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For a graph G, its bond incident degree (BID) index is de�ned as the sum of the contributions f(du, dv) over all edges uv of G,
where dw denotes the degree of a vertex w of G and f is a real-valued symmetric function. If f(du, dv) � du + dv or dudv, then the
corresponding BID index is known as the �rst Zagreb indexM1 or the second Zagreb indexM2, respectively. �e class of square-
hexagonal chains is a subclass of the class of molecular graphs of minimum degree 2. (Formal de�nition of a square-hexagonal
chain is given in the Introduction section). �e present study is motivated from the paper (C. Xiao, H. Chen, Discrete Math. 339
(2016) 506–510) concerning square-hexagonal chains. In the present paper, a general expression for calculating any BID index of
square-hexagonal chains is derived. �e chains attaining the maximum or minimum values ofM1 andM2 are also characterized
from the class of all square-hexagonal chains having a �xed number of polygons.

1. Introduction

�ose (chemical) graph-theoretical terminologies and no-
tations adopted in the current paper that are not de�ned here
in this paper can be found in some standard (chemical)
graph-theoretical books; for example, [1–3]. All the graphs
to be considered in the current paper are �nite and
connected.

In what follows, it is assumed that G is a graph. �e edge
set and vertex set of G are denoted by E(G) and V(G),
respectively. For a vertex w ∈ V(G), its degree is denoted by
dw(G) (or simply by dw whenever there is only one graph
under consideration).

In chemical graph theory, those graph invariants that
have some chemical applicability are often referred to as
topological indices. �e �rst and second Zagreb indices
[4], appeared in the �rst half of 1970s (see for example
[4, 5]), belong to the most-studied topological indices
(especially in chemical graph theory); they are usually
denoted by M1 and M2, respectively, and for G, they are
de�ned as follows:

M1(G) � ∑
u∈V(G)

du( )2,

M2(G) � ∑
uv∈E(G)

dudv.
(1)

It is known that∑u∈V(G)(du)
2 � ∑uv∈E(G)(du + dv). Most

of their known properties can be found in the review paper
[4] and in the related references included therein.

For G, its bond incident degree (BID) index is de�ned as
follows:

BID(G) � ∑
uv∈E(G)

f du, dv( ) � ∑
1≤a≤b≤Δ(G)

ma,b(G)θa,b, (2)

where is the degree of the vertex u, f is a real-valued
function such that f(du, dv) � f(dv, du), uv is the edge du
with end vertices u and v of G, Δ(G) is the maximum degree
inG, θa,b � f(a, b) andma,b(G) is the number of those edges
ofGwhose one end vertex has the degree a and the other end
vertex has the degree b. We note here that if θa,b � a + b or
θa,b � ab, then the corresponding BID index is M1 or M2,
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respectively. Details about some mathematical aspects of the
BID indices can be found in the papers [6–8] as well as in the
related references listed therein.

A square-hexagonal system is a connected geometric
figure formed by concatenating congruent regular squares
and/or hexagons side to side in a plane in such a way that the
figure divides the plane into one infinite (external) region
and a number of finite (internal) regions, and all internal
regions must be congruent regular squares and/or hexagons.
In a square-hexagonal system, two polygons having a
common side are known as adjacent polygons. By inner dual
of a square-hexagonal system, we mean a graph ID whose
vertices are the polygons of the considered square-hexagonal
system, while there is an edge between two vertices of ID if
and only if the corresponding polygons share a side. A
square-hexagonal system is said to be a square-hexagonal
chain if its inner dual is the path graph. It should be noted
that different square-hexagonal chains may be obtained
depending on the polygons’ type and depending on the way
how polygons are concatenated. Rnrefers to a square-hex-
agonal chain consisting of n polygons. If all polygons in Rn

are hexagons, then we say that Rn is a hexagonal chain (see,
for instance, [9]) and if all the polygons are squares, then Rn

is known as a polyomino chain (see, for instance, [10]). Also,
if squares and hexagons are concatenated alternately in Rn,
then we say that Rn is a phenylene chain (see [11]).

Every square-hexagonal chain can be considered as a
graph in which the edges represent the sides of the polygons
and the vertices represent the points where two sides of a
polygon intersect. In the rest of the present paper, by the
terminology “square-hexagonal chain(s)” we mean the
graph(s) corresponding to the considered square-hexagonal
chain(s).

Analogous to the definition of square-hexagonal chains,
one may give a definition of triangular/square/pentagonal
chains. BID indices of triangular/square/pentagonal chains
were studied in [10, 12].(e present study can be considered
as a continuation of the research conducted in [10, 12] and it
is motivated from the paper [13–15] concerning square-
hexagonal chains. In the current paper, a general expression
for calculating any BID index of square-hexagonal chains is
derived. (e chains attaining the maximum or minimum
values of M1 and M2 are also characterized from the class of
all square-hexagonal chains having a fixed number of
polygons.

2. Main Results

In order to obtain the main results, we require some ter-
minology concerning square-hexagonal chains. In a square-
hexagonal chain, a polygon adjacent with only one (two,
respectively) other polygon is known as a terminal (non-
terminal, respectively) polygon. A nonterminal polygon in
the chain is called a kink if its center is not collinear with
centers of the two adjacent polygons. In other words, a
nonterminal hexagon is a kink if and only if it contains two
adjacent vertices of degree two (Figure 1) and a nonterminal
square is a kink if and only if it contains a vertex of degree
two (Figure 2). Following [15], we will consider square-
hexagonal chains that contain the following types of kinks:

(1) Kinks of type T1: A nonterminal hexagon having
exactly two adjacent vertices of degree two (see
Figure 1);

(2) Kinks of type T2,1: A nonterminal square containing
a vertex of degree two and adjacent to two squares
(see Figure 2(a));

(3) Kinks of type T2,2: A nonterminal square containing
a vertex of degree two and adjacent to a square and a
hexagon (see Figure 2(b));

(4) Kinks of type T2,3: A nonterminal square containing
a vertex of degree two and adjacent to two hexagons
(see Figure 2(c));

A square-hexagonal chain is called linear if it has no
kinks and it is called a zigzag chain if every nonterminal
polygon is a kink. A segment is a maximal linear chain in a
square-hexagonal chain, including kinks and/or terminal
polygons at its ends.

(e length l(S) of a segment S is its number of polygons.
E(S) refers to the set of all edges of a segment S. A segment
that contains a terminal polygon is known as an external
segment. A segment that contains only nonterminal poly-
gons is known as an internal segment. Clearly, a square-
hexagonal chain consists of s segments if and only if it
contains exactly s − 1 kinks.

For a square-hexagonal Rn, we define the value δRn
to be

the number of terminal hexagons in Rn. We also define the
following values for segments S1, . . . , Ss of Rn: see Figures 3
and 4.

μ Si( 􏼁 �
1,

if Si is an internal segment consisting of a hexagon and a square and contains

only one edge connecting vertices of degree 3,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

] Si( 􏼁 �
1,

if Si is an internal segment of length three and contains an edge

connecting vertices of degree 3,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(3)
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Moreover, μ(S1) � μ(Ss) � ](S1) � ](Ss) � 0.

τ Si( 􏼁 �
1, if Si consists of two squares,

0, otherwise.
􏼨 (4)

Now, we are ready to establish the general expression for
calculating the BID indices of square-hexagonal chains.

Theorem 1. Let Rn be square-hexagonal chain containing d

squares and n − d hexagons. Suppose that Rn consists of s

segments S1, . . . , Ss and contains α1 kinks of type T1 and α2,j

kinks of type T2,j, for j � 1, 2, 3. .en,

m2,2 Rn( 􏼁 � 2δRn
+ α1 + 2,

m2,3 Rn( 􏼁 � 4n − 4 d + 4 + 2α2,1 + α2,2 − 4δRn
− 2α1 − τ S1( 􏼁 − τ Ss( 􏼁 − 􏽘

s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁,

m3,3 Rn( 􏼁 � n + 2 d − 5 + 2δRn
+ α1 − 6α2,1 − 5α2,2 − 4α2,3 + τ S1( 􏼁 + τ Ss( 􏼁 + 􏽘

s−1

i�2
3τ Si( 􏼁 − μ Si( 􏼁 + ] Si( 􏼁( 􏼁,

m2,4 Rn( 􏼁 � α2,2 + 2α2,3 + τ S1( 􏼁 + τ Ss( 􏼁 + 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁,

m3,4 Rn( 􏼁 � 4α2,1 + 3α2,2 + 2α2,3 − τ S1( 􏼁 − τ Ss( 􏼁 − 􏽘
s−1

i�2
4τ Si( 􏼁 − μ Si( 􏼁 + 2] Si( 􏼁( 􏼁,

m4,4 Rn( 􏼁 � 􏽘
s−1

i�2
τ Si( 􏼁 + ] Si( 􏼁( 􏼁.

(5)

(a) (b) (c)

Figure 2: (a) Kinks of type T2,1; (b) Kinks of type T2,2; (c) Kinks of type T2,3.

Figure 3: Internal segment consisting of a hexagon and a square and contains an edge connecting vertices of degree 3.

Figure 4: Internal segment of length three containing an edge
connecting vertices of degree 3.

Figure 1: Kinks of type T1.
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Proof. Let C1, . . . , Cs−1 be the kinks of Rn such that Ci joins
segments Si and Si+1.

Let A1 � E(C1), and Ai � E(Ci)\E(Ci−1), for i � 2, . . . ,

s − 1. Also, we set B1 � E(S1)\E(C1), Bs � E(Ss)\E(Cs−1),
and Bj � E(Sj)\(E(Cj−1)∪E(Cj)), for j � 2, . . . , s − 1.

Clearly, the collection A1, . . . , As−1, B1, . . . , Bs􏼈 􏼉 forms a
partition for E(Rn). For 2≤ a≤ b≤ 4, i � 1, . . . , s − 1,
j � 1, . . . , s, let p

(i)
a,b be the number of edges in Ai that

connects vertices of degrees a and b and q
(j)

a,b be the number
of edges in Bj that connect vertices of degrees a and b. (en,
we get ma,b(Rn) � 􏽐

s−1
i�1p

(i)
a,b + 􏽐

s
j�1 q

(j)

a,b .
First, we calculate m2,2(Rn). We have q

(1)
2,2 + q

(s)
2,2 � 2

(δRn
+ 1), and for j � 2, . . . , s − 1, we have q

(j)
2,2 � 0. Also, a

kink contains an edge joining vertices of degree 2 if and only
if it is of type T1. Hence, m2,2 � 2δRn

+ α1 + 2.
To calculate m4,4(Rn), note that a segment Si contains an

edge joining vertex of degree 4 if and only if Si is an internal
segment and τ(Si) � 1 or ](Si) � 1. (us, m4,4(Rn) � 􏽐

s−1
i�2

(τ(Si) + ](Si)).
Next, we calculate m2,4(Rn). Vertices of degree 4 appear

only in kinks of type T2,1, T2,2, and T2,3. In fact, p
(1)
2,4 � τ(S2),

p
(s−1)
2,4 � τ(Ss−1), and for 2≤ i≤ s − 2, p

(i)
2,4 � τ(Si) + τ(Si+1) if

Ci is a kink of type T2,1, T2,2, or T2,3, and p
(i)
2,4 � 0 otherwise.

Hence, 􏽐
s−1
i�1p

(i)
a,b � 2􏽐

s−1
i�2τ(Si). Also, 􏽐

s
i�1 q

(i)
a,b � α2,2 + 2α2,3+

τ (S1) + τ(Ss) − 􏽐
s−1
i�2μ(Si). (us,

m2,4 Rn( 􏼁 � α2,2 + 2α2,3 + τ S1( 􏼁 + τ Ss( 􏼁

+ 􏽘

s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁.

(6)

Now, each kink of typesT2,1,T2,2, orT2,3 contains exactly
one vertex of degree 4, and so the number of vertices of
degree 4 is α2,1 + α2,2 + α2,3. (erefore,

m2,4 Rn( 􏼁 + m3,4 Rn( 􏼁 + 2m4,4 Rn( 􏼁 � 4 α2,1 + α2,2 + α2,3􏼐 􏼑.

(7)

Substituting the values of m2,4(Rn) and m4,4(Rn) in (7)
and solving the resulting equation for m3,4(Rn) yield the
following:

m3,4 Rn( 􏼁 � 4 α2,1 + α2,2 + α2,3􏼐 􏼑 − α2,2 − 2α2,3 − τ S1( 􏼁

− τ Ss( 􏼁 − 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁

− 2􏽘
s−1

i�2
τ Si( 􏼁 + ] Si( 􏼁( 􏼁 � 4α2,1 + 3α2,2 + 2α2,3

− τ S1( 􏼁 − τ Ss( 􏼁 − 􏽘
s−1

i�2
4τ Si( 􏼁 − μ Si( 􏼁 + 2] Si( 􏼁( 􏼁.

(8)

Similarly, every nonterminal hexagon contains exactly
two vertices of degree 2, and a nonterminal square contains a
vertex of degree 2 if and only if it is a kink of typeT2,1,T2,2, or
T2,3. Now, adding number of vertices of degree 2 in the
terminal polygons, we see that the number of vertices of
degree 2 in Rn is 2n − 2d + 4 + α2,1 + α2,2 + α2,3. Hence,
2m2,2(Rn) + m2,3(Rn) + m2,4(Rn) � 2
(2n − 2 d + 4 + α2,1 + α2,2 + α2,3). (erefore,

m2,3 Rn( 􏼁 � 2 2n − 2d + 4 + α2,1 + α2,2 + α2,3􏼐 􏼑

− 2 2δRn
+ α1 + 2􏼐 􏼑 − α2,2 − 2α2,3 − τ S1( 􏼁 − τ Ss( 􏼁

− 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁 � 4n − 4d + 4

+ 2α2,1 + α2,2 − 4δRn
− 2α1 − τ S1( 􏼁 − τ Ss( 􏼁

− 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁.

(9)

(e total number of edges in Rn is n + 1 + 2 d + 4(n−

d) � 5n − 2 d + 1, and so

m3,3 Rn( 􏼁 � 5n − 2d + 1 − 2δRn
− 2 − α1 − 4n + 4d − 4 − 2α2,1 − α2,2 + 4δRn

+ 2α1

+ τ S1( 􏼁 + τ Ss( 􏼁 + 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁

− α2,2 − 2α2,3 − τ S1( 􏼁 − τ Ss( 􏼁 − 􏽘
s−1

i�2
2τ Si( 􏼁 − μ Si( 􏼁( 􏼁

− 4α2,1 − 3α2,2 − 2α2,3 + τ S1( 􏼁 + τ Ss( 􏼁 + 􏽘
s−1

i�2
4τ Si( 􏼁 − μ Si( 􏼁 + 2] Si( 􏼁( 􏼁

− 􏽘
s−1

i�2
τ Si( 􏼁 + ] Si( 􏼁( 􏼁

� n + 2 d − 5 + 2δRn
+ α1 − 6α2,1 − 5α2,2 − 4α2,3 + τ S1( 􏼁 + τ Ss( 􏼁

+ 􏽘
s−1

i�2
3τ Si( 􏼁 − μ Si( 􏼁 + ] Si( 􏼁( 􏼁.

(10)
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(e following results are a direct consequence of (e-
orem 1. □

Corollary 1. Let Rn be a square-hexagonal chain containing
d squares and n − d hexagons. Suppose that Rn consists of s

segments S1, . . . , Ss and contains α1 kinks of type T1 and α2,j

kinks of type T2,j, for j � 1, 2, 3. .en,

BID Rn( 􏼁 � 􏽘
2≤a≤b≤4

ma,b Rn( 􏼁θa,b

� 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑d + 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑

+ 2θ2,2 − 4θ2,3 + 2θ3,3􏼐 􏼑δRn
+ θ2,2 − 2θ2,3 + θ3,3􏼐 􏼑α1

+ 2θ2,3 − 6θ3,3 + 4θ3,4􏼐 􏼑α2,1 + θ2,3 − 5θ3,3 + θ2,4 + 3θ3,4􏼐 􏼑α2,2

+ 2θ2,4 − 4θ3,3 + 2θ3,4􏼐 􏼑α2,3 + θ3,3 − θ2,3 + θ2,4 − θ3,4􏼐 􏼑 τ S1( 􏼁 + τ Ss( 􏼁( 􏼁

+ 3θ3,3 − 2θ2,3 + 2θ2,4 − 4θ3,4 + θ4,4􏼐 􏼑 􏽘

s−1

i�2
τ Si( 􏼁

+ θ2,3 − θ3,3 − θ2,4 + θ3,4􏼐 􏼑 􏽘

s−1

i�2
μ Si( 􏼁 + θ3,3 − 2θ3,4 + θ4,4􏼐 􏼑 􏽘

s−1

i�2
] Si( 􏼁.

(11)

Corollary 2. If Ln is a linear square-hexagonal chain with d

squares and n − d hexagons, then

BID Ln( 􏼁 � 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑d

+ 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑 + 2θ2,2 − 4θ2,3 + 2θ3,3􏼐 􏼑δLn
.

(12)

L0
n (resp. L1

n) denotes the linear square-hexagonal chain
with n polygons where the terminal polygons are squares
(resp. hexagons) and all nonterminal polygons are hexagons
(resp. squares). (en,

BID L
0
n􏼐 􏼑 � 4θ2,3 + θ3,3􏼐 􏼑n + 2θ2,2 − 4θ2,3 − θ3,3,

BID L
1
n􏼐 􏼑 � 3θ3,3n + 6θ2,2 + 4θ2,3 − 5θ3,3.

(13)

The next theorem gives the extreme values of BID in-
dices for the class of linear square-hexagonal chains.

Theorem 2

(a) If θ3,3 − 2θ2,3 > 0, then

(1) BID(Ln) is minimum if and only if Ln � L0
n;

(2) BID(Ln) is maximum if and only if Ln � L1
n.

(b) If θ3,3 − 2θ2,3 < 0, then

(1) BID(Ln) is minimum if and only if Ln is linear
polyomino chain;

(2) BID(Ln) is maximum if and only if Ln is linear
hexagonal chain.

Proof. (a) Suppose that θ3,3 − 2θ2,3 > 0. Let Ln be a linear
square-hexagonal chain with d squares. Since d + δRn

≥ 2 and
δRn
≥ 0, we obtain the following:

BID Ln( 􏼁 � 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑 d + δLn
􏼐 􏼑 + 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑 + 2θ2,2δLn

≥ 4θ2,3 + θ3,3􏼐 􏼑n + 2 2θ3,3 − 4θ2,3􏼐 􏼑 + 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑

� 4θ2,3 + θ3,3􏼐 􏼑n + 2θ2,2 − 4θ2,3 − θ3,3 � BID L
0
n􏼐 􏼑.

(14)

(e equality holds if and only if δLn
� 0 and d � 2

equivalently Ln � L0
n.

Also, we have d + δLn
≤ n. (erefore,

BID Ln( 􏼁 � 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑d + 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑 + 2θ2,2 − 4θ2,3 + 2θ3,3􏼐 􏼑δLn

� 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑 d + δLn
􏼐 􏼑 + 2θ2,2 + 4θ2,3 − 5θ3,3􏼐 􏼑 + 2θ2,2δLn

≤ 4θ2,3 + θ3,3􏼐 􏼑n + 2θ3,3 − 4θ2,3􏼐 􏼑n + 4θ2,3 − 5θ3,3 + 6θ2,2

� 3θ3,3n − 5θ3,3 + 4θ2,3 + 6θ2,2 � BID L
1
n􏼐 􏼑.

(15)
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(e equality holds if and only if δLn
� 2 and d � n − 2

equivalently Ln � L1
n.

(b) is similar to the proof of part (a).
Now, we focus on the special cases of the first Zagreb

index M1 (θa,b � a + b) and the second Zagreb index M2
(θa,b � ab) of square-hexagonal chains. □

Corollary 3. If Rn is a square-hexagonal chain with d

squares, s segments S1, . . . , Ss, α1 kinks of type T1, and α2,j

kinks of type T2,j, j � 1, 2, 3,then

M1 Rn( 􏼁 � 26n − 8 d + 2α2,1 + 2α2,2 + 2α2,3 − 2,

M2 Rn( 􏼁 � 33n − 6 d + 2δRn
− 13 + α1 + 6α2,1 + 5α2,2 + 4α2,3 − 􏽘

s

i�1

τ Si( 􏼁 − μ Si( 􏼁 − ] Si( 􏼁( 􏼁. (16)

The next result gives the extreme values of the first and
second Zagreb indices for the class of square-hexagonal
chains.

Theorem 3

(a) M1(Rn) is minimum if and only if Rn is a linear
polyomino chain.

(b) M1(Rn) is maximum if and only if Rn is a hexagonal
chain.

(c) M2(Rn) is minimum if and only if Rn is a linear
polyomino chain.

(d) M2(Rn) is maximum if and only if Rn is a zigzag
hexagonal chain.

Proof. Let LPn denote the linear polyomino chain with n

squares, Hn denote a hexagonal chain with n hexagons, and
ZHn denote the zigzag hexagonal chain with n squares and
n − 2 kinks of type T1. (en, by Corollary 3, we have
M1(LPn) � 18n − 2, M1(Hn) � 26n − 2, M2(LPn) � 27
n − 13, and M2(ZHn) � 34n − 11. Let Rn be a square-

hexagonal chain with d squares, s segments S1, . . . , Ss, and α1
kinks of type T1, α2,j kinks of type T2,j, j � 1, 2, 3.

(a) Since d≤ n and α2,j ≥ 0 for j � 1, 2, 3, we have the
following:

M1 Rn( 􏼁 � 26n − 8 d + 2α2,1 + 2α2,2 + 2α2,3

− 2≥ 18n − 2 � M1 LPn( 􏼁,
(17)

with equality holds if and only d � n and α2,1 �

α2,2 � α2,3 � 0.
(b) Since all kinks of type T2,j, j � 1, 2, 3 are squares, we

clearly see that d≥ α2,1 + α2,2 + α2,3. Hence,

M1 Rn( 􏼁 � 26n − 2 4 d − α2,1 − α2,2 − α2,3􏼐 􏼑 − 2

≤ 26n − 2 � M1 Hn( 􏼁,
(18)

and equality holds if and only if d � 0.
(c) If Si is an internal segment and τ(Si) � 1, then each

terminal polygon of Si is a kink of type T2,1 or type
T2,2. (is implies that 􏽐

s
i�1 τ(Si)≤ α2,1 + α2,2 + 1.

(erefore,

M2 Rn( 􏼁 � 33n − 6 d + 2δRn
− 13 + α1 + 6α2,1 + 5α2,2 + 4α2,3 − 􏽘

s

i�1
τ Si( 􏼁 − μ Si( 􏼁 − ] Si( 􏼁( 􏼁

≥ 27n − 13 + 6α2,1 + 5α2,2 − 􏽘
s

i�1
τ Si( 􏼁.

(19)

Equality holds if and only if d � n (consequently
α2,2 � 0), δRn

� 0, and α2,3 � 􏽐
s
i�1 μ(Si) � 􏽐

s
i�1 ]

(Si) � 0. Now, if α2,1 ≥ 1, then 6α2,1 − 􏽐
s
i�1 τ(Si)≥ 5,

and hence M2(Rn)> 27n − 13 � M2(LPn). If
α2,1 � 0, then 􏽐

s
i�1 τ(Si) � 0, and then Rn � LPn.

(d) We have the following:

M2 Rn( 􏼁 � 33n − 6 d + 2δRn
− 13 + α1 + 6α2,1 + 5α2,2 + 4α2,3 − 􏽘

s

i�1
τ Si( 􏼁 − μ Si( 􏼁 − ] Si( 􏼁( 􏼁

≤ 33n − 13 + 2δRn
− 6 d − α2,1 − α2,2 − α2,3 − 􏽘

s

i�1
] Si( 􏼁⎛⎝ ⎞⎠

− α2,2 + α2,3 − 􏽘
s

i�1
μ Si( 􏼁⎛⎝ ⎞⎠ + α1 − α2,3 − 5􏽘

s

i�1
] Si( 􏼁.

(20)
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If, for some i, μ(Si)≠ 0, then one of the terminal poly-
gons of Si is a kink of type T2,2 or type T2,3. (is implies that
􏽐

s
i�1 μ(Si)≤ α2,2 + α2,3. Moreover, if ](Si)≠ 0, then Si con-

tains a square that is not a kink, and hence, d≥ α2,3 + α2,2
+ α2,3 + 􏽐

s
i�1 ](Si). On the other hand, we know that δRn

≤ 2
and α1 ≤ n − 2. (us, we have the following:

M2 Rn( 􏼁≤ 34n − 11 � M2 ZHn( 􏼁. (21)

Now, if one of the values d, α2,1, α2,2, α2,3, 􏽐
s
i�1 ](Si), and

􏽐
s
i�1 μ(Si) is nonzero, then δRn

≤ 1 or α1 < n − 2, and so
M2(Rn)< 34n − 11 � M2(ZHn). (erefore, equality in (21)
holds if and only if δRn

� 2 and α1 � n − 2 equivalently
Rn � ZHn. □
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