On-Bond Incident Degree Indices of Square-Hexagonal Chains

${ }^{1}$ Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
${ }^{2}$ Department of Mathematics, University of Zimbabwe, Harare, Zimbabwe
Correspondence should be addressed to Akbar Ali; akbarali.maths@gmail.com

Received 5 November 2021; Accepted 23 March 2022; Published 4 May 2022
Academic Editor: Barbara Martinucci
Copyright © 2022 Tariq A. Alraqad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For a graph G, its bond incident degree (BID) index is defined as the sum of the contributions $f\left(d_{u}, d_{v}\right)$ over all edges $u v$ of G, where d_{w} denotes the degree of a vertex w of G and f is a real-valued symmetric function. If $f\left(d_{u}, d_{v}\right)=d_{u}+d_{v}$ or $d_{u} d_{v}$, then the corresponding BID index is known as the first Zagreb index M_{1} or the second Zagreb index M_{2}, respectively. The class of squarehexagonal chains is a subclass of the class of molecular graphs of minimum degree 2. (Formal definition of a square-hexagonal chain is given in the Introduction section). The present study is motivated from the paper (C. Xiao, H. Chen, Discrete Math. 339 (2016) 506-510) concerning square-hexagonal chains. In the present paper, a general expression for calculating any BID index of square-hexagonal chains is derived. The chains attaining the maximum or minimum values of M_{1} and M_{2} are also characterized from the class of all square-hexagonal chains having a fixed number of polygons.

1. Introduction

Those (chemical) graph-theoretical terminologies and notations adopted in the current paper that are not defined here in this paper can be found in some standard (chemical) graph-theoretical books; for example, [1-3]. All the graphs to be considered in the current paper are finite and connected.

In what follows, it is assumed that G is a graph. The edge set and vertex set of G are denoted by $E(G)$ and $V(G)$, respectively. For a vertex $w \in V(G)$, its degree is denoted by $d_{w}(G)$ (or simply by d_{w} whenever there is only one graph under consideration).

In chemical graph theory, those graph invariants that have some chemical applicability are often referred to as topological indices. The first and second Zagreb indices [4], appeared in the first half of 1970s (see for example $[4,5]$), belong to the most-studied topological indices (especially in chemical graph theory); they are usually denoted by M_{1} and M_{2}, respectively, and for G, they are defined as follows:

$$
\begin{align*}
& M_{1}(G)=\sum_{u \in V(G)}\left(d_{u}\right)^{2}, \\
& M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v} . \tag{1}
\end{align*}
$$

It is known that $\sum_{u \in V(G)}\left(d_{u}\right)^{2}=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)$. Most of their known properties can be found in the review paper [4] and in the related references included therein.

For G, its bond incident degree (BID) index is defined as follows:

$$
\begin{equation*}
\operatorname{BID}(G)=\sum_{u v \in E(G)} f\left(d_{u}, d_{v}\right)=\sum_{1 \leq a \leq b \leq \Delta(G)} m_{a, b}(G) \theta_{a, b} \tag{2}
\end{equation*}
$$

where is the degree of the vertex u, f is a real-valued function such that $f\left(d_{u}, d_{v}\right)=f\left(d_{v}, d_{u}\right), u v$ is the edge d_{u} with end vertices u and v of $G, \Delta(G)$ is the maximum degree in $G, \theta_{a, b}=f(a, b)$ and $m_{a, b}(G)$ is the number of those edges of G whose one end vertex has the degree a and the other end vertex has the degree b. We note here that if $\theta_{a, b}=a+b$ or $\theta_{a, b}=a b$, then the corresponding BID index is M_{1} or M_{2},
respectively. Details about some mathematical aspects of the BID indices can be found in the papers [6-8] as well as in the related references listed therein.

A square-hexagonal system is a connected geometric figure formed by concatenating congruent regular squares and/or hexagons side to side in a plane in such a way that the figure divides the plane into one infinite (external) region and a number of finite (internal) regions, and all internal regions must be congruent regular squares and/or hexagons. In a square-hexagonal system, two polygons having a common side are known as adjacent polygons. By inner dual of a square-hexagonal system, we mean a graph ID whose vertices are the polygons of the considered square-hexagonal system, while there is an edge between two vertices of ID if and only if the corresponding polygons share a side. A square-hexagonal system is said to be a square-hexagonal chain if its inner dual is the path graph. It should be noted that different square-hexagonal chains may be obtained depending on the polygons' type and depending on the way how polygons are concatenated. R_{n} refers to a square-hexagonal chain consisting of n polygons. If all polygons in R_{n} are hexagons, then we say that R_{n} is a hexagonal chain (see, for instance, [9]) and if all the polygons are squares, then R_{n} is known as a polyomino chain (see, for instance, [10]). Also, if squares and hexagons are concatenated alternately in R_{n}, then we say that R_{n} is a phenylene chain (see [11]).

Every square-hexagonal chain can be considered as a graph in which the edges represent the sides of the polygons and the vertices represent the points where two sides of a polygon intersect. In the rest of the present paper, by the terminology "square-hexagonal chain(s)" we mean the graph(s) corresponding to the considered square-hexagonal chain(s).

Analogous to the definition of square-hexagonal chains, one may give a definition of triangular/square/pentagonal chains. BID indices of triangular/square/pentagonal chains were studied in $[10,12]$. The present study can be considered as a continuation of the research conducted in $[10,12]$ and it is motivated from the paper [13-15] concerning squarehexagonal chains. In the current paper, a general expression for calculating any BID index of square-hexagonal chains is derived. The chains attaining the maximum or minimum values of M_{1} and M_{2} are also characterized from the class of all square-hexagonal chains having a fixed number of polygons.

2. Main Results

In order to obtain the main results, we require some terminology concerning square-hexagonal chains. In a squarehexagonal chain, a polygon adjacent with only one (two, respectively) other polygon is known as a terminal (nonterminal, respectively) polygon. A nonterminal polygon in the chain is called a kink if its center is not collinear with centers of the two adjacent polygons. In other words, a nonterminal hexagon is a kink if and only if it contains two adjacent vertices of degree two (Figure 1) and a nonterminal square is a kink if and only if it contains a vertex of degree two (Figure 2). Following [15], we will consider squarehexagonal chains that contain the following types of kinks:
(1) Kinks of type T_{1} : A nonterminal hexagon having exactly two adjacent vertices of degree two (see Figure 1);
(2) Kinks of type $T_{2,1}$: A nonterminal square containing a vertex of degree two and adjacent to two squares (see Figure 2(a));
(3) Kinks of type $T_{2,2}$: A nonterminal square containing a vertex of degree two and adjacent to a square and a hexagon (see Figure 2(b));
(4) Kinks of type $T_{2,3}$: A nonterminal square containing a vertex of degree two and adjacent to two hexagons (see Figure 2(c));
A square-hexagonal chain is called linear if it has no kinks and it is called a zigzag chain if every nonterminal polygon is a kink. A segment is a maximal linear chain in a square-hexagonal chain, including kinks and/or terminal polygons at its ends.

The length $l(S)$ of a segment S is its number of polygons. $E(S)$ refers to the set of all edges of a segment S. A segment that contains a terminal polygon is known as an external segment. A segment that contains only nonterminal polygons is known as an internal segment. Clearly, a squarehexagonal chain consists of s segments if and only if it contains exactly $s-1$ kinks.

For a square-hexagonal R_{n}, we define the value $\delta_{R_{n}}$ to be the number of terminal hexagons in R_{n}. We also define the following values for segments S_{1}, \ldots, S_{s} of R_{n} : see Figures 3 and 4.

$$
\begin{align*}
& \mu\left(S_{i}\right)= \begin{cases}1, & \text { if } S_{i} \text { is an internal segment consisting of a hexagon and a square and contains } \\
\text { only one edge connecting vertices of degree 3, }\end{cases} \tag{3}\\
& \nu\left(S_{i}\right)= \begin{cases}1, & \text { if } S_{i} \text { is an internal segment of length three and contains an edge } \\
0, & \text { otherwise }\end{cases}
\end{align*}
$$

Figure 1: Kinks of type T_{1}.

(a)

(b)

(c)

Figure 2: (a) Kinks of type $T_{2,1}$; (b) Kinks of type $T_{2,2}$; (c) Kinks of type $T_{2,3}$.

Figure 3: Internal segment consisting of a hexagon and a square and contains an edge connecting vertices of degree 3.

Figure 4: Internal segment of length three containing an edge connecting vertices of degree 3 .

Moreover, $\mu\left(S_{1}\right)=\mu\left(S_{s}\right)=\nu\left(S_{1}\right)=\nu\left(S_{s}\right)=0$.

$$
\tau\left(S_{i}\right)= \begin{cases}1, & \text { if } S_{i} \text { consists of two squares } \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

Now, we are ready to establish the general expression for calculating the BID indices of square-hexagonal chains.

Theorem 1. Let R_{n} be square-hexagonal chain containing d squares and $n-d$ hexagons. Suppose that R_{n} consists of s segments S_{1}, \ldots, S_{s} and contains α_{1} kinks of type T_{1} and $\alpha_{2, j}$ kinks of type $T_{2, j}$, for $j=1,2,3$. Then,

$$
\begin{align*}
& m_{2,2}\left(R_{n}\right)=2 \delta_{R_{n}}+\alpha_{1}+2, \\
& m_{2,3}\left(R_{n}\right)=4 n-4 d+4+2 \alpha_{2,1}+\alpha_{2,2}-4 \delta_{R_{n}}-2 \alpha_{1}-\tau\left(S_{1}\right)-\tau\left(S_{s}\right)-\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right), \\
& m_{3,3}\left(R_{n}\right)=n+2 d-5+2 \delta_{R_{n}}+\alpha_{1}-6 \alpha_{2,1}-5 \alpha_{2,2}-4 \alpha_{2,3}+\tau\left(S_{1}\right)+\tau\left(S_{s}\right)+\sum_{i=2}^{s-1}\left(3 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)+\nu\left(S_{i}\right)\right), \\
& m_{2,4}\left(R_{n}\right)=\alpha_{2,2}+2 \alpha_{2,3}+\tau\left(S_{1}\right)+\tau\left(S_{s}\right)+\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right), \tag{5}\\
& m_{3,4}\left(R_{n}\right)=4 \alpha_{2,1}+3 \alpha_{2,2}+2 \alpha_{2,3}-\tau\left(S_{1}\right)-\tau\left(S_{s}\right)-\sum_{i=2}^{s-1}\left(4 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)+2 \nu\left(S_{i}\right)\right), \\
& m_{4,4}\left(R_{n}\right)=\sum_{i=2}^{s-1}\left(\tau\left(S_{i}\right)+\nu\left(S_{i}\right)\right) .
\end{align*}
$$

Proof. Let C_{1}, \ldots, C_{s-1} be the kinks of R_{n} such that C_{i} joins segments S_{i} and S_{i+1}.

Let $A_{1}=E\left(C_{1}\right)$, and $A_{i}=E\left(C_{i}\right) \backslash E\left(C_{i-1}\right)$, for $i=2, \ldots$, $s-1$. Also, we set $B_{1}=E\left(S_{1}\right) \backslash E\left(C_{1}\right), B_{s}=E\left(S_{s}\right) \backslash E\left(C_{s-1}\right)$, and $B_{j}=E\left(S_{j}\right) \backslash\left(E\left(C_{j-1}\right) \cup E\left(C_{j}\right)\right)$, for $j=2, \ldots, s-1$.

Clearly, the collection $\left\{A_{1}, \ldots, A_{s-1}, B_{1}, \ldots, B_{s}\right\}$ forms a partition for $E\left(R_{n}\right)$. For $2 \leq a \leq b \leq 4, i=1, \ldots, s-1$, $j=1, \ldots, s$, let $p_{a, b}^{(i)}$ be the number of edges in A_{i} that connects vertices of degrees a and b and $q_{a, b}^{(j)}$ be the number of edges in B_{j} that connect vertices of degrees a and b. Then, we get $m_{a, b}\left(R_{n}\right)=\sum_{i=1}^{s-1} p_{a, b}^{(i)}+\sum_{j=1}^{s} q_{a, b}^{(j)}$.

First, we calculate $m_{2,2}\left(R_{n}\right)$. We have $q_{2,2}^{(1)}+q_{2,2}^{(s)}=2$ $\left(\delta_{R_{n}}+1\right)$, and for $j=2, \ldots, s-1$, we have $q_{2,2}^{(j)=}=0$. Also, a kink contains an edge joining vertices of degree 2 if and only if it is of type T_{1}. Hence, $m_{2,2}=2 \delta_{R_{n}}+\alpha_{1}+2$.

To calculate $m_{4,4}\left(R_{n}\right)$, note that a segment S_{i} contains an edge joining vertex of degree 4 if and only if S_{i} is an internal segment and $\tau\left(S_{i}\right)=1$ or $\nu\left(S_{i}\right)=1$. Thus, $m_{4,4}\left(R_{n}\right)=\sum_{i=2}^{s-1}$ $\left(\tau\left(S_{i}\right)+\nu\left(S_{i}\right)\right)$.

Next, we calculate $m_{2,4}\left(R_{n}\right)$. Vertices of degree 4 appear only in kinks of type $T_{2,1}, T_{2,2}$, and $T_{2,3}$. In fact, $p_{2,4}^{(1)}=\tau\left(S_{2}\right)$, $p_{2,4}^{(s-1)}=\tau\left(S_{s-1}\right)$, and for $2 \leq i \leq s-2, p_{2,4}^{(i)}=\tau\left(S_{i}\right)+\tau\left(S_{i+1}\right)$ if C_{i} is a kink of type $T_{2,1}, T_{2,2}$, or $T_{2,3}$, and $p_{2,4}^{(i)}=0$ otherwise. Hence, $\sum_{i=1}^{s-1} p_{a, b}^{(i)}=2 \sum_{i=2}^{s-1} \tau\left(S_{i}\right)$. Also, $\sum_{i=1}^{s} q_{a, b}^{(i)}=\alpha_{2,2}+2 \alpha_{2,3}+$ $\tau\left(S_{1}\right)+\tau\left(S_{s}\right)-\sum_{i=2}^{s-1} \mu\left(S_{i}\right)$. Thus,

$$
\begin{align*}
m_{2,4}\left(R_{n}\right)= & \alpha_{2,2}+2 \alpha_{2,3}+\tau\left(S_{1}\right)+\tau\left(S_{s}\right) \\
& +\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right) . \tag{6}
\end{align*}
$$

Now, each kink of types $T_{2,1}, T_{2,2}$, or $T_{2,3}$ contains exactly one vertex of degree 4 , and so the number of vertices of degree 4 is $\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}$. Therefore,

$$
\begin{equation*}
m_{2,4}\left(R_{n}\right)+m_{3,4}\left(R_{n}\right)+2 m_{4,4}\left(R_{n}\right)=4\left(\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}\right) \tag{7}
\end{equation*}
$$

Substituting the values of $m_{2,4}\left(R_{n}\right)$ and $m_{4,4}\left(R_{n}\right)$ in (7) and solving the resulting equation for $m_{3,4}\left(R_{n}\right)$ yield the following:

$$
\begin{align*}
m_{3,4}\left(R_{n}\right)= & 4\left(\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}\right)-\alpha_{2,2}-2 \alpha_{2,3}-\tau\left(S_{1}\right) \\
& -\tau\left(S_{s}\right)-\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right) \\
& -2 \sum_{i=2}^{s-1}\left(\tau\left(S_{i}\right)+\nu\left(S_{i}\right)\right)=4 \alpha_{2,1}+3 \alpha_{2,2}+2 \alpha_{2,3} \\
& -\tau\left(S_{1}\right)-\tau\left(S_{s}\right)-\sum_{i=2}^{s-1}\left(4 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)+2 \nu\left(S_{i}\right)\right) . \tag{8}
\end{align*}
$$

Similarly, every nonterminal hexagon contains exactly two vertices of degree 2, and a nonterminal square contains a vertex of degree 2 if and only if it is a kink of type $T_{2,1}, T_{2,2}$, or $T_{2,3}$. Now, adding number of vertices of degree 2 in the terminal polygons, we see that the number of vertices of degree 2 in R_{n} is $2 n-2 \mathrm{~d}+4+\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}$. Hence, $2 m_{2,2}\left(R_{n}\right)+m_{2,3}\left(R_{n}\right)+m_{2,4}\left(R_{n}\right)=2$ $\left(2 n-2 d+4+\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}\right)$. Therefore,

$$
\begin{align*}
m_{2,3}\left(R_{n}\right)= & 2\left(2 n-2 \mathrm{~d}+4+\alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}\right) \\
& -2\left(2 \delta_{R_{n}}+\alpha_{1}+2\right)-\alpha_{2,2}-2 \alpha_{2,3}-\tau\left(S_{1}\right)-\tau\left(S_{s}\right) \\
& -\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right)=4 n-4 d+4 \\
& +2 \alpha_{2,1}+\alpha_{2,2}-4 \delta_{R_{n}}-2 \alpha_{1}-\tau\left(S_{1}\right)-\tau\left(S_{s}\right) \\
& -\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right) . \tag{9}
\end{align*}
$$

The total number of edges in R_{n} is $n+1+2 d+4(n-$ $d)=5 n-2 d+1$, and so

$$
\begin{align*}
m_{3,3}\left(R_{n}\right)= & 5 n-2 d+1-2 \delta_{R_{n}}-2-\alpha_{1}-4 n+4 d-4-2 \alpha_{2,1}-\alpha_{2,2}+4 \delta_{R_{n}}+2 \alpha_{1} \\
& +\tau\left(S_{1}\right)+\tau\left(S_{s}\right)+\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right) \\
& -\alpha_{2,2}-2 \alpha_{2,3}-\tau\left(S_{1}\right)-\tau\left(S_{s}\right)-\sum_{i=2}^{s-1}\left(2 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)\right) \\
& -4 \alpha_{2,1}-3 \alpha_{2,2}-2 \alpha_{2,3}+\tau\left(S_{1}\right)+\tau\left(S_{s}\right)+\sum_{i=2}^{s-1}\left(4 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)+2 \nu\left(S_{i}\right)\right) \tag{10}\\
& -\sum_{i=2}^{s-1}\left(\tau\left(S_{i}\right)+\nu\left(S_{i}\right)\right) \\
= & n+2 d-5+2 \delta_{R_{n}}+\alpha_{1}-6 \alpha_{2,1}-5 \alpha_{2,2}-4 \alpha_{2,3}+\tau\left(S_{1}\right)+\tau\left(S_{s}\right) \\
& +\sum_{i=2}^{s-1}\left(3 \tau\left(S_{i}\right)-\mu\left(S_{i}\right)+\nu\left(S_{i}\right)\right) .
\end{align*}
$$

The following results are a direct consequence of Theorem 1 .

Corollary 1. Let R_{n} be a square-hexagonal chain containing d squares and $n-d$ hexagons. Suppose that R_{n} consists of s segments S_{1}, \ldots, S_{s} and contains α_{1} kinks of type T_{1} and $\alpha_{2, j}$ kinks of type $T_{2, j}$, for $j=1,2,3$. Then,

$$
\begin{align*}
\operatorname{BID}\left(R_{n}\right)= & \sum_{2 \leq a \leq b \leq 4} m_{a, b}\left(R_{n}\right) \theta_{a, b} \\
= & \left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right) d+\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right) \\
& +\left(2 \theta_{2,2}-4 \theta_{2,3}+2 \theta_{3,3}\right) \delta_{R_{n}}+\left(\theta_{2,2}-2 \theta_{2,3}+\theta_{3,3}\right) \alpha_{1} \\
& +\left(2 \theta_{2,3}-6 \theta_{3,3}+4 \theta_{3,4}\right) \alpha_{2,1}+\left(\theta_{2,3}-5 \theta_{3,3}+\theta_{2,4}+3 \theta_{3,4}\right) \alpha_{2,2} \\
& +\left(2 \theta_{2,4}-4 \theta_{3,3}+2 \theta_{3,4}\right) \alpha_{2,3}+\left(\theta_{3,3}-\theta_{2,3}+\theta_{2,4}-\theta_{3,4}\right)\left(\tau\left(S_{1}\right)+\tau\left(S_{s}\right)\right) \tag{11}\\
& +\left(3 \theta_{3,3}-2 \theta_{2,3}+2 \theta_{2,4}-4 \theta_{3,4}+\theta_{4,4}\right) \sum_{i=2}^{s-1} \tau\left(S_{i}\right) \\
& +\left(\theta_{2,3}-\theta_{3,3}-\theta_{2,4}+\theta_{3,4}\right) \sum_{i=2}^{s-1} \mu\left(S_{i}\right)+\left(\theta_{3,3}-2 \theta_{3,4}+\theta_{4,4}\right) \sum_{i=2}^{s-1} v\left(S_{i}\right)
\end{align*}
$$

Corollary 2. If L_{n} is a linear square-hexagonal chain with d squares and $n-d$ hexagons, then

$$
\begin{align*}
\operatorname{BID}\left(L_{n}\right)= & \left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right) d \\
& +\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right)+\left(2 \theta_{2,2}-4 \theta_{2,3}+2 \theta_{3,3}\right) \delta_{L_{n}} . \tag{12}
\end{align*}
$$

L_{n}^{0} (resp. L_{n}^{1}) denotes the linear square-hexagonal chain with n polygons where the terminal polygons are squares (resp. hexagons) and all nonterminal polygons are hexagons (resp. squares). Then,

$$
\begin{align*}
& \operatorname{BID}\left(L_{n}^{0}\right)=\left(4 \theta_{2,3}+\theta_{3,3}\right) n+2 \theta_{2,2}-4 \theta_{2,3}-\theta_{3,3} \tag{13}\\
& \operatorname{BID}\left(L_{n}^{1}\right)=3 \theta_{3,3} n+6 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}
\end{align*}
$$

The next theorem gives the extreme values of BID indices for the class of linear square-hexagonal chains.

Theorem 2

(a) If $\theta_{3,3}-2 \theta_{2,3}>0$, then
(1) $\operatorname{BID}\left(L_{n}\right)$ is minimum if and only if $L_{n} \cong L_{n}^{0}$;
(2) $\operatorname{BID}\left(L_{n}\right)$ is maximum if and only if $L_{n} \cong L_{n}^{1}$.
(b) If $\theta_{3,3}-2 \theta_{2,3}<0$, then
(1) $\operatorname{BID}\left(L_{n}\right)$ is minimum if and only if L_{n} is linear polyomino chain;
(2) $\operatorname{BID}\left(L_{n}\right)$ is maximum if and only if L_{n} is linear hexagonal chain.

Proof. (a) Suppose that $\theta_{3,3}-2 \theta_{2,3}>0$. Let L_{n} be a linear square-hexagonal chain with d squares. Since $d+\delta_{R_{n}} \geq 2$ and $\delta_{R_{n}} \geq 0$, we obtain the following:

$$
\begin{align*}
\operatorname{BID}\left(L_{n}\right) & =\left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right)\left(d+\delta_{L_{n}}\right)+\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right)+2 \theta_{2,2} \delta_{L_{n}} \\
& \geq\left(4 \theta_{2,3}+\theta_{3,3}\right) n+2\left(2 \theta_{3,3}-4 \theta_{2,3}\right)+\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right) \tag{14}\\
& =\left(4 \theta_{2,3}+\theta_{3,3}\right) n+2 \theta_{2,2}-4 \theta_{2,3}-\theta_{3,3}=\operatorname{BID}\left(L_{n}^{0}\right) .
\end{align*}
$$

The equality holds if and only if $\delta_{L_{n}}=0$ and $d=2$ equivalently $L_{n} \cong L_{n}^{0}$.

$$
\begin{align*}
\operatorname{BID}\left(L_{n}\right) & =\left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right) d+\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right)+\left(2 \theta_{2,2}-4 \theta_{2,3}+2 \theta_{3,3}\right) \delta_{L_{n}} \\
& =\left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right)\left(d+\delta_{L_{n}}\right)+\left(2 \theta_{2,2}+4 \theta_{2,3}-5 \theta_{3,3}\right)+2 \theta_{2,2} \delta_{L_{n}} \\
& \leq\left(4 \theta_{2,3}+\theta_{3,3}\right) n+\left(2 \theta_{3,3}-4 \theta_{2,3}\right) n+4 \theta_{2,3}-5 \theta_{3,3}+6 \theta_{2,2} \tag{15}\\
& =3 \theta_{3,3} n-5 \theta_{3,3}+4 \theta_{2,3}+6 \theta_{2,2}=\operatorname{BID}\left(L_{n}^{1}\right) .
\end{align*}
$$

The equality holds if and only if $\delta_{L_{n}}=2$ and $d=n-2$ equivalently $L_{n} \cong L_{n}^{1}$.
(b) is similar to the proof of part (a).

Now, we focus on the special cases of the first Zagreb index $M_{1}\left(\theta_{a, b}=a+b\right)$ and the second Zagreb index M_{2} ($\theta_{a, b}=a b$) of square-hexagonal chains.

Corollary 3. If R_{n} is a square-hexagonal chain with d squares, s segments $S_{1}, \ldots, S_{s}, \alpha_{1}$ kinks of type T_{1}, and $\alpha_{2, j}$ kinks of type $T_{2, j}, j=1,2,3$, then

$$
\begin{align*}
& M_{1}\left(R_{n}\right)=26 n-8 d+2 \alpha_{2,1}+2 \alpha_{2,2}+2 \alpha_{2,3}-2 \\
& M_{2}\left(R_{n}\right)=33 n-6 d+2 \delta_{R_{n}}-13+\alpha_{1}+6 \alpha_{2,1}+5 \alpha_{2,2}+4 \alpha_{2,3}-\sum_{i=1}^{s}\left(\tau\left(S_{i}\right)-\mu\left(S_{i}\right)-v\left(S_{i}\right)\right) \tag{16}
\end{align*}
$$

The next result gives the extreme values of the first and second Zagreb indices for the class of square-hexagonal chains.

Theorem 3

(a) $M_{1}\left(R_{n}\right)$ is minimum if and only if R_{n} is a linear polyomino chain.
(b) $M_{1}\left(R_{n}\right)$ is maximum if and only if R_{n} is a hexagonal chain.
(c) $M_{2}\left(R_{n}\right)$ is minimum if and only if R_{n} is a linear polyomino chain.
(d) $M_{2}\left(R_{n}\right)$ is maximum if and only if R_{n} is a zigzag hexagonal chain.

Proof. Let $L P_{n}$ denote the linear polyomino chain with n squares, H_{n} denote a hexagonal chain with n hexagons, and $Z H_{n}$ denote the zigzag hexagonal chain with n squares and $n-2$ kinks of type T_{1}. Then, by Corollary 3, we have $M_{1}\left(L P_{n}\right)=18 n-2, \quad M_{1}\left(H_{n}\right)=26 n-2, \quad M_{2}\left(L P_{n}\right)=27$ $n-13$, and $M_{2}\left(Z H_{n}\right)=34 n-11$. Let R_{n} be a square-
hexagonal chain with d squares, s segments S_{1}, \ldots, S_{s}, and α_{1} kinks of type $T_{1}, \alpha_{2, j}$ kinks of type $T_{2, j}, j=1,2,3$.
(a) Since $d \leq n$ and $\alpha_{2, j} \geq 0$ for $j=1,2,3$, we have the following:

$$
\begin{align*}
M_{1}\left(R_{n}\right)= & 26 n-8 d+2 \alpha_{2,1}+2 \alpha_{2,2}+2 \alpha_{2,3} \\
& -2 \geq 18 n-2=M_{1}\left(L P_{n}\right), \tag{17}
\end{align*}
$$

with equality holds if and only $d=n$ and $\alpha_{2,1}=$ $\alpha_{2,2}=\alpha_{2,3}=0$.
(b) Since all kinks of type $T_{2, j}, j=1,2,3$ are squares, we clearly see that $d \geq \alpha_{2,1}+\alpha_{2,2}+\alpha_{2,3}$. Hence,

$$
\begin{align*}
M_{1}\left(R_{n}\right) & =26 n-2\left(4 d-\alpha_{2,1}-\alpha_{2,2}-\alpha_{2,3}\right)-2 \tag{18}\\
& \leq 26 n-2=M_{1}\left(H_{n}\right)
\end{align*}
$$

and equality holds if and only if $d=0$.
(c) If S_{i} is an internal segment and $\tau\left(S_{i}\right)=1$, then each terminal polygon of S_{i} is a kink of type $T_{2,1}$ or type $T_{2,2}$. This implies that $\sum_{i=1}^{s} \tau\left(S_{i}\right) \leq \alpha_{2,1}+\alpha_{2,2}+1$. Therefore,

$$
\begin{align*}
M_{2}\left(R_{n}\right) & =33 n-6 d+2 \delta_{R_{n}}-13+\alpha_{1}+6 \alpha_{2,1}+5 \alpha_{2,2}+4 \alpha_{2,3}-\sum_{i=1}^{s}\left(\tau\left(S_{i}\right)-\mu\left(S_{i}\right)-\nu\left(S_{i}\right)\right) \\
& \geq 27 n-13+6 \alpha_{2,1}+5 \alpha_{2,2}-\sum_{i=1}^{s} \tau\left(S_{i}\right) \tag{19}
\end{align*}
$$

Equality holds if and only if $d=n$ (consequently $\left.\alpha_{2,2}=0\right), \quad \delta_{R_{n}}=0, \quad$ and $\quad \alpha_{2,3}=\sum_{i=1}^{s} \mu\left(S_{i}\right)=\sum_{i=1}^{s} v$ $\left(S_{i}\right)=0$. Now, if $\alpha_{2,1} \geq 1$, then $6 \alpha_{2,1}-\sum_{i=1}^{s} \tau\left(S_{i}\right) \geq 5$,
and hence $M_{2}\left(R_{n}\right)>27 n-13=M_{2}\left(L P_{n}\right)$. If $\alpha_{2,1}=0$, then $\sum_{i=1}^{s} \tau\left(S_{i}\right)=0$, and then $R_{n} \cong L P_{n}$.
(d) We have the following:

$$
\begin{align*}
M_{2}\left(R_{n}\right)= & 33 n-6 d+2 \delta_{R_{n}}-13+\alpha_{1}+6 \alpha_{2,1}+5 \alpha_{2,2}+4 \alpha_{2,3}-\sum_{i=1}^{s}\left(\tau\left(S_{i}\right)-\mu\left(S_{i}\right)-v\left(S_{i}\right)\right) \\
\leq & 33 n-13+2 \delta_{R_{n}}-6\left(d-\alpha_{2,1}-\alpha_{2,2}-\alpha_{2,3}-\sum_{i=1}^{s} v\left(S_{i}\right)\right) \tag{20}\\
& -\left(\alpha_{2,2}+\alpha_{2,3}-\sum_{i=1}^{s} \mu\left(S_{i}\right)\right)+\alpha_{1}-\alpha_{2,3}-5 \sum_{i=1}^{s} v\left(S_{i}\right)
\end{align*}
$$

If, for some $i, \mu\left(S_{i}\right) \neq 0$, then one of the terminal polygons of S_{i} is a kink of type $T_{2,2}$ or type $T_{2,3}$. This implies that $\sum_{i=1}^{s} \mu\left(S_{i}\right) \leq \alpha_{2,2}+\alpha_{2,3}$. Moreover, if $v\left(S_{i}\right) \neq 0$, then S_{i} contains a square that is not a kink, and hence, $d \geq \alpha_{2,3}+\alpha_{2,2}$ $+\alpha_{2,3}+\sum_{i=1}^{s} \nu\left(S_{i}\right)$. On the other hand, we know that $\delta_{R_{n}} \leq 2$ and $\alpha_{1} \leq n-2$. Thus, we have the following:

$$
\begin{equation*}
M_{2}\left(R_{n}\right) \leq 34 n-11=M_{2}\left(Z H_{n}\right) . \tag{21}
\end{equation*}
$$

Now, if one of the values $d, \alpha_{2,1}, \alpha_{2,2}, \alpha_{2,3}, \sum_{i=1}^{s} \nu\left(S_{i}\right)$, and $\sum_{i=1}^{s} \mu\left(S_{i}\right)$ is nonzero, then $\delta_{R_{n}} \leq 1$ or $\alpha_{1}<n-2$, and so $M_{2}\left(R_{n}\right)<34 n-11=M_{2}\left(Z H_{n}\right)$. Therefore, equality in (21) holds if and only if $\delta_{R_{n}}=2$ and $\alpha_{1}=n-2$ equivalently $R_{n} \cong Z H_{n}$.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Ha'il-Saudi Arabia through project RG-20 031.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, London, UK, 2008.
[2] G. Chartrand, L. Lesniak, and P. Zhang, Graphs \& Digraphs, CRC Press, Boca Raton, FL, USA, 2016.
[3] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, USA, 1992.
[4] B. Borovićanin, K. C. Das, B. Furtula, and I. Gutman, "Bounds for zagreb indices," MATCH Communications in Mathematical and in Computer Chemistry.vol. 78, pp. 17-100, 2017.
[5] I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, "Graph theory and molecular orbital Total π-electron energy of alternant hydrocarbons," The Journal of Chemical Physics, vol. 62, no. 9, pp. 535-538, 1972.
[6] Y. Rao, A. Aslam, M. U. Noor, A. O. Almatroud, and Z. Shao, "Bond incident degree indices of catacondensed pentagonal systems," Complexity, vol. 2020, Article ID 4935760, 7 pages, 2020.
[7] D. Vukičević and J. Durdjević, "Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes," Chemical Physics Letters, vol. 515, pp. 186-189, 2011.
[8] J. Ye, M. Liu, Y. Yao, and K. C. Das, "Extremal polygonal cacti for bond incident degree indices," Discrete Applied Mathematics, vol. 257, pp. 289-298, 2019.
[9] J. Zhang and H. Deng, "The hexagonal chains with the extremal third-order randić index," Applied Mathematics Letters, vol. 22, no. 12, pp. 1841-1845, 2009.
[10] A. Ali, Z. Raza, and A. A. Bhatti, "Bond incident degree (BID) indices of polyomino chains: a unified approach," Applied Mathematics and Computation, vol. 287-288, pp. 28-37, 2016.
[11] J. Zhang and H. Deng, "Third order randić index of phenylenes," Journal of Mathematical Chemistry, vol. 43, no. 1, pp. 12-18, 2008.
[12] A. Ali and A. A. Bhatti, "Extremal triangular chain graphs for bond incident degree (BID) indices," Ars Combinatoria, vol. 141, pp. 213-227, 2018.
[13] O. Bodroža-Pantić, "Algebraic structure count of some cyclic hexagonal-square chains on the Möbius strip," Journal of Mathematical Chemistry, vol. 41, pp. 283-294, 2007.
[14] O. Bodroža-Pantić and A. Ilic-Kovacevic, "Algebraic structure count of angular hexagonal-square chains," Fibonacci Quarterly, vol. 45, pp. 3-9, 2007.
[15] C. Xiao and H. Chen, "Kekulé structures of square-hexagonal chains and the hosoya index of caterpillar trees," Discrete Mathematics, vol. 339, no. 2, pp. 506-510, 2016.

