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*e COVID-19 epidemic has affected every aspect of daily life since December 2019 and caused massive damage to the world.*e
coronavirus epidemic has affected more than 150 countries around the world. Many researchers have tried to develop a statistical
model which can be utilized to analyze the behavior of the COVID-19 data. *is article contributes to the field of probability
theory by introducing a novel family of distributions, named the novel extended exponentiated class of distributions. Explicit
expressions for numerous mathematical characterizations of the proposed family have been obtained with special concentration
on a three-parameter submodel of the new class of distributions, named the new extended exponentiated Weibull distribution.
*e unknownmodel parameter estimates are obtained via the maximum likelihood estimationmethod. To assess the performance
of these estimates, a comprehensive simulation study is conducted. *ree different sets of COVID-19 data are used to check the
applicability of the submodel case. *e submodel of the new family is compared with three well-known probability distributions.
Using different analytical measures, the results demonstrate that the new extended exponentiated Weibull distribution gives
promising results in terms of its flexibility and offers data modeling with increasing decreasing, unimodal, and modified
unimodal shapes.

1. Introduction

Probability distributions play a vital role in predicting and
defining real-world phenomena. While modeling lifetime
data, most researchers use some well-known existing dis-
tributions like beta, Rayleigh, Weibull, and exponential
distributions, but some of these existing probability models
have certain limitations. For instance, the exponential model
provides only constant hazard rate shapes, and the Rayleigh
distribution exhibits an increasing hazard rate while mod-
eling lifetime data. Whereas the cumulative distribution
function (CDF) of beta and gamma distributions does not
exist in closed form, which creates problems in estimating
parameters. However, the Weibull model is the most
prominent model used to model data having constant,

decreasing, and increasing behavior, but is not suitable for
nonmonotonic (unimodal, modified unimodal, or bathtub)
hazard rates. In real-life situations, many mechanical and
electronic components have increasing and unimodal haz-
ard (failure) rate functions. For example, the failure rate of
an electronic product may be higher after its fifteen years of
service than the failure rate during the initial years. Similarly,
in the medical sector, the risk rate of bladder cancer re-
lapsing after surgery has been noticed to be unimodal in
nature. Initially, the hazard rate for breast cancer recurrence
usually occurs at the lowest point, steadily rises to a peak,
then starts decreasing after surgical removal. *erefore, to
model such behaviors of data, different distributions have
been proposed, modified, and extended the existing distri-
bution by various researchers in the literature.
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However, many authors have exhibited a deep interest in
offering new distributional families in recent literature. An
attractive idea for extension of the existing distributions in
the literature is provided to introduce a new family of
distributions using logit function (see [1] for more details),
similarly the gamma-X family of distributions by [2] and
T-X family of distributions by [3] are the major contribu-
tions to the probability theory. More data about recent
families of distributionsare given in [4–7].

Recently, a well-known approach in this domain is given
by [8], called, alpha power transformation (APT). *e CDF
of the APT class of distributions is given as follows:

GAPT(x; α, ξ) �

αF(x;ξ)
− 1

α − 1
, if α> 0, α≠ 1.

F(x; ξ), if α � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

*ey presented a submodel case of the proposed family
by using one parameter exponential distribution, named the
alpha power exponential distribution. Since then, using the
APTtechnique, various lifetimemodels have been developed
(see [9–12]). Some well-known probability models that
contributed to the probability theory using COVID-19 data
are considered by [13–16]. Similarly, some other well-known
probability models were introduced by different authors for
modeling COVID-19 data. *ey considered different
COVID-19 datasets from different countries (see [17–20] for
more details).

Another well-known technique, named the quadratic
rank transmutation (QRT) technique considered by [21].
*e CDF of the QRT method is presented as follows :

G(x; λ, ξ) � (1 + λ)F(x; ξ) − λF(x; ξ)
2
,

ξ > 0, x ∈ R, |λ|≤ 1,
(2)

where, λ is known as a transmuted parameter. Many authors
have considered the transmuted forms of the existing dis-
tributions with real data applications using equation (2). For
more detail, the interested readers can refer to [22–24].

Recently a new contribution has been made to the
probability theory by analyzing a new generalized class of
distributions called, the KumaraswamyG (Ku-G) family (see
[25] for more details). *e expression for CDF is provided as

G(x; α, b, ξ) � 1 − 1 − F(x; ξ)
α

 
b
, α, b, ξ > 0, x ∈ R, (3)

where, α> 0 and b> 0 denoting two additional shape pa-
rameters. Recently, researchers have introduced novel
families of probability distributions and analyzed COVID-
19 data through the suggested models. *ey presented
different plots of the fitted data and compared the suggested
models with the other existing probability models (see
[26, 27] for more details). Furthermore, some authors
contributed to the probability theory by introducing new
models (see [28, 29]).

However, these distributions have been shown to have
less flexibility and a lack of fit in different situations for

different real datasets. Moreover, there are some distribu-
tions in the literature that do not have a closed-form CDF.
*emain weakness of many distributions is that they cannot
fit the modified unimodal shapes. Similarly, some authors
introduced new families by adding two or more extra pa-
rameters, which causes difficulties in the estimation of the
unknown parameters.

*erefore, this paper attempts to capitalize on a novel
state-of-the-art procedure that encompasses all the weak-
nesses of the available methods in terms of flexibility and
lack of fit for different datasets. A special submodal case of
the NEE class exhibits that the newly proposed family can
model the data having unimodal, decreasing, modified
unimodal, and increasing shapes of hazard rates.

Moreover, the suggested family of distributions is very
simple and flexible as compared to the existing families of
distributions.

(i) the simplest and most versatile method to adjust an
extra parameter for modification of existing prob-
ability distributions;

(ii) to deliver greater enhancement in the character-
izations and to make the current probability models
more flexible;

(iii) to present the new extended form of the existing
model, comprising closed-form CDF and hrf;

(iv) generalization of the current probability models by
incorporating only a single parameter instead of
more parameters;

(v) to deliver the model, offering superior fits than the
other compared models available in the literature.

*e remaining part of the paper is structured as follows:
Section 2 contains the introduction of the newly proposed
family. *e general form of the CDF, probability density
function (pdf), survival function, and hazard function are
provided in this section. *e special case of the NEE class is
provided in Section 3. Mathematical characterizations that
include raw moments, quantile functions, and moment-
generating functions are addressed in Section 4. Further-
more, Section 5 discusses the parameter estimation and
simulation analysis of the suggested model. *e simulation
results, along with their graphical display, are provided in
this section. *e applications of three real-life datasets are
discussed in Section 6. *is section contains the three dif-
ferent COVID-19 datasets, which show the applicability and
model adequacy of the proposed model. Section 7 provides
the limitations of the suggested model, while the future
research direction is provided in Section 8. Finally, the
conclusion of the article is provided in Section 9.

2. Novel Extended Exponentiated
Class of Distributions

*is article introduces a new family of continuous distri-
butions, named the novel extended exponentiated (NEE)
class of distributions. *e general form of the CDF of the
new family is presented as follows:
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G(x; θ, ξ) �
e
θF(x;ξ)

+ 1 (F(x; ξ))
2

e
θ

+ 1
. (4)

However, F(x; ξ) represents the CDF of the existing
probability distribution having a vector parameter ξ, while α
is an extra parameter. *e expressions for the pdf, survival
function, and hazard function of the corresponding CDF
given by equation (4), are provided respectively.

g(x; α, ξ) �
f(x; ξ)F(x; ξ) e

θF(x;ξ)
(2 + θF(x; ξ)) + 2 

e
θ

+ 1
,

S(x; α, ξ) � 1 −
e
θF(x;ξ)

+ 1 (F(x; ξ))
2

e
θ

+ 1
,

h(x; α, ξ) �
f(x; ξ)F(x; ξ) e

θF(x;ξ)
(2 + θF(x; ξ)) + 2 

e
θ

+ 1  − e
θF(x;ξ)

+ 1 (F(x; ξ))
2 .

(5)

3. New Extended Exponentiated Weibull Model

*is part of the article offers a distinctive submodel case of
the NEE class, called the new extended exponentiated
Weibull (NEE-W) distribution.

Let F(x; ξ) and f(x; ξ) representing the CDF and pdf of
the two-parameter Weibull model, then the expression for
the CDF of NEE-W is

G(x; α, λ, θ) �
e
θ 1− e−αxλ( 

+ 1  1 − e
− αxλ

 
2

e
θ

+ 1
, α, λ, θ> 0, x≥ 0.

(6)

*e expressions for the pdf, survival, and hazard
functions, respectively, are given as follows:

g(x; α, λ, θ) �
αλx

λ− 1
e

− αxλ
1 − e

− αxλ
  e

θ 1− e−αxλ(  2 + θ 1 − e
− αxλ

   + 2 

e
θ

+ 1
, x≥ 0,

S(x; α, λ, θ) � 1 −
e
θ 1− e−αxλ( 

+ 1  1 − e
− αxλ

 
2

e
θ

+ 1
, x≥ 0,

h(x; α, λ, θ) �
αλx

λ− 1
e

− αxλ
1 − e

− αxλ
  e

θ 1− e−αxλ(  2 + θ 1 − e
− αxλ

   + 2 

e
θ

+ 1 − e
θ 1−e−αxλ( 

+ 1  1 − e
−αxλ

 
2 , x≥ 0.

(7)

*e plots presented in Figure 1 show different behaviors
of the NEE-W model. *e density of the NEE-W model
enjoys symmetrical and asymmetrical shapes, including
positively skewed, negatively skewed, and reversed J shapes.
Figure 2 exhibits that the NEE-Wmodel can model modified
unimodal, increasing, decreasing, and upside-down bath-
tub-shaped failure rates.

4. Mathematical Properties

*is section article provides the basic mathematical char-
acterizations including, raw moments, quantile function,

and moment generating function of the NEE class of
distributions.

4.1. Raw Moments. In statistical analysis, the role of mo-
ments is very crucial in determining the key features and
important characterizations of the model. *e expressions
for the rth order moments of the NEE class of distributions
are derived as

g(x; θ, ξ) �
f(x; ξ)F(x; ξ) 2 + 2e

θF(x;ξ)
+ θF(x; ξ)e

θF(x;ξ)
 

e
θ

+ 1
, (8)

μr
′ � 
Ω

x
r
g(x; θ, ξ)dx,

μr
′ � 
Ω

x
r
f(x; ξ)F(x; ξ) 2 + 2e

θF(x;ξ)
+ θF(x; ξ)e

θF(x;ξ)
 

e
θ

+ 1
dx.

(9)
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Figure 2: Plots of hazard functions for different values of parameters.
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Figure 1: Plots of the pdf using different values of parameters.

4 Journal of Mathematics



As we know that

e
x

� 
∞

n�0

x
n

n!
, Letx � θF(x; ξ). (10)

Using equation (9), we have

μr
′ �

1
e
θ

+ 1 

Ω

x
r
f(x; ξ)F(x; ξ) 2 + 2 

∞

n�0

θn
(F(x; ξ))

n

n!
+ 
∞

n�0

θn
(F(x; ξ))

n+1

n!

⎧⎨

⎩

⎫⎬

⎭dx, (11)

μr
′ �

1
e
θ

+ 1 

2
Ω

x
r
f(x; ξ)F(x; ξ)dx + 2 

∞

n�0

θn

n!

Ω

x
r
f(x; ξ)(F(x; ξ))

n+1dx

+ 
∞

n�0

θn

n!

Ω

x
r
f(x; ξ)(F(x; ξ))

n+2dx

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (12)

Let

ηr � 
Ω

x
r
f(x; ξ)F(x; ξ)dx,

ηr,n+1 � 
Ω

x
r
f(x; ξ)(F(x; ξ))

n+1dx,

ηr,n+2 � 
Ω

x
r
f(x; ξ)(F(x; ξ))

n+2dx.

(13)

Putting all these values in equation (12), we get

μr
′ � 2ηr + 2 

∞

n�0

θn

n!
ηr,n+1 + 

∞

n�0

θn

n!
ηr,n+2. (14)

4.2. Moment Generating Function. *e moment generating
function (mgf) of random variable X is given by the fol-
lowing expression:

Mx(t) � 

Ω

e
tx

g(x; θ, ξ)dx,

Mx(t) � 
Ω



∞

n�0

t
r
x

r

r!
g(x; θ, ξ)dx,

Mx(t) � 
∞

r�0

t
r

r!

Ω

x
r
g(x; θ, ξ)dx,

Mx(t) � 
∞

r�0

t
r

r!
μr
′.

(15)

4.3. Quantile Function. *e quantile function is the best
approach to identify the distribution of a variable. *e
closed-form expression of the quantile function of the NEE
class makes it possible to conduct a simulation study very
easily from the proposed family.*e quantile function of the

NEE class of distributions is provided by the expression
given as follows:

xq � Q(u) � G
− 1

(u) � F
− 1

(t), (16)

where “t” is the solution of
log(eθt + 1) + 2 log t − log(eθ + 1), U has the uniform
distribution.

5. Estimation of Parameters and Monte Carlo
Simulation Study

Here, we will discuss the estimation of unknown parameters,
and to support these estimates, a comprehensive simulation
study is provided. Moreover, the results of the simulation
study are exhibited via the graphical method.

5.1. Maximum Likelihood Estimation. In this portion, we
continue by illustrating the estimates of parameters of the
NEE class of distributions via the maximum likelihood (ML)
estimation method. Several methods were introduced in the
literature to estimate the model’s parameters, but the ML
estimation method is the most widely used method. *e ML
estimators fulfill the required properties. Let Xi be a random
variable distributed as in equation (4) and X1, X2, . . . , Xk be
the observed values collected from the NEE class having
parameters (θ, ξ).*en, the expression for the log-likelihood
function is given by

log L(x; θ, ξ) � 

n

i�1
log f(x; ξ) + 

n

i�1
log F(x; ξ) +



n

i�1
log 2 + 2e

θF(x;ξ)
+ θF(x; ξ)e

θF(x;ξ)
  − n e

θ
+ 1 .

(17)

Taking partial derivatives of the log-likelihood function,
we get
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z log L

zθ
� 

n

i�1

2e
θF(x;ξ)

F(x; ξ)  + F(x; ξ) θe
θF(x;ξ)

F(x; ξ) + e
θF(x;ξ)

  

2 + 2e
θF(x;ξ)

+ θF(x; ξ)e
θF(x;ξ)

− ne
θ
,

z log L

zξ
� 

n

i�0

zf(x; ξ)/zξ
f(x; ξ)

+ 
n

i�0

zF(x; ξ)/zξ
F(x; ξ)

+ 
n

i�0

2e
θF(x;ξ)

zF(x; ξ)/zξ  + θ F(x; ξ)e
θF(x;ξ)

zF(x; ξ)/zξ+e
θF(x;ξ)

zF(x; ξ)/zξ   

2 + 2e
θF(x;ξ)

+ θF(x; ξ)e
θF(x;ξ)

.

(18)

By equating to zero and solving numerically, the ex-
pressions (z/zθ)logL(x; θ, ξ) and (z/zξ)log L(x; θ, ξ) will
provide the ML estimates for the unknown model
parameters.

5.2. Simulation Study. A comprehensive simulation study
was performed to evaluate the efficiency of the maximum
likelihood estimates. *e precision of the maximum likeli-
hood estimates is studied through bias, absolute bias, and the
mean square error (MSE) for taking different samples by
considering different parameter values. *e features of the
simulation study are as follows:

(i) We performed 1000 repetitions from NEE-W dis-
tribution to quantify the bias and MSE, by taking
samples of sizes n� 25, 50, . . ., 1000.

(ii) *e initial values of the model parameters are
chosen as indicated in Tables 1-2.

(iii) To calculate bias and MSE, expressions
Bias(φ) � (1/1000)

1000
i�1 (φ − φ) and-

MSE(φ) � (1/1000)
1000
i�1 (φ − φ)2 are used,

respectively.

Where φ � (α, λ, θ). *e numerical values of the study
are exhibited via Tables 1, 2, while Figures 3 and 4 provide
simulation results in graphical form for two different sets of
parameter values (set-1: α � 1.0, λ � 0.8, θ � 1.1, set 2:
α � 1.0, λ � 0.7, θ � 0.6). From the plots, it is obvious that
the estimates tend to be stable as n increases. Similarly, the
estimated MSEs approach towards zero as sample size in-
creases. Moreover, the absolute and estimated biases de-
crease as the sample size increases. *e numerical results
presented in the plots reveal the consistency of the MLEs.

5.2.1. Simulation Set 2.

6. Applications to COVID-19 Data

*is section presents the applicability and goodness of fit of
the proposed model. Here we considered three COVID-19
datasets describing the mortality rates of different countries.
*e proposed model is compared with three well-known
existing probability models, named alpha power trans-
formed Weibull (APTW), Kumaraswamy Weibull (Ku-W),
and exponentiated Weibull (EW) models.

*e numerical estimates of the unknown model pa-
rameters are obtained via R software using the package

“ModelAdequacy”. Different analytical tools are employed
in order to assess the model’s adequacy. *ese measures
include Kolmogorov–Smirnov (K. S), Cramer–von Mises
(C. M), Anderson–Darling (A. D), Akaike information
criterion (AIC), Hannan–Quinn (HQIC), Bayesian infor-
mation criterion (BIC), and consistent Akaike information
criterion (CAIC). *e numerical estimates of the afore-
mentioned measures are exhibited for each dataset sepa-
rately, which demonstrates that the proposed model is the
best fit and the best candidate model among the other
competing models.

6.1. Data 1: Canada Data. *e first datasets contain 36
observations showing the mortality rates of COVID-19
patients in Canada. *is data can be checked via the link
[https://covid19.who.int/], this dataset was used by [26].
*ese observations are presented as follows:

3.1091, 3.3825, 2.8636, 3.2218, 4.2781, 4.2202, 2.1901,
2.4141, 1.9048, 2.9078, 3.6426, 3.2110, 3.6346, 2.7957, 1.5157,
2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 3.8594,
4.0480, 4.1685, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769,
6.8686, 3.0914, 4.9378, 3.1091, 3.2823.

Table 3 exhibits the ML estimates and associated stan-
dard errors, enclosed in parenthesis, for the proposed model
using the Canadian data. Moreover, the numerical results of
the analytical measures are presented in Table 4, demon-
strating that the new model is best fitted and gives satis-
factory results among the four competing probability
distributions.

*e plots of the joint CDF and pdf given in Figure 5,
illustrate that the NEE-W model is better fitted than the
other compared distributions, while the PP plot for nor-
mality and survival plots are presented in Figure 6, using
data 1.

6.2. Data 2: (e Netherlands Data. *e second dataset
considered by [27] comprises the 30 observations of the
COVID-19 patients, recorded in the Netherlands from the
period of 31 March to 30 April 2020. *e observations of the
second data set are provided as follows:

14.918, 7.498, 6.940, 10.656, 2.857, 2.254, 12.274, 10.289,
10.832, 7.099, 3.461, 3.647, 5.928, 13.211, 7.968, 7.584, 5.307,
5.048, 5.431, 5.555, 6.027, 4.097, 3.611, 4.960, 4.462, 3.883,
1.974, 1.273, 1.416, 4.235.

*e ML method of estimation is used to find out the
numerical estimates of the unknown model parameters

6 Journal of Mathematics

https://covid19.who.int/


Table 1: *e numerical results of the set-1 simulation study for the NEE-W model.

N
α� 1.0, λ� 0.8, θ� 1.1

Parameters MLEs MSEs Biases

25
α 1.688149 1.1863495209 0.6881494182
λ 1.0760577 1.222714e− 01 0.2760576871
θ 4.3292 12.59388 3.2292

50
α 1.482220 0.5720283252 0.4822204495
λ 1.0248372 8.870046e− 02 0.2248372074
θ 3.7481 10.32759 2.6481

100
α 1.291446 0.2429927881 0.2914460436
λ 0.9487059 5.145887e− 02 0.1487058741
θ 2.9447 7.19433 1.8447

200
α 1.132705 0.0875703779 0.1327048989
λ 0.8716795 2.321303e− 02 0.0716794823
θ 2.0048 3.52872 0.9048

400
α 1.018154 0.0098673818 0.0181542892
λ 0.8106912 3.180431e− 03 0.0106912429
θ 1.2443 0.56277 0.1443

600
α 1.004494 0.0025796913 0.0044940585
λ 0.8024480 7.532611e− 04 0.0024479757
θ 1.1312 0.12168 0.0312

800
α 1.001256 0.0007950773 0.0012561500
λ 0.8006441 2.079034e− 04 0.0006440781
θ 1.1078 0.03042 0.0078

1000
α 1.000565 0.0003186683 0.0005645071
λ 0.8003251 1.056993e− 04 0.0003251144
θ 1.1039 0.01521 0.0039

Table 2: *e numerical results of the MLEs, MSEs, and biases for the NEE-W model using different values of parameters.

N
α� 1, λ� 0.7, θ� 0.6

Parameters MLEs MSEs Biases

25
α 0.3396730 0.5419019568 −0.6603270020
λ 0.8119746 3.172569e− 02 0.1119745968
θ 4.415583 16.80649 3.815583

50
α 0.4062511 0.4678004494 −0.5937488691
λ 0.7836855 1.569647e− 02 0.0836854504
θ 3.956601 14.77204 3.356601

100
α 0.5863305 0.3241790787 −0.4136694671
λ 0.7564958 8.092500e− 03 0.0564957897
θ 2.923200 10.22208 2.323200

200
α 0.8074348 0.1507560442 −0.1925651699
λ 0.7259528 3.253839e− 03 0.0259528461
θ 1.682400 4.76256 1.082400

400
α 0.7061294 0.0349877432 −0.0446563129
λ 0.9553437 7.262195e− 04 0.0061293605
θ 0.850800 1.10352 0.250800

600
α 0.9882905 0.0091412466 −0.0117094601
λ 0.7014644 1.476944e− 04 0.0014643526
θ 0.666000 0.29040 0.066000

800
α 0.9968609 0.0024635519 −0.0031391276
λ 0.7003741 3.541752e− 05 0.0003740722
θ 0.617600 0.07744 0.017600

1000
α 1.0000000 0.0000000000 0.0000000000
λ 0.7000000 0.000000e+ 00 0.0000000000
θ 0.600000 0.00000 0.000000
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along with their corresponding standard errors and is
provided in Table 5. Furthermore, the results of different
statistics are obtained through the R language using the
“ModelAdequacy” package. *e results presented in Table 6,
give evidence as the proposed model is the best candidate
model as compared to the three existing models.

Figure 7 provides the joint CDF and pdf plots for NEE-
W and three competing distributions using the Netherlands
dataset. *e plots presented in Figure 7 explain that the
NEE-W distribution is a better fit than the other models.

While Figure 8 presents the PP and Kaplan–Meier survival
plots for the NEE-W model, showing the best fitting of the
NEE-W model for the Netherlands data.

6.3. Data 3: Mexico Data. *e third set of data holds 108
observations, demonstrating the COVID-19 mortality rates
in Mexico. *is dataset was used by [27]. *e duration of
recording this data is from 4 March to 20 July 2020. *ese
observations are presented as follows:
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Figure 3: Different plots of the set-1 simulation results for the NEE-W distribution.
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Table 3: MLE’s and their standard errors for the proposed, APTW, Ku-W, and EFW models.

Distributions α θ λ β c κ a b

NEE-W 0.064 (0.026) 0.007 (0.336) 2.515 (0.293)
APTW 1.022 (NaN) 3.291 (NaN) 0.014 (NaN)
Ku-W 0.701 (0.310) 0.133 (0.023) 2.396 (0.002) 0.353 (0.002)
EFW 0.228 (0.013) 0.168 (0.059) 1.220 (0.609)
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Figure 4: *e plots of estimated parameters, MSEs, absolute bias, and bias for the NEE-W model using the results of set 2.
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8.826, 6.105, 9.391, 14.962, 10.383, 7.267, 13.220, 16.498,
11.665, 6.015, 10.855, 6.122, 6.656, 3.440, 5.854, 10.685,
10.035, 5.242, 4.344, 5.143, 7.630, 14.604, 7.903, 6.370, 3.537,
6.327, 4.730, 3.215, 9.284, 12.878, 8.813, 10.043, 7.260, 5.985,
6.412, 3.395, 4.424, 9.935, 7.840, 9.550, 3.499, 3.751, 6.968,

3.286, 10.158, 8.108, 6.697, 7.151, 6.560, 2.077, 3.778, 2.988,
3.336, 6.814, 8.325, 7.854, 8.551, 3.228, 7.486, 6.625, 6.140,
4.909, 4.661, 5.392, 12.042, 8.696, 1.815, 3.327, 5.406, 6.182,
1.041, 1.800, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442,
4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922,

Table 4: *e numerical results of Canadian COVID-19 data for the proposed and competing models.

Distributions K.S C-M A-D AIC BIC CIAC HQIC
NEE-W 0.135 0.122 0.699 104.66 109.41 105.41 106.32
APTW 0.148 0.172 0.989 108.96 113.71 109.71 110.62
Ku-W 0.242 0.140 0.801 119.43 125.77 120.72 121.64
EFW 0.271 0.625 3.584 146.33 151.08 147.08 147.99
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Figure 5: Fitted plots of joint CDF and pdf for the proposed and four competing distributions.
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Figure 6: PP and Kaplan–Meier survival plots for the proposed model using COVID-19 data collected in Canada.

10 Journal of Mathematics



3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205,
3.218, 2.926, 2.601, 2.065, 3.029, 2.058, 2.326, 2.506, 1.923.

*e results of the ML estimates and the analytical sta-
tistics for the third dataset are provided in Tables 7 and 8,
respectively, showing the best fitting of the proposed dis-
tribution. Hence, for all three datasets, the proposed model
proves itself to be the best-fitted model.

*e plots of the joint CDF and pdf presented in Figure 9
explain the best fitting of the NEE-W and other compared
distributions using Mexico data.*e plots presented in Figure 9
clearly indicate that the NEE-W model is better fitted than the
other models. While, the best-fit PP and Kaplan–Meier survival
plots presented in Figure 10 make it evident that NEE-W is the
best candidate model for such types of datasets.

7. Limitations of the Proposed Model

Although the suggested model is the best candidate model
among the competing models as shown by the results of

different analytical measures, there are still some limitations
to our proposed model. *e limitations of the proposed
model are given as follows:

(i) *e MLE’s are not in closed form, so we need to use
software to compute the numerical values of the
estimates.

(ii) *e proposed model is a continuous probability
model and it can be used to model continuous
datasets. It is not applicable to discrete data.

(iii) *e CDF of the proposed model is not in simple
form; therefore, for the generation of random
numbers, we need to use the software.

8. Future Research Direction

We have proposed a NEE class of distributions in this paper.
For future research directions, one can use exponentiated
and Kumaraswamy techniques in order to bring more

Table 5: Providing the numerical estimates and standard errors for the proposed and four compared models.

Distributions α θ λ β c κ a b

NEE-W 0.1280 (0.050) −0.006 (0.365) 1.319 (0.181)
APTW 0.428 (0.866) 1.807 (0.434) 0.024 (0.035)
Ku-W 0.249 (NaN) 0.092 (NaN) 1.526 (NaN) 0.563 (NaN)
EFW 0.089 (0.008) 0.194 (0.061) 1.877 (0.800)

Table 6: *e results of the goodness of fit and other analytical measures for the Netherland’s data.

Distributions K.S C-M A-D AIC BIC CIAC HQIC
NEE-W 0.079 0.027 0.193 159.39 163.59 160.31 160.73
APTW 0.114 0.033 0.219 160.37 164.57 161.29 161.71
Ku-W 0.209 0.058 0.357 169.61 175.22 171.21 171.40
EFW 0.221 0.324 1.784 179.78 183.98 180.70 181.12
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Figure 7: Fitted plots of joint CDF and pdf for proposed and competing models using COVID-19 data collected in the Netherlands.
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Figure 8: Using the Netherlands COVID-19 data and fitting the PP and Kaplan–Meier survival plots.

Table 7: *e numerical values of the proposed and compared distributions using the ML technique.

Distributions α θ λ β c κ a b

NEE-W 0.132 (0.027) −0.010 (0.096) 1.346 (0.192)
APTW 0.102 (0.110) 0.007 (0.003) 2.217 (0.140)
Ku-W 0.558 (0.040) 0.131 (0.012) 1.748 (0.002) 0.266 (0.002)
EFW 0.087 (0.004) 0.230 (0.035) 1.997 (0.408)

Table 8: Statistics of the analytical measures using COVID-19 data of Mexico.

Distributions K.S C-M A-D AIC BIC CIAC HQIC
NEE-W 0.074 0.070 0.419 539.64 547.69 539.87 542.90
APTW 0.076 0.082 0.495 540.76 548.80 540.99 544.02
Ku-W 0.117 0.137 0.882 557.2 567.92 557.58 561.55
EFW 0.259 0.891 5.358 630.27 638.32 630.50 633.54
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Figure 9: Showing the joint plots of CDF and pdf for the proposed and competing models using the COVID-19 data in Mexico.
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flexibility in the NEE class of distributions. Suppose X is a
random variable having the NEE family, then the expo-
nentiated form of the NEE class can be expressed by the
following CDF as follows:

κ(x; α, ζ) �
eθF(x;ξ) + 1 (F(x; ξ))2

eθ + 1
⎛⎝ ⎞⎠

α

, x≥ 0, α, ζ > 0.

(19)

Similarly, we can also use the Kumaraswamy technique
as suggested by [24–26] in order to modify our suggested
family of distributions and to present a more parsimonious
version of the proposed family. SupposeX is distributed with
the NEE class of distributions, then the CDF of the new
suggested model will be as follows:

κ(x; α, b, ζ) � 1 − 1 −
eθF(x;ξ) + 1 (F(x; ξ))2

eθ + 1
⎛⎝ ⎞⎠

α

⎛⎝ ⎞⎠

b

.

(20)

9. Conclusion

*e probability models have shown great significance and
got the attention of the researchers to model the data using
these probability models, especially in survival analysis.
COVID-19 is the most dangerous virus that has badly af-
fected the daily life routines of every person in the world. It is
the responsibility of the government and other agencies to
provide a description of the data under consideration in
order to obtain good estimates of the parameters. In this
article, we suggest a new parsimonious, flexible, and
prominent family of continuous distribution by adding a
single extra parameter to the existing models called, the
novel extended exponentiated class of distributions. *e
most attractive and flexible nature of the new family pre-
dominates over the more appealing characterizations.

General equations for basic mathematical characterizations
such as raw moments, quantile function, and mgf of the
proposed family are obtained. *e most widely used ML
method is adopted for the estimation of unknown model
parameters. *e stability and efficiency of the estimates of
the proposed model are assessed by a simulation study. *e
main discriminating property of the proposed model
amongst the competitors is its closed form of CDF and
having the capability of modeling data with monotonic and
nonmonotonic failure rates. An illustrative example of the
applicability of the new proposed family is presented in the
form of a submodel case, called NEE-W distribution.
Moreover, three biomedical datasets related to COVID-19,
are considered to evaluate the performance of the NEE-W
with the competent models given in the literature. We
noticed that both the real-life applications and the simu-
lation studies show that the proposed model has out-
performed the other models considered in this study.
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