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In this paper, the p-homotopy perturbation transformation method was applied to analysis of fifth-order nonlinear fractional
Korteweg-de Vries (KdV) equations. This technique is the mixture form of the p-Laplace transformation with the homotopy
perturbation method. The purpose of this study is to demonstrate the validity and efficiency of this method. Furthermore, it is
demonstrated that the fractional and integer-order solutions close in on the exact result. The suggested technique was effectively
utilized and was accurate and simple to use for a number of related engineering and science models.

1. Introduction

A number of researchers have recently become interested
in fractional calculus, which was first developed during
Newton’s period. Within the fractional calculus structure,
many interesting and significant steps have been discovered
within the last thirty decades. A fractional derivative was
invented as a result of the complexity of a heterogeneous
phenomenon. The fractional derivative operators, by in-
corporating diffusion methods, are capable of capturing the
attitudes of multidimensional media [1-4]. The use of
differential equations of any scale has proved useful in
showing a number of problems more quickly and accu-
rately. Increasingly, scholars turned to generalized calculus
to convey their viewpoints while analyzing complex phe-
nomena in the context of mathematical methods using
software [5-10].

Nonlinear impacts occur in several implemented scientific
fields, such as fluid, mathematical biology, nonlinear image
sensors, quantum field theory, kinetics, thermodynamics, and
fluid dynamics. It is based on nonlinear partial differential
equations of various degrees of complexity to model these
processes. Partial differential equations are generally applied in
the description of physical processes [11-15]. Most of the es-
sential physical systems do not exhibit linear behavior. There is
no way to determine the exact result of such nonlinear phe-
nomena. Only techniques that are appropriate for solving
nonlinear equations can be used to investigate this phenomenon
[16-22].

In 1895, Korteweg and de Vries proposed a KdV
equation to design Russell’s soliton phenomenon, such as
small and huge water waves. Solitons are steady solitary
waves, which mean that these solitary waves are a particle.
KdV equations are applied in different applied fields such
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as quantam mechanics, fluid dynamics, optics, and plasma
physics. Fifth-order KdV form equations were utilized to
analyze many nonlinear phenomena in particle physics
[23-25]. It plays a vital role in the distribution of waves
[26]. In their analysis, the KdV form equation has dis-
persive terms of the third and fifth-order relevant to the
magnetoacoustic wave problem in cold plasma free colli-
sion plasma and dispersive terms appear near-critical angle
propagation [27]. Plasma is a dynamic, quasineutral, and
electrically conductive fluid. It consists of neutral particles,
electrons, and ions. It consists of magnetic and electric
areas due to the electrically conducting behavior of plasma.
The mixture of particles and areas supports plasma waves of
various forms. A magnetic lock is a less longitudinal ion
dispersion. The magnetoacoustic wave behaves as an ion-
acoustic wave in the low magnetic field range, while in the
low-temperature capacity, it acts as an Alfven wave [28, 29].

The general model for the analysis of magnetic properties-
acoustic waves in plasma and shallow water waves with surface
tension is equated with the fifth order of KdV. Recent study
reveals that the solutions to this equation for travelling waves
do not vanish at infinity [30, 31]. Consider the well-known
three types of the fifth-order KdV equations as follows [32, 33]:

DXV + U+ DV + V'V o 207V 50+ Vs =0, 0<ps<1, (1)
with initial condition 7" ({,0) = 1/(,

DV + TV~ TV 3+ V5 =0, 0<P<l,  (2)
with initial condition % ({,0) = ¢, and

DV + TV +V 5~V =0, 0<P<l, (3)

with initial condition 7 ({,0) = 105/169sech* (¢ — ¢/2+/13).

(1) and (2) are called fifth-order KdV equations and (3) is
called the Kawahara equation. Analytic techniques for these
mathematical model are particularly difficult to come across
due to their severe nonlinearity. Several researchers have
employed various analytical and computational strategies to
the solution of linear and nonlinear KdV equations throughout
the last decade, such as the multisymplectic method [34],
variational iteration method [33], He’s homotopy perturbation
method [35], and Exp-function method [36].

Recently, Fahd and Abdeljawad [37] developed the
Laplace transform of the generalized fractional Caputo
derivatives. We established a novel methodology with
p-Laplace transform for solving fractional differential
equations with a generalized fractional Caputo derivative.
The homotopy perturbation method is merged with the
Laplace transform method to create a highly effective
method for handling nonlinear terms which is known as the
homotopy perturbation transformation technique. This
technique can provide the result in quick convergent series.
Ghorbani pioneered the use of He’s polynomials in non-
linear terms [38-40]. Later on, many scholars utilized the
homotopy perturbation transformation method for linear
and nonlinear differential equations such as heat-like
equations [41], Navier-Stokes equations [42], hyperbolic
equation and Fisher’s equation [43], and gas dynamic
equation [44].
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2. Basic Definitions

2.1. Definition. The fractional generalized integral of order f3
of a continuous function (CF) g: [0,+00] — R is defined
as [37]

(7)) = 1 jf <(P - 5p>ﬂ1g(5)ds)

TP Jo P P p>0,(>0,0<p<1.

(4)

2.2. Definition. The order f§ fractional generalized derivative
of a CF g: [0,+00] — R is given as [37]

(D9) () =(1'"*g) (0

_ 1 (1) J( ((P —5P>ﬁ1g(s_)d5’ (5)
r(-p\di/Jo\ p s

p>0,{>0and0<fB<1.

2.3. Definition. The Caputo derivative of fractional-order f3
of a CF g: [0,+00] — R is defined as [37]

, o d\ (C(P-\F" L g(s)ds
w0 L(57) s
(6)

where p>0, (>0, = {""Pd/d{, and 0<f<1.

2.4. Definition. The p-Laplace transform of a CF g: [0, +00]
— R is defined as [37]
e d¢
L@} =] e "9 5 (7)
The fractional generalized Caputo derivative of p-Lap-
lace transformation of a CF g is given by [37]

n-1
L{Dg(D}(s) = L {g (O} - Y &1 (1P#B") (0).
k=0
(8)

2.5. Definition. The generalized Mittag-Leftler function is
defined by

00 Z’B
Eﬁ'p (Z) = I;F(ﬂk_'_y)’ (9)

where >0, y>0, and Eg (2) = Eg, (2).

3. The Rod Map of the Proposed Method

Consider the general partial differential equation given as
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DY7 ({, 1)+ M7 ({,7) + N7 ({,7) = h({,7), 7>0,0<y<]1, Applying p-Laplace transformation of (10), we get
70 =g(0), veR
(10)
L,[DY7 ({, 1)+ M7 ({,7) + N7 ({, )] = L, [h({,1)], 7>0,0<y<I,
(11)
u(G,m = *9(()+ L, [h({,7)] = 4L, M7 ({,7) + N7 ({, 7)].
Now, applying the inverse p-Laplace transform, we get ~ where p is the perturbation parameter and p € [0, 1].
] The nonlinear term can be defined as
V(0 =F(0 - L' [—ﬁLP{M%c, D+ NV, r)}], .
y N7 (1) = ) pH (7). (15)
(12) k=0
where where H, are Hes polynomials in terms of
V71,V ...,7, and can be calculated as
F({,1) = [ g0+ ﬁLp[h(C T)]]
(13 T T V)= D { <ZP%>] .,
p:
—g(V)+L [ﬁph(CT)] (16)
where D* = 0*/0p*.

Now, the perturbation procedure in terms of power
series with parameter p is presented as

7 (1) =) PV (), (14)
xk=0

Substituting (15) and (16) in (12), we get

pru) F({7) - px[ {ﬁp{MprcmZpH %)}H (17)

The coefficients comparison on both sides of p, we have

P’ 74 ((1) = F((, 1),

Plz 7, 1) = L,:l Li/;Lp (M7 y({, 1)+ H, (7))],

P2: 7, 1) = L: L%Lp (M71 (¢,1)+H, (7))],
PTG =L L%L,, (M7, () + H, (%))],

k>0, k € N.
(18)

The 7'x({,7) component can be determined easily
which quickly leads us to the convergent series. We can get
p— 1

M
V(1) =limy o ) 7 (). (19)

k=1

4. Numerical Implementations

Example 1. Consider the fifth-order nonlinear KdV
equation

2
DY+ Y+ TV e~V

(20)
~ 207’V 3+ V5 =0,

0<p<1,
with the IC

V(1) = % (21)



where H,(x) represents the nonlinear function of He’s
polynomial. For the first few components, we present He’s

Applying the p-Laplace transform on (20), we get

1 1
L7 7)) = A V>V st + V'V oy = 207>V 3 +V 5
S

(22)

Next, using the inverse of p-Laplace transform of (22),

Z PV, (1) = %— p[L;I llﬁLp K p”Hn(7)> + (an%n((, r)) + <zpn7n((, T)) :Hjl
n=0 S n=0 n=0 ¢ n=0 5(

polynomials

Hy(7) = 73 (70)2( + (70)((%0)2( - 207(2) (70)30

H\(7) =7 (7 1)+ 2707\ (7 0)oc + (Vo) (V1) + (7 0)og (V1) - 207 (71)3 = 4077\ (7o) 3>

H,(7) = 73 (72)2( +27,7, (%1)2( +27,7, (70)2{ + 7? (%o)zz + (%o)((%Z)Z( + (%1){(%1)2(
(V)2 (V2); = 2075 (V' 3) 3 — 407V (V)30 — 407 oV 5 (V)30 — 2071 (V)50

Hy(7) = %é (7/3)2( +27,7, (%2)2( +27,7, (7/1)2c +27,75 (7/0)2( + 7/% (%1)2( +27,\7, (70)2(

PO

Pl

PZ

P3

+ (70)((73)2( + (71)( (72)2( + (71)2( (72)( + (70)2( (%3)( - 2073 (73)3( 407,74 (72)3(
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1 a1
(PG =5~ L | L[V + TV oy + VW o = 077V 50+ V] |-
§

~ 407 T (V)5 ~ 407 75 (V)5 = 2071 (7 1) 3¢ = 407, 7 5 (V)

Hy () =V (D )y + 27V (V3)s0 + 27 oV 5 (V) sc + 27V 5 (V1) 0 4 276V (Vo) + V(7 2) 5
+27,\7, (%1)2c +27,\7; (7/0)2( + ‘75 (%o)zz + (%0)((%4)2( + (%1){(%3)2( + (%2)2((%2)(
(7)o (7 3)c + (7 0)og (Va) - 2075 (74)3; = 407V (V'3) 30 = 407V, (V1) 3 = 407V 5 (V1)
~ 40T T (V)5 = 2071 (7 3)5 = 407,75 (V)3 = 407,V 5 (V)5 = 2073 (7 )

Comparing the P-like coefficients, we have

1V (§1) = %

V(1) =L :siﬁL” [Ho () +(7 ) + (%)sc]: = %’
75 (G0 =-L)! :S%LP [H (7)) + (7)) + (71)5z]: = %’
731 =L :S%L,, [H, (7)+ (72)(*'(%2)5(]: = %)
V(1) =L :S%Lp [Hy (7)) +(75) + (73):3(]: = %’
V(1) =L :Si,;L,, [Hy () + (7)) + (%)x]: = %

(26)

{
(23)
Now, we apply HPM
(24)
(25)
The analytical solution of 77((, 7) is defined as
RS 1 @)t (@)
76n= ;%(C’T)i e CT(B+1) * Cr(2f+1)
G G N Gk
+ + +oee.
CTGR+1) TMEp+1) °T(56+1)
(27)
Then, put 8 =1 in (27):
00 2 3
%(C,T):;%i(f,r):2+;+;3+24+~-. (28)

The exact result is 7' ({, 1) = 1/{ - 7.

In Figure 1, the three-dimensional figures of p-HPTM
and exact results in graphs (a) and (b) respectively at =1
and the close contact of the exact and p-HPTM solutions are
investigated. In Figure 2, represent that various fractional
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FIGURE 1: Graph of (a) exact and (b) analytic solutions of # = 1 of Example 1.
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F1GURE 2: Figure of various fractional orders of Example 1.
order of p-HPTM results at 8 =1,0.8,0.6,0.4. The non- Applying the p-Laplace transform on (29), we get
classical results are investigated to be converge to an integer- 1, 1
order result of the given problem. L7 (] = nil s_ﬂLp [7‘73( VY- ‘75(]. (31)
Example 2. Consider the fifth-order nonlinear fraction KdV Next, using the inverse of p-Laplace transform of (31),

equation
a1
DV ATV~ VYV 5+ Vs =0, 0<f<l, (29) %(C,r)=e(+Lp1L,5L,,{‘7%¢—‘774—75(}]. (32)

with the IC Now, we apply HPM

V(1) = ¢ (30)

Y 7, () =¢ +plL;1 S%L,,((Zp”Hn(W)) - <Zp""7n((, T)>> ] (33)
n=0 n=0 n=0 5¢



where H, (x) represents the nonlinear term of He’s poly-
nomial. For the first few components, we present He’s
polynomials

Hy(7) =7 (7 0)5c= 7o (7o)

H(PD) =7 (7 0)sc+ 7o (V1)sc =~V (70): = Vo (V1)

Hy (7)) =7 (7 0)sc+ 7 (71)sc + 7o (72)3
VA7) =V (V1) - 7o (72)p

Hy (7)) =7 5(70)sc+ V2 (71)sc + 71 (7))
+ Vo (V3)s—V5(70); - 72(70);
V(72 =7 o(75)p

H (7)) =T (V)5 +V5(71)sc + 72 (7 )3
+ VU7 3)s+ Vo (Va)s = V(7o)
V5V =72 (T2 =V (V)= 7o (V)

(34)

Comparing the P-like coefficients, we have
P05 Vo ((,7) = e(’

P (G = L) :S%LP{HO(%) —(Z )| = _r((T/:/f)f)e(’

S S :si’}LP{HI(%_(%)“}- r((i;?pj D’

PG =L :S%LP{HZ(W)—(WZ)S(}: - % (35)
P70 =13 [0 - (704 F((igpz -

Therefore, the analytic solution of 7°((, 7) is defined as

s T G N G

%((,T)—g(;%((’ﬂ‘e< T(B+1) F(2ﬁ+1)
. 1) (1p)* ~ (%1p)*

LGB+ T@p+D) TG+ )

(36)
Then, 3 =1 for (36), and we get

00 T2 T3 T4 TS
:Z%({,T):e (1—T+———+———+-~->.

i=0

The exact solution is 7" ({,7) = ¢~ ".
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In Figure 3, the three-dimensional figures of p-HPTM
and exact results in graphs (a) and (b) respectively at § =1
and the close contact of the exact and p-HPTM solutions are
investigated. In Figure 4, represent that various fractional
order of p-HPTM results at =1,0.8,0.6,0.4. The non-
classical results are investigated to be converge to an integer-
order result of the given problem.

Example 3. Consider nonlinear fractional-order Kawahara
equation

DV + TV +V 5~V =0, 0<P<l, (38)
with the IC
_ 105 af (-9
7 (1) = 169sech (2\/_) (39)

Applying the p-Laplace transform on (38), we get

L "7(( 7)] = 1 105sech <( ¢

T 2\/_>+ SL Vst - V5 - V7]

(40)

Next, using the inverse of p-Laplace transform of (40),

05 (¢ 4l
7 (1) = @scech4(2\/ﬁ ) + Lpl L—ﬁLP [75( ~ Vs - 77(] ]
(41)
Now, we apply HPM
Zp"% (& 1) %sech"(z\;%) +p[Lp1 {S%L‘,((Z)P""Vn((, T))
n=| 5(
(g (5o
n=0 3¢ n=0
(42)

where H,, (7") represent the nonlinear terms of He’s poly-
nomial. For the first few components, we present He’s
polynomials

Hy(7) = 7o (7)o

H, (7) = 0(“71)(+71 (“WO)(,

H,(?7) = 0(?/2)(+71 (%1)(+72(70)p

Hy (7)) = Vo (V) + V(T + Vo (T )+ V5 (7)o
H (?7)=7, ("74)( +7, ("73)( +7, ("72)(

+7, (%1)( +7y (70)(’

(43)

Comparing the P-like coefficients, we get
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(a) (b)

FIGURE 3: Graph of (a) exact and (b) analytic solutions of § = 1 of Example 2.

0. _ 105 Jf (- ¢
N () —Esech (W)

N [t 100 -9 -9\ (@)
Pe7 (=1, L—ﬁLp[(%)5(—(%)5(—1{0(%)]] = Sy <2m>tanh<2m>r(ﬁ+l),

4f1
PV, 1) = Lpl L_ﬁLp[(%)sf—(%)3(—14l (%)]]

_ 21687 s(C-¢ (-¢\] (1p)*
= o 107\/Bsech <2m>[—3+2cosh<2m>] T2B+1)

P3: 73 ((, T) = L;l |:Si/;Lp{ ("72)5( - (72)3( - H2 (7)}]

461962 (¢ (=0 L (3C=te)\] (ZIp)¥
= 10><107\/Esech (2\/B>x[—1331nh<2\/1_3>+251nh< NGE )]F(3ﬁ+l)’ (44)

4|1
PTG =L [S_ﬁLP[(%)S(—(%)a(—H3(%)]]

B
= 3784854 h8< (- ¢ > X [—49scosh< (- ¢ > + 4cosh<2 (( _ t¢)> + 52] (Tp/p)4

sec, >
10 x 10’ V13 2+/13 2 2V/13 T(48+1)

&

PS: 75 ((, T) = L;l |:SiﬂLp [ (%4)5( - (%4)3( - H4 (7)] ]

_3.22496310x 107 o (- ¢ (3 -¢) (5 ~¢)
= Vg sech (2m> x[l7lsmh<m> —851nh< 3 )

5(¢ - r¢)>] (1p)*

—_661sinh .
s <25qrtl3 T(56+1)
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FiGURe 4: Figure of (a) and (b) at various fractional-order of Example 2.

The analytic solution 77({, 7) is achieved as

%mﬂ=zwmnx

i=0

_105 4 ((-¢ 100 a( -4 {9 ()
7(67) = g 5ech (b/ﬁ) REZL Ehi <2m)tanh(2\/ﬁ>F(/ﬁ’+ 1)

21687 of (- ¢ -\ (Z1p)*
T 107\/Bsech (zm)[—3 +2cosh<2m)] TR+ 1)

461962 (-9 (¢ L (3C=9)\] p)”
_10><107\/EseCh (zm)x[—l351nh<2m>+251nh( oK )]F(3/3+1) (45)

3784854 of (= ¢ (¢ 2({-¢) (1p)*
“Tox 107\/1§sech (zm) X [—495cosh(—2 5 ) + 4cosh< WO E ) +52 T+ 1)

3.22496310x 107 o {—¢ . (3((-9¢) L (5(-¢)
—Tsech <W) x[17ls1nh )—SSII‘Ih( N3 )

L (5¢-9\] (1p)*
_66lsmh( Wik )]T(5ﬁ+1)+m'

The exact solution is Z°((,7) = 105/169sech* In Figure 5, the three-dimensional figures of p-HPTM
[1/2+/13 ({ + 367/169 - ¢)]. and exact results in graphs (a) and (b) respectively at § = 1
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FIGURE 5: Graph of (a) exact and (b) analytical results of 8 =1 of Example 3.

()

0.00007
0.00006
0.00005
0.00004
0.00003
0.00002
0.00001

-30
-20

20

30 1
(b)

FIGURe 6: Figure of (a) at various fractional-order of 8 and (b) error graph of Example 3.

and the close contact of the exact and p-HPTM solutions
are investigated. In Figure 6, represent that various
fractional order of p-HPTM results at $ =1,0.8,0.6,0.4.
The nonclassical results are investigated to be converge to
an integer-order result of the given problem.

5. Conclusions

This paper determined the fractional-order Kawahara and
fifth-order KdV equations, applying the p-homotopy
perturbation transform method. The present method is

used to describe the results for specific examples. The
p-HPTM result is highly congruent with the precise so-
lution of the suggested problems. Additionally, the pro-
posed method estimated the results of the cases using
fractional-order derivatives. The graphical examination of
the resulting fractional-order results proved their con-
vergence to integer-order outcomes. Additionally, the
p-HPTM technique is straightforward, simple, and
computationally eflicient; the suggested method can be
adapted to solve additional fractional-order partial dif-
ferential equations.
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