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In this paper, the ρ-homotopy perturbation transformation method was applied to analysis of �fth-order nonlinear fractional
Korteweg–de Vries (KdV) equations. �is technique is the mixture form of the ρ-Laplace transformation with the homotopy
perturbation method. �e purpose of this study is to demonstrate the validity and e�ciency of this method. Furthermore, it is
demonstrated that the fractional and integer-order solutions close in on the exact result. �e suggested technique was e�ectively
utilized and was accurate and simple to use for a number of related engineering and science models.

1. Introduction

A number of researchers have recently become interested
in fractional calculus, which was �rst developed during
Newton’s period. Within the fractional calculus structure,
many interesting and signi�cant steps have been discovered
within the last thirty decades. A fractional derivative was
invented as a result of the complexity of a heterogeneous
phenomenon. �e fractional derivative operators, by in-
corporating di�usion methods, are capable of capturing the
attitudes of multidimensional media [1–4]. �e use of
di�erential equations of any scale has proved useful in
showing a number of problems more quickly and accu-
rately. Increasingly, scholars turned to generalized calculus
to convey their viewpoints while analyzing complex phe-
nomena in the context of mathematical methods using
software [5–10].

Nonlinear impacts occur in several implemented scienti�c
�elds, such as �uid, mathematical biology, nonlinear image
sensors, quantum �eld theory, kinetics, thermodynamics, and
�uid dynamics. It is based on nonlinear partial di�erential
equations of various degrees of complexity to model these
processes. Partial di�erential equations are generally applied in
the description of physical processes [11–15]. Most of the es-
sential physical systems do not exhibit linear behavior. �ere is
no way to determine the exact result of such nonlinear phe-
nomena. Only techniques that are appropriate for solving
nonlinear equations can be used to investigate this phenomenon
[16–22].

In 1895, Korteweg and de Vries proposed a KdV
equation to design Russell’s soliton phenomenon, such as
small and huge water waves. Solitons are steady solitary
waves, which mean that these solitary waves are a particle.
KdV equations are applied in di�erent applied �elds such

Hindawi
Journal of Mathematics
Volume 2022, Article ID 1883268, 11 pages
https://doi.org/10.1155/2022/1883268

mailto:mfaridoon@uqu.edu.sa
mailto:shamszaland@kpu.edu.af
mailto:shamszaland@kpu.edu.af
https://orcid.org/0000-0003-4755-9381
https://orcid.org/0000-0002-7548-9483
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1883268


as quantam mechanics, fluid dynamics, optics, and plasma
physics. Fifth-order KdV form equations were utilized to
analyze many nonlinear phenomena in particle physics
[23–25]. It plays a vital role in the distribution of waves
[26]. In their analysis, the KdV form equation has dis-
persive terms of the third and fifth-order relevant to the
magnetoacoustic wave problem in cold plasma free colli-
sion plasma and dispersive terms appear near-critical angle
propagation [27]. Plasma is a dynamic, quasineutral, and
electrically conductive fluid. It consists of neutral particles,
electrons, and ions. It consists of magnetic and electric
areas due to the electrically conducting behavior of plasma.
/emixture of particles and areas supports plasma waves of
various forms. A magnetic lock is a less longitudinal ion
dispersion. /e magnetoacoustic wave behaves as an ion-
acoustic wave in the low magnetic field range, while in the
low-temperature capacity, it acts as an Alfven wave [28, 29].

/e general model for the analysis of magnetic properties-
acoustic waves in plasma and shallow water waves with surface
tension is equated with the fifth order of KdV. Recent study
reveals that the solutions to this equation for travelling waves
do not vanish at infinity [30, 31]. Consider the well-known
three types of the fifth-order KdV equations as follows [32, 33]:
D

c
τV + Vζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ + V5ζ � 0, 0< β≤ 1, (1)

with initial condition V(ζ , 0) � 1/ζ ,

D
β
τV + VVζ − VV3ζ + V5ζ � 0, 0< β≤ 1, (2)

with initial condition V(ζ , 0) � eζ , and

D
β
τV + VVζ + V3ζ − V5ζ � 0, 0< β≤ 1, (3)

with initial conditionV(ζ , 0) � 105/169sech4(ζ − ϕ/2
��
13

√
).

(1) and (2) are called fifth-order KdV equations and (3) is
called the Kawahara equation. Analytic techniques for these
mathematical model are particularly difficult to come across
due to their severe nonlinearity. Several researchers have
employed various analytical and computational strategies to
the solution of linear and nonlinear KdV equations throughout
the last decade, such as the multisymplectic method [34],
variational iteration method [33], He’s homotopy perturbation
method [35], and Exp-function method [36].

Recently, Fahd and Abdeljawad [37] developed the
Laplace transform of the generalized fractional Caputo
derivatives. We established a novel methodology with
ρ-Laplace transform for solving fractional differential
equations with a generalized fractional Caputo derivative.
/e homotopy perturbation method is merged with the
Laplace transform method to create a highly effective
method for handling nonlinear terms which is known as the
homotopy perturbation transformation technique. /is
technique can provide the result in quick convergent series.
Ghorbani pioneered the use of He’s polynomials in non-
linear terms [38–40]. Later on, many scholars utilized the
homotopy perturbation transformation method for linear
and nonlinear differential equations such as heat-like
equations [41], Navier–Stokes equations [42], hyperbolic
equation and Fisher’s equation [43], and gas dynamic
equation [44].

2. Basic Definitions

2.1.Definition. /e fractional generalized integral of order β
of a continuous function (CF) g: [0, +∞]⟶ R is defined
as [37]

I
β,ρ

g (ζ) �
1
Γ(β)


ζ

0

ζρ − sρ

ρ
 

β− 1
g(s)ds

s
1−ρ , ρ> 0, ζ > 0, 0< β< 1.

(4)

2.2. Definition. /e order β fractional generalized derivative
of a CF g: [0, +∞]⟶ R is given as [37]

D
β,ρ

g (ζ) � I
1− β,ρ

g (ζ)

�
1
Γ(1 − β)

d

dζ
  

ζ

0

ζρ − sρ

ρ
 

− β− 1
g(s)ds

s
1−ρ ,

ρ> 0, ζ > 0 and 0< β< 1.

(5)

2.3. Definition. /e Caputo derivative of fractional-order β
of a CF g: [0, +∞]⟶ R is defined as [37]

D
β,ρ

g (ζ) �
1
Γ(1 − β)

d

dζ
  

ζ

0

ζρ − sρ

ρ
 

− β− 1

βng(s)ds
s
1−ρ ,

(6)

where ρ> 0, ζ > 0, β � ζ1− β
d/dζ, and 0< β< 1.

2.4. Definition. /e ρ-Laplace transform of a CF g: [0, +∞]

⟶ R is defined as [37]

Lρ g(ζ) (s) � 
∞

0
e

− sζρ/ρ
g(ζ)

dζ
ζ1−ρ. (7)

/e fractional generalized Caputo derivative of ρ-Lap-
lace transformation of a CF g is given by [37]

Lρ D
β,ρ

g(ζ) (s) � s
β
Lρ g(ζ)  − 

n−1

k�0
s
β− k− 1

I
β,ρβn

g (0).

(8)

2.5. Definition. /e generalized Mittag-Leffler function is
defined by

Eβ,ρ(z) � 
∞

k�0

z
β

Γ(βk + c)
, (9)

where β> 0, c> 0, and Eβ(z) � Eβ,1(z).

3. The Rod Map of the Proposed Method

Consider the general partial differential equation given as

2 Journal of Mathematics



D
c
τV(ζ , τ) + MV(ζ, τ) + NV(ζ , τ) � h(ζ , τ), τ > 0, 0< c≤ 1,

V(ζ , 0) � g(ζ), ] ∈ R.

(10)

Applying ρ-Laplace transformation of (10), we get

Lρ D
c
τV(ζ , τ) + MV(ζ , τ) + NV(ζ , τ)  � Lρ[h(ζ , τ)], τ > 0, 0< c≤ 1,

μ(ζ, τ) �
1
s

g(ζ) +
1
s
βLρ[h(ζ , τ)] −

1
s
βLρ[MV(ζ , τ) + NV(ζ , τ)].

(11)

Now, applying the inverse ρ-Laplace transform, we get

V(ζ , τ) � F(ζ , τ) − L
−1
ρ

1
s
βLρ MV(ζ , τ) + NV(ζ , τ){ } ,

(12)

where

F(ζ, τ) � L
−1
ρ

1
s

g(ζ) +
1
s
βLρ[h(ζ , τ)] 

� g(]) + L
−1
ρ

1
s
βLρ[h(ζ , τ)] .

(13)

Now, the perturbation procedure in terms of power
series with parameter p is presented as

V(ζ, τ) � 
∞

κ�0
p
κ
Vκ(ζ, τ), (14)

where p is the perturbation parameter and p ∈ [0, 1].
/e nonlinear term can be defined as

NV(ζ , τ) � 
∞

κ�0
p
κ
Hκ Vκ( , (15)

where Hn are He’s polynomials in terms of
V0,V1,V2, . . . ,Vn and can be calculated as

Hn V0,V1, . . . ,Vn(  �
1

c(n + 1)
D

κ
p N 

∞

κ�0
p
κ
Vκ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

p�0

,

(16)

where Dκ
p � zκ/zpκ.

Substituting (15) and (16) in (12), we get



∞

κ�0
p
κ
Vκ(ζ, τ) � F(ζ, τ) − p × L

−1
ρ

1
s
βLρ M 

∞

κ�0
p
κ
Vκ(ζ, τ) + 

∞

κ�0
p
κ
Hκ Vκ( 

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (17)

/e coefficients comparison on both sides of p, we have

p
0
: V0(ζ, τ) � F(ζ , τ),

p
1
: V1(ζ, τ) � L

−1
ρ

1
s
βLρ MV0(ζ, τ) + H0(V)(  ,

p
2
: V2(ζ, τ) � L

−1
ρ

1
s
βLρ MV1(ζ, τ) + H1(V)(  ,

⋮

p
κ
: Vκ(ζ, τ) � L

−1
ρ

1
s
βLρ MVκ−1(ζ, τ) + Hκ−1(V)(  ,

κ> 0, κ ∈ N.

(18)

/e Vκ(ζ, τ) component can be determined easily
which quickly leads us to the convergent series. We can get
p⟶ 1:

V(ζ , τ) � limM⟶∞

M

κ�1
Vκ(ζ, τ). (19)

4. Numerical Implementations

Example 1. Consider the fifth-order nonlinear KdV
equation

D
β
τV + Vζ + V

2
V2ζ − VζV2ζ

− 20V2
V3ζ + V5ζ � 0, 0< β≤ 1,

(20)

with the IC

V(ζ, τ) �
1
ζ
. (21)
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Applying the ρ-Laplace transform on (20), we get

LρV(ζ , τ)] �
1
sζ

−
1
s
βLρVζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ +V5ζ.

(22)

Next, using the inverse of ρ-Laplace transform of (22),

[V(ζ , τ)] �
1
ζ

− L
−1
ρ

1
s
βLρ Vζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ + V5ζ  .

(23)

Now, we apply HPM



∞

n�0
p

n
Vn(ζ, τ) �

1
ζ

− p L
−1
ρ

1
s
βLρ 

∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠ + 

∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠

ζ

+ 
∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠

5ζ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (24)

where Hn(x) represents the nonlinear function of He’s
polynomial. For the first few components, we present He’s
polynomials

H0(V) � V
2
0 V0( 2ζ + V0( ζ V0( 2ζ − 20V2

0 V0( 3ζ,

H1(V) � V
2
0 V1( 2ζ + 2V0V1 Vo( 2ζ + Vo( ζ V1( 2ζ + Vo( 2ζ V1( ζ − 20V2

0 V1( 3ζ − 40V0V1 Vo( 3ζ,

H2(V) � V
2
0 V2( 2ζ + 2V0V1 V1( 2ζ + 2V0V2 Vo( 2ζ + V

2
1 Vo( 2ζ + Vo( ζ V2( 2ζ + V1( ζ V1( 2ζ

+ Vo( 2ζ V2( ζ − 20V2
0 V2( 3ζ − 40V0V1 V1( 3ζ − 40V0V2 Vo( 3ζ − 20V2

1 Vo( 3ζ,

H3(V) � V
2
0 V3( 2ζ + 2V0V1 V2( 2ζ + 2V0V2 V1( 2ζ + 2V0V3 Vo( 2ζ + V

2
1 V1( 2ζ + 2V1V2 Vo( 2ζ

+ Vo( ζ V3( 2ζ + V1( ζ V2( 2ζ + V1( 2ζ V2( ζ + V0( 2ζ V3( ζ − 20V2
0 V3( 3ζ − 40V0V1 V2( 3ζ

− 40V0V2 V1( 3ζ − 40V0V3 Vo( 3ζ − 20V2
1 V1( 3ζ − 40V1V2 Vo( 3ζ,

H4(V) � V
2
0(V)2ζ + 2V0V1 V3( 2ζ + 2V0V2 V2( 2ζ + 2V0V3 V1( 2ζ + 2V0V4 Vo( 2ζ + V

2
1 V2( 2ζ

+ 2V1V2 V1( 2ζ + 2V1V3 Vo( 2ζ + V
2
2 Vo( 2ζ + Vo( ζ V4( 2ζ + V1( ζ V3( 2ζ + V2( 2ζ V2( ζ

+ V1( 2ζ V3( ζ + Vo( 2ζ V4( ζ − 20V2
0 V4( 3ζ − 40V0V1 V3( 3ζ − 40V0V2 V2( 3ζ − 40V0V3 V1( 3ζ

− 40V0V4 Vo( 3ζ − 20V2
1 V2( 3ζ − 40V1V2 V1( 3ζ − 40V1V3 Vo( 3ζ − 20V2

2 Vo( 2ζ,

⋮

(25)

Comparing the P-like coefficients, we have

P
0
: V0(ζ , τ) �

1
ζ
,

P
1
: V1(ζ , τ) � −L

−1
ρ

1
s
βLρ H0(V) + V0( ζ + V0( 5ζ   �

τρ/ρ( 
β

ζ2Γ(β + 1)
,

P
2
: V2(ζ , τ) � −L

−1
ρ

1
s
βLρ H1(V) + V1( ζ + V1( 5ζ   �

τρ/ρ( 
2β

ζ3Γ(2β + 1)
,

P
3
: V3(ζ , τ) � −L

−1
ρ

1
s
βLρ H2(V) + V2( ζ + V2( 5ζ   �

τρ/ρ( 
3β

ζ4Γ(3β + 1)
,

P
4
: V4(ζ , τ) � −L

−1
ρ

1
s
βLρ H3(V) + V3( ζ + V3( 5ζ   �

τρ/ρ( 
4β

ζ5Γ(4β + 1)
,

P
5
: V5(ζ , τ) � −L

−1
ρ

1
s
βLρ H4(V) + V4( ζ + V4( 5ζ   �

τρ/ρ( 
5β

ζ6Γ(5β + 1)
.

⋮

(26)

/e analytical solution of V(ζ , τ) is defined as

V(ζ , τ) � 
∞

i�0
V(ζ , τ)i �

1
ζ

+
τρ/ρ( 

β

ζ2Γ(β + 1)
+

τρ/ρ( 
2β

ζ3Γ(2β + 1)

+
τρ/ρ( 

3β

ζ4Γ(3β + 1)
+

τρ/ρ( 
4β

ζ5Γ(4β + 1)
+

τρ/ρ( 
5β

ζ6Γ(5β + 1)
+ · · · .

(27)

/en, put β � 1 in (27):

V(ζ , τ) � 
∞

i�0
Vi(ζ, τ) �

1
ζ

+
τ
ζ2

+
τ2

ζ3
+
τ3

ζ4
+ · · · . (28)

/e exact result is V(ζ , τ) � 1/ζ − τ.
In Figure 1, the three-dimensional figures of ρ-HPTM

and exact results in graphs (a) and (b) respectively at β � 1
and the close contact of the exact and ρ-HPTM solutions are
investigated. In Figure 2, represent that various fractional
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order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4. /e non-
classical results are investigated to be converge to an integer-
order result of the given problem.

Example 2. Consider the fifth-order nonlinear fraction KdV
equation

D
β
τV + VVζ − VV3ζ + V5ζ � 0, 0< β≤ 1, (29)

with the IC

V(ζ, τ) � e
ζ
. (30)

Applying the ρ-Laplace transform on (29), we get

Lρ[V(ζ , τ)] �
1
s
e
ζ

+
1
s
βLρ VV3ζ − VVζ − V5ζ . (31)

Next, using the inverse of ρ-Laplace transform of (31),

V(ζ , τ) � e
ζ

+ L
−1
ρ

1
s
βLρ VV3ζ − VVζ − V5ζ  . (32)

Now, we apply HPM



∞

n�0
p

n
Vn(ζ, τ) � e

ζ
+ p L

−1
ρ

1
s
βLρ 

∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠ − 

∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

5ζ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦, (33)
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Figure 1: Graph of (a) exact and (b) analytic solutions of β � 1 of Example 1.
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Figure 2: Figure of various fractional orders of Example 1.
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where Hn(x) represents the nonlinear term of He’s poly-
nomial. For the first few components, we present He’s
polynomials

H0(V) � Vo V0( 3ζ − V0 V0( ζ,

H1(V) � V1 V0( 3ζ + V0 V1( 3ζ − V1 V0( ζ − V0 V1( ζ,

H2(V) � V2 V0( 3ζ + V1 V1( 3ζ + V0 V2( 3ζ

− V2 V0( ζ − V1 V1( ζ − V0 V2( ζ,

H3(V) � V3 V0( 3ζ + V2 V1( 3ζ + V1 V2( 3ζ

+ V0 V3( 3ζ − V3 V0( ζ − V2 V1( ζ

− V1 V2( ζ − V0 V3( ζ,

H4(V) � V4 V0( 3ζ + V3 V1( 3ζ + V2 V2( 3ζ

+ V1 V3( 3ζ + V0 V4( 3ζ − V4 V0( ζ

− V3 V1( ζ − V2 V2( ζ − V1 V3( ζ − V0 V4( ζ,

⋮

(34)

Comparing the P-like coefficients, we have
p
0
: V0(ζ , τ) � e

ζ
,

p
1
: V1(ζ , τ) � L

−1
ρ

1
s
βLρ H0(V) − V0( 5ζ   � −

τρ/ρ( 
β

Γ(β + 1)
e
ζ
,

p
2
: V2(ζ , τ) � L

−1
ρ

1
s
βLρ H1(V) − V1( 5ζ   �

τρ/ρ( 
2β

Γ(2β + 1)
e
ζ
,

p
3
: V3(ζ , τ) � L

−1
ρ

1
s
βLρ H2(V) − V2( 5ζ   � −

τρ/ρ( 
3β

Γ(3β + 1)
e
ζ
,

p
4
: V4(ζ , τ) � L

−1
ρ

1
s
βLρ H3(V) − V3( 5ζ   �

τρ/ρ( 
4β

Γ(4β + 1)
e
ζ
,

p
5
: V5(ζ , τ) � L

−1
ρ

1
s
βLρ H4(V) − V4( 5ζ   � −

τρ/ρ( 
5β

Γ(5β + 1)
e
ζ
.

⋮

(35)

/erefore, the analytic solution of V(ζ , τ) is defined as

V(ζ , τ) � 
∞

i�0
Vi(ζ, τ) � e

ζ 1 −
τρ/ρ( 

β

Γ(β + 1)
+

τρ/ρ( 
2β

Γ(2β + 1)
⎛⎝

−
τρ/ρ( 

3β

Γ(3β + 1)
+

τρ/ρ( 
4β

Γ(4β + 1)
−

τρ/ρ( 
5β

Γ(5β + 1)
+ · · ·⎞⎠.

(36)

/en, β � 1 for (36), and we get

V(ζ , τ) � 
∞

i�0
Vi(ζ , τ) � e

ζ 1 − τ +
τ2

2!
−
τ3

3!
+
τ4

4!
−
τ5

5!
+ · · · .

(37)

/e exact solution is V(ζ , τ) � eζ− τ .

In Figure 3, the three-dimensional figures of ρ-HPTM
and exact results in graphs (a) and (b) respectively at β � 1
and the close contact of the exact and ρ-HPTM solutions are
investigated. In Figure 4, represent that various fractional
order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4. /e non-
classical results are investigated to be converge to an integer-
order result of the given problem.

Example 3. Consider nonlinear fractional-order Kawahara
equation

D
β
τV + VVζ + V3ζ − V5ζ � 0, 0< β≤ 1, (38)

with the IC

V(ζ , τ) �
105
169

sech4
ζ − ϕ
2

��
13

√ . (39)

Applying the ρ-Laplace transform on (38), we get

LρV(ζ , τ)] �
1
s

105
169

sech4
ζ − ϕ
2

��
13

√  +
1
s
βLρ V5ζ − V3ζ − VVζ .

(40)

Next, using the inverse of ρ-Laplace transform of (40),

V(ζ , τ) �
105
169

sech4
ζ − ϕ
2

��
13

√  + L
−1
ρ

1
s
βLρ V5ζ − V3ζ − VVζ  .

(41)

Now, we apply HPM



∞
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p

n
Vn(ζ, τ) �
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sech4 ζ − ϕ
2

��
13

√  + p L
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ρ

1
s
βLρ 

∞

n�0
p

n
Vn(ζ , τ)⎛⎝ ⎞⎠

5ζ

⎛⎝
⎧⎪⎨
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⎡⎢⎢⎢⎢⎢⎣

− 
∞

n�0
p

n
Vn(ζ , τ)⎛⎝ ⎞⎠

3ζ

− 
∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠⎞⎠

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(42)

where Hn(V) represent the nonlinear terms of He’s poly-
nomial. For the first few components, we present He’s
polynomials

H0(V) � V0 V0( ζ,

H1(V) � V0 V1( ζ + V1 V0( ζ,

H2(V) � V0 V2( ζ + V1 V1( ζ + V2 V0( ζ,

H3(V) � V0 V3( ζ + V1 V2( ζ + V2 V1( ζ + V3 V0( ζ,

H4(V) � V0 V4( ζ + V1 V3( ζ + V2 V2( ζ

+ V3 V1( ζ + V4 V0( ζ,

⋮
(43)

Comparing the P-like coefficients, we get
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Figure 3: Graph of (a) exact and (b) analytic solutions of β � 1 of Example 2.
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/e analytic solution V(ζ , τ) is achieved as

V(ζ, τ) � 
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i�0
Vi(ζ, τ),
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2

��
13

√  −
100

377
��
13

√ sech4 ζ − ϕ
2

��
13

√ tanh
ζ − ϕ
2

��
13

√ 
τρ/ρ( 

β

Γ(β + 1)

−
21687
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(45)

/e exact solution is V(ζ , τ) � 105/169sech4

[1/2
��
13

√
(ζ + 36τ/169 − ϕ)].

In Figure 5, the three-dimensional figures of ρ-HPTM
and exact results in graphs (a) and (b) respectively at β � 1
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Figure 4: Figure of (a) and (b) at various fractional-order of Example 2.
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and the close contact of the exact and ρ-HPTM solutions
are investigated. In Figure 6, represent that various
fractional order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4.
/e nonclassical results are investigated to be converge to
an integer-order result of the given problem.

5. Conclusions

/is paper determined the fractional-order Kawahara and
fifth-order KdV equations, applying the ρ-homotopy
perturbation transform method. /e present method is

used to describe the results for specific examples. /e
ρ-HPTM result is highly congruent with the precise so-
lution of the suggested problems. Additionally, the pro-
posed method estimated the results of the cases using
fractional-order derivatives. /e graphical examination of
the resulting fractional-order results proved their con-
vergence to integer-order outcomes. Additionally, the
ρ-HPTM technique is straightforward, simple, and
computationally efficient; the suggested method can be
adapted to solve additional fractional-order partial dif-
ferential equations.
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Figure 6: Figure of (a) at various fractional-order of β and (b) error graph of Example 3.
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Figure 5: Graph of (a) exact and (b) analytical results of β � 1 of Example 3.
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