψ(A∗n ) � 3,
for n≥ 3. Using Lemmas 1 and 2, the main theorem is stated
as follows:

Theorem 3. Let A∗n be the double antiprism graph, then
ψ(A∗n ) � 3 for n≥ 3.

3. Minimal Doubly Resolving Sets for the
Convex Polytope Un

Here, in this section, we computed the MDRSs for convex
polytope Un.

As demonstrated in Figure 2, the convex polytopeUn has
4-sided, 5-sided, and n-sided faces.

We define, the inner cycle vertices are represented by
{qμ :∀ 0≤ μ≤ n − 1}, the interior cycle vertices are repre-
sented by {rμ :∀ 0≤ μ≤ n − 1}, the set of exterior vertices are
represented by {sμ :∀ 0≤ μ≤ n − 1} ∪ {tμ :∀ 0≤ μ≤ n − 1},
and the outer cycle vertices are represented by {wμ :∀ 0≤ μ
≤ n − 1} as displayed in Figure 2.

Here, ψ(Un)≥ 3, for n≥ 6 by applying)eorem 2.We are
going to prove ψ(Un) � 3, for n≥ 6 as well. To calculate the
distances for the convex polytope Un, let Sμ(r0) � r ∈ VUn

:

d(r0, r) � μ} be a vertex set in VUn
at a distance μ from r0.

Table 4 can be easily formulated for Sμ(r0), and it will be
used to calculate the distances between any two vertices in
VUn

.
)e symmetry of Un, where n≥ 6, shows that

d qμ, s]  � d r0, s|μ−]|  + 1, if 0≤ |μ − ]|≤ n − 1,

d rμ, q]  � d rμ, s]  � d tμ, w]  � d r0, q|μ−]| , if 0≤ |μ − ]|≤ n − 1,

d rμ, r]  � d qμ, q]  � d wμ, w]  � d r0, r|μ−]| , if 0≤ |μ − ]|≤ n − 1,

d sμ, s]  �

d r0, s|μ−]|  − 1, if |μ − ]| � 0,

d r0, s|μ−]| , if |μ − ]| � 1,

d r0, s|μ−]|  + 1, if 2≤ |μ − ]|≤ n − 2,

d r0, s|μ−]| , if |μ − ]| � n − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

When n is odd, we have

d qμ, t]  � d rμ, w]  �

d r0, w|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, w|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, w|μ−]| , if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Table 2: Vectors of metric coordinates for A∗n for even n≥ 3.

μ Sμ(r0) D � q0, rn−2/2, sn−1 

0 r0 (1, (n − 2/2), 1)

1

q0 (0, (n/2), 2)

q1 (1, (n − 2/2), 2)

r1 (2, (n − 4/2), 2)

rn−1 (1, (n/2), 1)

s0 (2, (n − 2/2), 1)

sn−1 (2, (n/2), 0)

2≤ μ≤ (n − 2/2)

qμ (μ, (n − 2μ/2), μ + 1)

qn−μ+1 (μ − 1, (n − 2μ + 4/2), μ)

rμ (μ + 1, (n − 2μ − 2/2), μ + 1)

rn−μ (μ, n − 2μ + 2/2, μ)

sμ−1 (μ + 1, (n − 2μ/2), μ)

sn−μ (μ, (n − 2μ + 4/2), μ − 1)

n/2

qn/2 ((n/2), 1, (n + 2/2))

qn+2/2 (n − 2/2, 1, n/2)

rn/2 (n/2, 1, n/2)

sn−2/2 (n + 2/2, 1, n/2)

sn/2 (n/2, 2, n − 2/2)

Table 3: : Vectors of metric coordinates for A∗n for odd n≥ 5.

μ Sμ(f0) D � q0, r1, rn+1/2 

0 r0 (1, 1, n − 1/2)

1

q0 (0, 2, n − 1/2)

q1 (1, 1, n + 1/2)

r1 (2, 0, n − 1/2)

rn−1 (1, 2, n − 3/2)

s0 (2, 1, n + 1/2)

sn−1 (2, 2, n − 1/2)

2≤ μ≤ (n − 3/2)

qμ (μ, μ − 1, (n − 2μ + 3/2))

qn−μ+1 (μ − 1, μ + 1, (n − 2μ + 1/2))

rμ (μ + 1, μ − 1, (n − 2μ + 1/2))

rn−μ (μ, μ + 2, (n − 2μ − 1/2))

sμ−1 (μ + 1, μ − 1, (n − 2μ + 3/2))

sn−μ (μ, μ + 1, (n − 2μ + 1/2))

n − 1/2

qn−1/2 (n − 1/2, n − 3/2, 2)

qn+3/2 (n − 3/2, n + 1/2, 1)

rn−1/2 (n + 1/2, n − 3/2, 1)

rn+1/2 (n − 1/2, n − 1/2, 0)

sn−3/2 (n + 1/2, n − 3/2, 2)

sn+1/2 (n − 1/2, n + 1/2, 1)

n + 1/2 qn+1/2 (n − 1/2, n − 1/2, 1)

sn−1/2 (n + 1/2, n − 1/2, 1)

w0

w1

w2

t1

t2

s2

s1
s0

sn–1
rn–1

tn–1

wn–1

w
n–2

w
n–3

q
n–2

rn–2
sn–2

tn–2

tn–3

qn–1
r2

r1

q2
q1

q0

r0

t0

Figure 2: : Convex polytope Un.
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d rμ, t]  �

d r0, t|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, t|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, t|μ−]| , if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d sμ, t]  �

d r0, w|μ−]|  − 3, if |μ − ]| � 1 for μ> ],

d r0, w|μ−]|  − 2, if |μ − ]| � 2 for μ> ],

d r0, w|μ−]|  − 1, if 3≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, w|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 2 for μ> ],

d r0, w|μ−]| , if |μ − ]| � n − 1 for μ> ],

d r0, w|μ−]|  − 2, if |μ − ]| � 0 for ]≥ μ,

d r0, w|μ−]|  − 1, if |μ − ]| � 1 for ]> μ,

d r0, w|μ−]| , if 2≤ |μ − ]|≤ n − 3 for ]> μ,

d r0, w|μ−]|  − 1, if |μ − ]| � n − 2 for ]> μ,

d r0, w|μ−]|  − 2, if |μ − ]| � n − 1 for ]> μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qμ, w]  �

d r0, w|μ−]| , if 1≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, w|μ−]|  + 2, if
n + 1
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, w|μ−]|  + 1, if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Table 4: Sμ(r0) for Un.

n μ Sμ(r0)

1 {q0, r1, rn−1, s0}
2 {q1, qn−1, r2, rn−2, t0, tn−1, s1, sn−1}

3≤ μ≤ ⌊n/2⌋ − 1 {qμ−1, qn−μ+1, rμ, rn−μ, sμ−1, sn−μ+1, tμ−2, tn−μ+1, wμ−3, wn−μ+2}

Even
n/2 {qn−2/2, qn+2/2, rn/2, sn−2/2, sn+2/2, tn−4/2, tn+2/2, wn−6/2, wn+4/2}

n + 2/2 {qn/2, sn/2, tn−2/2, tn/2, wn−4/2, wn+2/2}
n + 4/2 {wn−2/2, wn/2}

Odd

n − 1/2 {qn−3/2, qn+3/2, rn−1/2, rn+1/2, sn−3/2, sn+3/2, tn−5/2, tn+3/2, wn−7/2, wn+5/2}
n + 1/2 {qn−1/2, qn+1/2, sn−1/2, sn+1/2, tn−3/2, tn+1/2, wn−5/2, wn+3/2}
n + 3/2 {tn−1/2, wn−3/2, wn+1/2}
n + 5/2 wn−1/2 
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d tμ, t]  �

d r0, t|μ−]|  − 2, if |μ − ]| � 0,

d r0, t|μ−]|  − 1, if |μ − ]| � 1,

d r0, t|μ−]| , if 2≤ |μ − ]|≤
n − 1
2

,

d r0, t|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 2,

d r0, t|μ−]| , if |μ − ]| � n − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d sμ, w]  �

d r0, s|μ−]| , if 1≤ |μ − ]|≤
n − 1
2

for μ> ],

d r0, s|μ−]|  + 1, if
n + 1
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, s|μ−]|  + 1, if 0≤ |μ − ]|≤
n − 1
2

for ]≥ μ,

d r0, s|μ−]| , if
n + 1
2
≤ |μ − ]|≤ n − 1 for ]> μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

When n is even, we have

d qμ, t]  � d rμ, w]  �

d r0, w|μ−]| , if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

d r0, w|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 2
2

for μ> ],

d r0, w|μ−]| , if |μ − ]| �
n

2
for μ> ],

d r0, w|μ−]|  + 1, if
n + 2
2
≤ |μ − ]|≤ n − 1 for μ> ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d sμ, t]  �

d r0, w|μ−]|  − 3, if |μ − ]| � 1 for μ> ],

d r0, w|μ−]|  − 2, if |μ − ]| � 2 for μ> ],

d r0, w|μ−]|  − 1, if 3≤ |μ − ]|≤
n − 2
2

for μ> ],

d r0, w|μ−]| , if |μ − ]| �
n

2
for μ> ],

d r0, w|μ−]|  + 1, if
n + 2
2
≤ |μ − ]|≤ n − 2 for μ> ],

d r0, w|μ−]| , if |μ − ]| � n − 1 for μ> ],

d r0, w|μ−]|  − 2, if |μ − ]| � 0 for ]≥ μ,

d r0, w|μ−]|  − 1, if |μ − ]| � 1 for ]> μ,

d r0, w|μ−]| , if 2≤ |μ − ]|≤ n − 3 for ]> μ,

d r0, w|μ−]|  − 1, if |μ − ]| � n − 2 for ]> μ,

d r0, w|μ−]|  − 2, if |μ − ]| � n − 1 for ]> μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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d rj, tk  �

d r0, t|μ−]| , if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

d r0, t|μ−]|  − 1, if 1≤ |μ − ]|≤
n − 2
2

for μ> ],

d r0, t|μ−]| , if |μ − ]| �
n

2
for μ> ],

d r0, t|μ−]|  + 1, if
n + 2
2
≤ |μ − ]|≤ n − 1 for μ> ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qj, wk  �

d r0, w|μ−]| , if 1≤ |μ − ]|≤
n − 2
2

for μ> ],

d r0, w|μ−]|  + 1, if |μ − ]| �
n

2
for μ> ],

d r0, w|μ−]|  + 2, if
n + 2
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, w|μ−]|  + 1, if 0≤ |μ − ]|≤ n − 1 for ]≥ μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d tj, tk  �

d r0, t|μ−]|  − 2, if |μ − ]| � 0,

d r0, t|μ−]|  − 1, if |μ − ]| � 1,

d r0, t|μ−]| , if 2≤ |μ − ]|≤
n − 2
2

,

d r0, t|μ−]|  + 1, if
n

2
≤ |μ − ]|≤ n − 2,

d r0, t|μ−]| , if |μ − ]| � n − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d sj, wk  �

d r0, s|μ−]| , if 1≤ |μ − ]|≤
n

2
for μ> ],

d r0, s|μ−]|  + 1, if
n + 2
2
≤ |μ − ]|≤ n − 1 for μ> ],

d r0, s|μ−]|  + 1, if 0≤ |μ − ]|≤
n − 2
2

for ]≥ μ,

d r0, s|μ−]| , if
n

2
≤ |μ − ]|≤ n − 1 for ]> μ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

As a result, if we know the distance d(r0, r) for each
r ∈ VUn

, we can rebuild the distances between any two
vertices in VUn

.

Lemma 3. For n≥ 6, ψ(Un) � 3, whenever n is even.

Proof. In order to prove ψ(Un) � 3, for even n≥ 6, it is
sufficient to find a DRS of cardinality 3. Now, from Table 4,
using the sets Sμ(r0), Table 5 demonstrates the vectors of
metric coordinates for each vertex of Un in relation to the set
D � q0, qn/2, w0 .

From Table 5, we can verify that if two vertices b1, b2 ∈ Sμ
(r0) for some μ � 1, 2, . . . , n + 4/2, then r(b1, D) − r(b2, D)

≠ 0. )us, if there are two vertices b2 ∈ Sμ(r0) and b2 ∈ Sv

(r0) for any μ � 1, 2, . . . , n + 4/2, μ≠ v, then r(b1, D) − r(b2,

D) ≠ μ − v. )erefore, the set D � q0, qn/2, w0  is the MDRS.
)us, Lemma 3 holds. □

Lemma 4. For n≥ 6, ψ(Un) � 3, whenever n is odd.

Proof. In order to prove ψ(Un) � 3, for odd n≥ 6, it is
sufficient to find a DRS of cardinality 3. Now, from Table 4,
using the sets Sμ(r0), Table 6 demonstrates the vectors of
metric coordinates for each vertex of Un in relation to the set
D � q0, qn−1/2, wn+7/2 .

From Table 6, we can verify that if two vertices b1, b2 ∈ Sμ
(r0) for some μ � 1, 2, . . . , n + 5/2, then r(b1, D) − r(b2,

D)≠ 0. )us, if there are two vertices b2 ∈ Sμ(r0) and b2 ∈ Sv

(r0) for any μ � 1, 2, . . . , n + 5/2, μ≠ v, then r(b1, D) − r(b2,

D)≠ μ − v. )erefore, the set D � q0, qn−1/2, wn+7/2  is the
MDRS. )us, Lemma 4 holds. □

Using the entire technique, it is clearly shown ψ(Un) � 3,
for n≥ 6. Using Lemmas 3 and 4, the main theorem is stated
as follows:
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Table 5: Vectors of metric coordinates for Un for even n≥ 6.

μ Sμ(r0) D � q0, qn/2, w0 

0 r0 (1, n + 2/2, 3)

1

q0 (0, n/2, 4)

r1 (2, n/2, 3)

rn−1 (2, n/2, 4)

s0 (2, n + 4/2, 1)

2

q1 (1, n − 2/2, 4)

qn−1 (1, n − 2/2, 5)

r2 (3, n − 2/2, 4)

rn−2 (3, n − 2/2, 5)

s1 (3, n + 2/2, 2)

sn−1 (3, n + 2/2, 3)

t0 (3, n + 4/2, 1)

tn−1 (3, n + 4/2, 2)

3≤ μ≤ n − 2/2

qμ−1 (μ − 1, n − 2μ + 2/2, μ + 2)

qn−μ+1 (μ − 1, n − 2μ + 2/2, μ + 3)

rμ (μ + 1, n − 2μ + 2/2, μ + 2)

rn−μ (μ + 1, n − 2μ + 2/2, μ + 3)

sμ−1 (μ + 1, n − 2μ + 6/2, μ)

sn−μ+1 (μ + 1, n − 2μ + 6/2, μ + 1)

tμ−2 (μ + 1, n − 2μ + 8/2, μ − 1)

tn−μ+1 (μ + 1, n − 2μ + 8/2, μ)

wμ−3 (μ + 1, n − 2μ + 12/2, μ − 3)

wn−μ+2 (μ + 1, n − 2μ + 12/2, μ − 2)

n/2

qn−2/2 (n − 2/2, 1, n + 4/2)

qn+2/2 (n − 2/2, 1, n + 6/2)

rn/2 (n + 2/2, 1, n + 4/2)

sn−2/2 (n + 2/2, 3, n/2)

sn+2/2 (n + 2/2, 3, n + 2/2)

tn−4/2 (n + 2/2, 4, n − 2/2)

tn+2/2 (n + 2/2, 4, n/2)

wn−6/2 (n + 2/2, 6, n − 6/2)

wn+4/2 (n + 2/2, 6, n − 4/2)

n + 2/2

qn/2 (n/2, 0, n + 6/2)

sn/2 (n + 4/2, 2, n + 2/2)

tn−2/2 (n + 4/2, 3, n/2)

tn/2 (n + 4/2, 3, n + 2/2)

wn−4/2 (n + 4/2, 5, n − 4/2)

wn+2/2 (n + 4/2, 5, n − 2/2)

n + 4/2 wn−2/2 (n + 6/2, 4, n − 2/2)

wn/2 (n + 6/2, 4, n/2)

Table 6: Vectors of metric coordinates for Un for odd n≥ 6.

μ Sμ(r0) D � q0, qn−1/2, wn+7/2 

0 r0 (1, n + 1/2, n − 3/2)

1

q0 (0, n − 1/2, n − 1/2)

r1 (2, n − 1/2, n − 1/2)

rn−1 (2, n + 1/2, n − 5/2)

s0 (2, n + 3/2, n − 5/2)

2

q1 (1, n − 3/2, n + 1/2)

qn−1 (1, n − 1/2, n − 3/2)

r2 (3, n − 3/2, n + 1/2)

rn−2 (3, n − 1/2, n − 7/2)

s1 (3, n + 1/2, n − 3/2)

sn−1 (3, n + 3/2, n − 7/2)

t0 (3, n + 5/2, n − 5/2)

tn−1 (3, n + 5/2, n − 7/2)
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Theorem 4. Let Un be the convex polytope for n≥ 6. 0en
ψ(Un) � 3.

4. Conclusion

In this article, we calculate the MDRSs for the double
antiprism graphs A∗n and convex polytopes Un. Our results
show that the DMD of these plane graph families is limited
and does not depend on the parity of n. In order to resolve all
the vertices of these plane graph families, only three ap-
propriately selected vertices are necessary.
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