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+e main target of this work is presenting two efficient accurate algorithms for solving numerically one of the most important
models in physics and engineering mathematics, Fisher–Kolmogorov–Petrovsky–Piskunov’s equation (Fisher-KPP) with
fractional order, where the derivative operator is defined and studied by the fractional derivative in the sense of Liouville–Caputo
(LC). +ere are two main processes; in the first one, we use the compact finite difference technique (CFDT) to discretize the
derivative operator and generate a semidiscrete time derivative and then implement the Vieta–Lucas spectral collocation method
(VLSCM) to discretize the spatial fractional derivative. +e presented approach helps us to transform the studied problem into a
simple system of algebraic equations that can be easily resolved. Some theoretical studies are provided with their evidence to
analyze the convergence and stability analysis of the presented algorithm. To test the accuracy and applicability of our presented
algorithm a numerical simulation is given.

1. Introduction

Nowadays, mathematics is playing a main role in all in-
dustries and the huge economics; also, in most applications
in our daily life and as a logical result, it was necessary to find
a way to relate and connect these real-life problems by
mathematical modeling. In physics, chemistry, and biology,
many reaction-diffusion equations have moving wavefronts
that play a common role in researching many real-life
problems [1, 2]. Reaction-diffusion models are useful
mathematical instruments that explain how, under the in-
fluence of two processes, the concentration of one or more
substances distributed in space differs: firstly, local chemical
reactions in which the substances are converted into each
other, and secondly, the diffusion, that is, the explanation for
the substances. +e classical Fisher-KPP’s equation is one of

these important models in many applications such as in
engineering [3, 4]. +e classical Fisher-KPP’s equation [5] is
not the best way to estimate the important calculations in
these important mathematical models; the fractional Fisher-
KPP’s equation will be more accurate and is better than that
equation in the classical case [6].

Fractional differential equations (FDEs) which are de-
scribed by the fractional derivative operators are more ac-
curate than the classical ones to model most of the
phenomena in our daily life.+e role played by the fractional
derivative is more than great; this branch of mathematics
helps us to model and understand many physical and daily
phenomena such as in physics [7], chemistry [8], and biology
[9]. FDEs also are excellent path to model many phenomena
[10–14]. However, the problem is that most fractional- and
variable-order differential equations have no exact solutions,
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so numerical and approximate techniques are the semi-
unique ways to solve these types of the FDEs, and as a result,
there are many numerical techniques presented to study
these daily phenomena in our real life, such as the finite
difference method [15], the finite element method [16], the
wavelet collocation method [17], the homotopy perturbation
method [18], the residual power series method [19], the
variational iteration method [20], and many other tech-
niques [21–23].

One of the most useful tools to simulate differential
equation (partial, fractional, and variable-order) is the
spectral methods [24]. +e most famous advantage of these
methods is their capability to generate accurate outcomes
with a very small degrees error of freedom [25, 26]. +e
orthogonality property of some important polynomials as
Vieta–Lucas polynomials is used to approximate functions
on the interval [a, b] [27, 28].+ese polynomials have a main
and important role in these methods for FDEs [29, 30].

+e outline of the paper is as follows:

(i) Section 2 is devoted to present the formulation of
the problem (fractional Fisher-KPP’s equations)

(ii) Section 3 is devoted to define the Vieta–Lucas and
shifted Vieta–Lucas polynomials

(iii) Section 4 is devoted to approximate the fractional
derivative and study its convergence analysis

(iv) Section 5 is devoted to apply the CFDT-VLSCM
technique for the F-KPP’s equation

(v) Section 6 is devoted to discuss the stability analysis
of the proposed numerical scheme

(vi) Section 7 is devoted to give the numerical
simulation

(vii) Section 8 gives the conclusions

2. Formulation of the Problem: Fractional
Fisher-KPP’s Equations

+e importance (due to its many applications in physics and
engineering) of Fisher–Kolmogorov–Petrovsky–Piskunov’s
equation can be considered as one of the category of re-
action-diffusion equations [3, 4]. Moreover, we can say that
it is one of the simplest semilinear reaction-diffusion
equations due to the inhomogeneous term that lies in it. In
ecology, physiology, combustion, crystallization, plasma
physics, and general phase transition issues, certain equa-
tions exist, for example, Fisher proposed this equation in
1937 [5] and explored its travelling wave solutions.

+ere are two different names of the well-known Fisher-
KPP’s equation; the first name is Fisher’s equation, which

was named by the statistician and biologist Ronald Fisher.
Also, this PDE is known by KPP’s equation related to the
three scientists: A. Kolmogorov, I. Petrovsky, and
N. Piskunov. In our work, we will consider the Fisher-KPP’s
equation which takes the classical form (Fisher’s paper, [5]):

zϕ
zt

− c
z
2ϕ

zx
2 � N(ϕ), (1)

where N(ϕ) is called the reaction term and the diffusive
constant is denoted by 0≤ c≤ 1. In this work, we will study
the linear fractional-order Fisher-KPP’s equation which
depends on the formula of the reaction term N(ϕ).

2.1. Linear Fisher-KPP’s Equation. In some chemical and
biological reactions, the reaction term N(ϕ) may be
expressed as a linear function of ϕ in the form
N(ϕ) � r(1 − ϕ(x, t)); in that case, the resulting equation is
called fractional-order Fisher-KPP’s equation (F-KPP)
which takes the form:

ϕt � cD
μ
xϕ + r(1 − ϕ(x, t)), 1< μ≤ 2, 0<x≤ 1, (2)

where the reactive constant is written as 0≤ r≤ 1, under the
boundary and initial conditions:

ϕ(0, t) � g(t),

ϕ(1, t) � 0,
(3)

ϕ(x, 0) � 0. (4)

+e exact analytical solution for the above equation in
the special case μ � 2 is

ϕ(x, t) � 1 −
cosh(x)

cosh(1)

−
16
π2



∞

j�1

(− 1)
j cos(0.5π(2j − 1)x)

(2j − 1) π2(2j − 1)
2

+ 4 
e

− 1+0.25π2(2j− 1)2( )t
.

(5)

+ere are many research papers which study numerically
this system such as [31–33].

+e fractional derivative in the proposed model (2) is
described in the sense of Liouville–Caputo which is defined
as follows.

Definition 1 (see [34]).+e fractional-order derivative in the
sense of Liouville–Caputo, denoted by D

μ
x of order μ ∈ R+

for a function θ(x, t), is defined as

D
μ
xθ x, tt( ) �

1
Γ(m − μ)


x

0
(x − η)

m− μ− 1z
mθ(η, t)

zηm dη, m − 1< μ≤m, m ∈ N,

z
mθ(x, t)

zx
m , μ � m.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

2 Journal of Mathematics



3. Vieta–Lucas and the Shifted
Vieta–Lucas Polynomials

In this section of the paper, we are presenting the basic
definitions of Vieta–Lucas and the shifted Vieta–Lucas
polynomials and its notations and properties that we will use
in our study, and they are necessary to reach our goal [29].

3.1. Vieta–Lucas Polynomials. We are researching for a class
of orthogonal polynomials in this section of the paper, which
lies at the heart of our research. Using the recurrence re-
lations and analytical formula of these polynomials, they can
be generated to construct a new family of orthogonal
polynomials that will be known as Vieta–Lucas polynomials.

+e Vieta–Lucas polynomials, VLm(z) of degree m ∈ N0,
are defined by the following relation [29]:

VLm(z) � 2 cos(mψ), ψ � arccos
z

2
 , ψ ∈ [0, π], |z|≤ 2.

(7)

It is easy like other famous functions; one can prove that
these Vieta–Lucas polynomials satisfy the following recur-
rence formula:

VLm(z) � zVLm− 1(z) − VLm− 2(z),

m � 2, 3, . . . , VL0(z) � 2, VL1(z) � z.
(8)

+e analytical form of the polynomials VLm(z) can be
given by

VLm(z) � 

⌈m/2⌉

j�0
(− 1)

j mΓ(m − j)

Γ(j + 1)Γ(m + 1 − 2j)
z

m− 2j
,

m � 2, 3, . . . ,

(9)

where ⌈m/2⌉ is the well-known ceiling function.
VLm(z) are orthogonal polynomials on the interval

[− 2, 2] with respect to the weight function 1/
�����
4 − z2

√
, so we

have the following orthogonality property:

〈VLm(z),VLn(z)〉 � 
2

− 2

VLm(z)VLn(z)
�����
4 − z

2
 dz

�

0, m≠ n≠ 0,

4π, m � n � 0,

2π, m � n≠ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

3.2. Shifted Vieta–Lucas Polynomials. Using the transfor-
mation z � 4x − 2, we can generate from the family of
Vieta–Lucas polynomials, a new class of orthogonal poly-
nomials on the interval [0, 1], which are the orthogonal
family of the shifted Vieta–Lucas polynomials, and it will be
denoted by VL∗m(x) and can be obtained as follows:

VL∗m(x) � VLm(4x − 2) � VL2m(2
��
x

√
). (11)

+e shifted Vieta–Lucas polynomials VL∗m(x) satisfy the
following recurrence relation:

VL∗m+1(x) � (4x − 2)VL∗m(x) − VL∗m− 1(x), m � 1, 2, . . . ,

(12)

where VL∗0(x) � 2andVL∗1(x) � 4x − 2. Also, we find
VL∗m(0) � 2(− 1)m and VL∗m(1) � 2, m � 0, 1, 2, . . .. +e
analytical formula for VL∗m(x) is given by

VL∗m(x) � 2m 
m

j�0
(− 1)

j 4m− jΓ(2m − j)

Γ(j + 1)Γ(2m − 2j + 1)
x

m− j
,

m � 2, 3, . . . .

(13)

+e shifted Vieta–Lucas polynomials VL∗m(x) are or-
thogonal polynomials on the interval [0, 1] with respect to
the weight function 1/

������
x − x2

√
, and so we have the following

orthogonality property:

〈VL∗m(x),VL∗n (x)〉 � 
1

0

VL∗m(x)VL∗n (x)
������
x − x

2
 dx

�

0, n≠m≠ 0,

4π, n � m � 0,

2π, n � m≠ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

Let v(x) be a function in the space L2[0, 1]; then, using
the shifted Vieta–Lucas polynomials VL∗m(x), v(x) can be
written as follows:

v(x) � 
∞

j�0
κjVL
∗
j (x), (15)

where κj are the values that we should evaluate to express the
function v(x) in terms of the shifted Vieta–Lucas polyno-
mials VL∗m(x). Consider the first m + 1 terms only of (15);
then, we can write

vm(x) � 

m

j�0
κiVL
∗
j (x), (16)

such that κj, j � 0, 2, . . . , m, can be evaluated using the
following formula:

κ0 �
1
2π


1

0

v(x)
������
x − x

2
 dx,

κj �
1
2π


1

0

v(x)VL∗j (x)
������
x − x

2
 dx.

(17)

4. An Approximate of the Fractional Derivative
and the Convergence Analysis

+is section is devoted to present an approximate formula of
the fractional derivative via shifted Vieta–Lucas polynomials
and study the convergence analysis by computing the error
estimate of the proposed approximation.
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Theorem 1. 9e LC-fractional-order derivative for the
function vm(x) which is defined in (16) can be computed by
the following approximate formula [7]:

D
c

vm(x)(  � 
m

j�⌈c⌉



j− ⌈c⌉

s�0
κjχ

(c)
j,s x

j− s− c
, (18)

where

χ(c)

j,s � (− 1)
s 4j− s

(2j)Γ(2j − s)Γ(j − s + 1)

Γ(s + 1)Γ(2j − 2s + 1)Γ(j − s + 1 − c)
. (19)

Theorem 2 (see [7]). Assume that v(x) belongs to the space
of all Lebesgue-square integrable on the interval [0, 1] with
respect to the function 1/

������
x − x2

√
, and assume that the second

derivative of v(x) is a bounded function by the constant L is
an upper bound. 9en, v(x) can be written in terms of the
shifted Vieta–Lucas polynomials as an infinite linear com-
bination of VL∗m(x), and vm(x) contains m + 1 terms only of
this expression. Also, this series converges uniformly to the

function v(x) asm⟶∞. Moreover, the coefficients given in
(16) are bounded, i.e.,

κj



≤
L

4j j
2

− 1 
, j> 2. (20)

Theorem 3 (see [7]). Assume that v(x) satisfies the hy-
pothesis of the above theorem, and let the weight function in
the orthogonality relation of the shifted Vieta–Lucas poly-
nomials on [0, 1] be the function w(x) � 1/

������
x − x2

√
; then, the

norm of the error estimate (L2
w[0, 1]-norm) is given by

v(x) − vm(x)
����

����w
<

L

12
���
m

3
 . (21)

Theorem 4 (see [7]). Let v(x) be an m-times continuously
differentiable on [0, 1], and the most square-suitable ap-
proximation for v(x) is vm(x) which is expressed in (16); then,
we have the following absolute error bound:

v(x) − vm(x)
����

����≤
ΔΛm+1

(m + 1)!

��
π

√
, whereΔ � max

x∈[0,1]
v

(m+1)
(x), andΛ � max 1 − x0, x0 . (22)

5. An Application of the CFDT-VLSCM
Technique for F-KPP’s Equation

Now, we are ready to derive the numerical scheme for
Fisher-KPP’s equations (2)–(4) via the CFDT-VLSCM
technique. For this aim, we will assume that M, F ∈ Z+ with
τi � (i − 1)Δτ, i � 1, 2, . . . , M + 1, where Δτ � Tf/M, and
assume that the roots of the shifted Vieta–Lucas polynomial

VLF+1− ⌈μ⌉(x) are xq 
F+1− ⌈μ⌉
q�1 . If ϕ(x, t) ∈ C3(0, 1), then, by

using the well-known Taylor’s expansion, we can obtain

zϕ xq, ti 

zt
�
ϕi

q − ϕi− 1
q

Δτ
−
Δτ
2

z
2ϕ xq, ti 

zt
2 + O (Δτ)

2
 . (23)

Using (23) after evaluating the F-KPP’s (2) at (xq, ti), we
can obtain

ϕi
q − ϕi− 1

q

Δτ
−
Δτ
2

z
2ϕ xq, ti 

zt
2 + O (Δτ)

2
 

� cD
μ
xϕ xq, ti  + r 1 − ϕ xq, ti  .

(24)

To get a discretization of the second derivative of the
function ϕ at (xq, ti)(i.e., z2ϕ(xq, ti)/zt2), differentiate the
first-order discretization (2) with respect to t. By inserting
the last result (24), simplifying the resulted form, and re-
writing ϕ(xq, ti) as Φi

q, we can derive a semidiscrete nu-
merical scheme for Fisher-KPP’s equation (3):

Φi
q − Φi− 1

q

Δτ
� cD

μ
xΦ

i
q + r − rΦi

q −
Δτ
2

c
D

μ
xΦ

i
q − D

μ
xΦ

i− 1
q

Δτ
− r
Φi

q − Φi− 1
q

Δτ
⎡⎢⎣ ⎤⎥⎦ + E

i
(x)(Δτ)

2

OrA1Φ
i
q − A2D

μ
xΦ

i
q � A2D

μ
xΦ

i− 1
q + A3Φ

i− 1
q + rΔτ + E

i
(x)(Δτ)

3
,

(25)

such that the resulting truncation term is denoted by Ei(x)

and, A1, A2, and A3 are given by

A1 �
2 + rΔτ

2
,

A2 �
cΔτ
2

,

A3 �
2 − rΔτ

2
.

(26)

Now, our aim is devoted to the occurrence of the required
full discrete for Fisher-KPP’s (2), and this will be done if we
can get a formula such as (9) for the LC-fractional derivatives
D

μ
xΦi

q and D
μ
xΦi− 1

q . Moreover, we approximate the solution
ϕ(x, t) using the shifted Vieta–Lucas collocation approach as

ϕF(x, t) � 
F

m�0
ϕm(t)VL∗m(x). (27)
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By using the link between (9), (25), and (27) and by
remarking thatΦi

q � ϕF(xq, ti) and ϕ
i
m is the coefficient in ti,

we can obtain

A1 

F

m�0
ϕi

mVL
∗
m xp  − A2 

F

m�⌈μ⌉



m− ⌈μ⌉

s�0
ϕi

mχ
(μ)
m,sx

m− s+μ
q � rΔτ

+ A2 

F

m�⌈μ⌉



m− ⌈μ⌉

s�0
ϕi− 1

m χ(μ)
m,sx

m− s+μ
q + A3 

F

m�0
ϕi− 1

m VL∗m xq .

(28)

By using (3) with (27) and applying the facts VL∗m(0) �

2(− 1)m and VL∗m(1) � 2, m � 0, 1, 2, . . ., we can obtain



F

m�0
2(− 1)

mϕi
m � g ti(  � g

i
,



F

m�0
2ϕi

m � 0.

(29)

Now, we have a system of (F + 1) of linear algebraic
equations resulting from μ in (29) with (28), and we can
solve numerically this system to compute the unknowns
ϕi

m, m � 0, 1, 2, . . . , F and i � 1, 2, . . . , M + 1.
+e above system of equations (28) and (29) can be

written in a special case F � 3 and x1 and x2 are the roots of
the shifted Vieta–Lucas polynomial VL∗2(x), i.e.,
x1 � 0.146447andx2 � 0.853553, in a matrix form as follows:

A1 A1σ1 − A2β1 A1σ2 − A2β2
A1 A1σ11 − A2β11 A1σ22 − A2β22
2 − 2 2 − 2

2 2 2 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕ0

ϕ1

ϕ2

ϕ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

�

A3 A3σ1 A2β1 A3σ2 + A2β2
A3 A3σ11 A2β11 A3σ22 + A2β22
0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕ0
ϕ1
ϕ2
ϕ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i− 1

+

rΔτ

rΔτ

gi

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

, (30)

where

σ1 � VL∗1 x1( ,

σ2 � VL∗3 x1( ,

σ11 � VL∗1 x2( ,

σ22 � VL∗3 x2( ,

β1 � χ(μ)
2,0 x

2− μ
1 ,

β2 � χ(μ)
2,0 x

2− μ
1 + χ(μ)

3,0 x
3− μ
1 + χ(μ)

3,1 x
2− μ
1 ,

β11 � χ(μ)
2,0 x

2− μ
2 ,

β22 � χ(μ)
2,0 x

2− μ
2 + χ(μ)

3,0 x
3− μ
2 + χ(μ)

3,1 x
2− μ
2 .

(31)

Now, let Φi � (ϕi
0,ϕ

i
1,ϕ

i
2,ϕ

i
3)

Tand Ci � (rΔτ, rΔτ,gi, 0)T;
then, the above system can be rewritten in the following
matrix form:

AΦi
� BΦi− 1

+ C
i
,

orΦi
� A

− 1
BΦi− 1

+ A
− 1

C
i
.

(32)

For i � 1, using the initial condition (3), we can evaluate
ϕ0 which is the initial solution of the linear system (32), and
this helps us to get the other numerical solutions at each step
of the time.

6. The Stability Analysis of the Proposed
Numerical Scheme

Now, we are going to study the stability analysis of the
derived numerical scheme (25). For this aim, let D ⊂ R2 be
an open bounded region, and let

H
n
(D) � g(x) ∈ L2(D): g

(n)
(x) ∈ L2(D) . (33)

Rewrite the resulting numerical scheme (25) in the
following form:

Φk
− Ω1aD

μ
xΦ

k
� Ω2Φ

k− 1
+Ω1aD

μ
xΦ

k− 1
+Ω3, (34)

where k � 1, 2, . . . , L + 1; the constants Ω1,Ω2, and Ω3 are

Ω1 �
cΔτ

2 + rΔτ
,

Ω2 �
2 − rΔτ
2 + rΔτ

,

Ω3 �
2rΔτ

2 + rΔτ
.

(35)

Lemma 1 (see [35]). If θ(x),φ(x) ∈ Hμ/2(D), then, for
1< μ< 2, we have the following relations:

Journal of Mathematics 5



〈aD
μ
xθ,φ〉 �〈aD

μ/2
x θ,xD

μ/2
b φ〉,

〈xD
μ
bθ,φ〉 �〈xD

μ/2
b θ,aD

μ/2
x φ〉,

(36)

where 〈, 〉 is the usual inner product defined on the Hilbert
space L2(D).

Lemma 2 (see [35]). If μ ∈ R+, then

〈aD
μ
xθ,xD

μ
bθ〉 � cos(πμ) aD

μ
xθ

����
����
2
L2(D)

� cos(πμ) xD
μ
bθ

����
����
2
L2(D)

.

(37)

Lemma 3. If θ(x) ∈ Hμ(D) and if the fractional derivative
lies also in Hμ(D), then

∀1< μ< 2∃Δτ≪ 1: θ(x) +Ω1aD
μ
xθ(x)

����
����≤ ‖θ(x)‖. (38)

Lemma 4. If Φk ∈ H1(D), k � 1, 2, . . . , M + 1, is an ap-
proximate solution of (34), then we have

Φk
�����

�����≤Ω2 Φ
k− 1

�����

����� +Ω3. (39)

Theorem 5 (see [15]). 9e resulting numerical scheme (25)
through applying the CFDT-VLSCM technique for F-KPP’s
(2) is unconditionally stable.

Theorem 6 (see [15]). Let εk � ϕ(x, tk) − Φk, k � 1, 2,

. . . , M + 1, be the resulting error from (25); then, the error
upper bound is estimated as follows:

εk
�����

�����≤ ρx(Δτ)
2
, (40)

where ρx is a constant (the maximum of the truncation error
term).

7. Numerical Simulation

In this section, we are going to achieve the above technique
to process and solve the proposed model with distinct values
of fractional order μ and the order of approximation F. +e
exact solution was also compared at μ � 2. In addition, the
effect of a diffusion constant, c, and the reactive constant, r,
are given. Finally, the adequacy of the aforementioned
technique is checked by calculating the residual error
function (REF) with distinct values of μ and F. In
Figures 1–5, we plotted the approximate solution for the
given model by implementing the presented algorithm.

In Figure 1, we give a comparison of the approximate
and exact solutions at μ � 2, F � 4,Δτ � 0.002, andc � r � 1,
via different values of Tf � 0.75(a) and Tf � 1.25(b).
Figure 2 is the same Figure 1 but with F � 7. In Figure 3, we
give the behavior of the approximate solution via different
values of the fractional order, μ � 2.0, 1.75, 1.5, 1.25, at
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Figure 1: +e approximate and exact solutions at F � 4 via Tf � 0.75(a) and Tf � 1.25(b).

0.00
0.0 0.2 0.4 0.6 0.8 1.0

x

0.05

0.10

0.15

0.20

0.25

ϕ 
(x

, 0
.7

5)

ϕ-Solution: Black
ϕF-Solution: Blue

0.30

0.35

(a)

0.00
0.0 0.2 0.4 0.6 0.8 1.0

x

0.05

0.10

0.15

0.20

0.25
ϕ(

x,
 1

.2
5)

ϕ-Solution: Black
ϕF-Solution: Blue

0.30

0.35

(b)

Figure 2: +e approximate and exact solutions at F � 7 via Tf � 0.75(a) and Tf � 1.25(b).

6 Journal of Mathematics



F � 6,Δτ � 0.01, andc � r � 1, with Tf � 1.75(a) and
Tf � 3.75(b). In Figure 4, we present the approximate so-
lution at F � 6, Tf � 4.5, andΔτ � 0.005, via different values
of the diffusive constant c � 0.25, 0.5, 0.75, 1(a) and the
reactive constant r � 0.25, 0.5, 0.75, 1(b). Finally, Figure 5
presents 3D plot of the approximate solution, ϕ(x, t) at

μ � 2.0, and the exact solution, ϕF(x, t) at μ � 1.9, with F �

5 and Δτ � 0.003.
From these figures, we see that the behavior of the

approximate solution depends on the values of μ and F, and
this ensures that the proposed technique is applied in a good
way to solve the given model in the case of fractional
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Figure 3: +e approximate solution at F � 6 via different values of μ with Tf � 1.75(a) and Tf � 3.75(b).
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Figure 5: 3D plot of the approximate and exact solutions at F � 5 via μ � 2(a) and μ � 1.9(b).
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Figure 4: +e approximate solution at F � 6andTf � 4.5 via different values of c(a) and r(b).
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derivatives. Also, we found that the diffusion constant and
the reactive constant are clearly affected by the behavior of
the presented solution. Likewise, these results bring to light
the reasonability convergence of the proposed method for a
given problem and consistent with which was predicted in
the theoretical study through the proved lemmas and the-
orems. Additionally, to validate our solutions with
τ � 0.05, Tf � 0.5, andc � r � 1, we calculate the REF via
different values for μ � 1.75, 1.85, 1.95 and F � 4, 7, 10 in
Table 1. From Table 1 and all Figures 1–5, it is clear that the
overall errors can be reduced by adding new terms from
series (27).

Because of the values in Table 1, we can see the proposed
method by using the shifted Vieta–Lucas polynomial is best
than the shifted Chebyshev polynomials [15].

8. Conclusions

In this study, we have studied the fractional Fisher-KPP’s
equation. +e model was proposed via the Liouville–Caputo
sense fractional derivative because it only needs initial
conditions described in terms of integer-order derivatives.
+e solution of the proposed problem was achieved via
efficient numerical techniques, the Vieta–Lucas spectral
collocation based on the scheme of the compact FDM. +e
unconditional stability of the proposed numerical scheme is
discussed and proved in the Sobolev space. From the so-
lutions obtained using the proposedmethod, we can confirm
that these solutions are in excellent agreement with the
already existing ones and explain that this method is efficient
and applicable to solve the aforesaid problem effectively.
Finally, we can say the results obtained give better expla-
nation of model dynamics. Comparisons are made between
approximate solutions and exact solutions to illustrate the
validity and the great potential of our numerical method.
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