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�is paper is concerned with a well-known epidemiological concept to measure the spread of infectious disease, that is, the basic
reproduction number. �is paper has two major objectives. �e �rst is to examine Bayesian sensitivity and consistency of this
measure for the case of Markov epidemic models. �e second is to assess the Martingale method by comparing its performance to
that of Markov Chain Monte Carlo (MCMC) methods in terms of estimating this parameter and the infection and removal rate
parameters given only removal data. We speci�cally consider the Markovian SIR (Susceptible-Infective-Removed) epidemic
model routinely employed in the literature with exponentially distributed infectious periods. For illustration, numerical sim-
ulation studies are performed. Abakaliki smallpox data are examined as a real data application.

1. Introduction and Related Work

�e basic reproduction number (or ratio) is a fundamental
concept in epidemiology, commonly denoted as R0. For
homogeneously mixing stochastic epidemic models, it can
be roughly speci�ed as the expected number of infections
generated by one infectious individual in a large susceptible
population [1, p. 11]. When R0 > 1, each generation of in-
fectious individuals is more likely to infect the next with a
larger number until the susceptible population is signi�-
cantly depleted. Interventions in the infection or removal
process, such as vaccination policies, are frequently carried
out with the purpose of decreasing R0 below unity.

One of the approaches to estimate R0 via �tting sto-
chastic epidemic models to data, that o�ers a high level of
modeling �exibility, is the data augmentation methods [2]
such as MCMC method. Fitting stochastic epidemic models
to data is a nonstandard problem [3], as data on the infection
processes de�ned in such models is rarely observed directly.
As a result, the likelihood of the observed data is intractable
in the sense that calculating it is computationally expensive.
Although the data-augmented approaches often weaken in

large populations due to poor mixing and increasing
computation time, they give a solution to this issue. MCMC
methods have already been used successfully for model-
based analyses of partially temporal data [4–7].

For certain types of epidemic models (models that
attain Markov property), the Martingale method [8, 9] can
be utilized for inference. �e essential concept behind this
technique is to build Martingales for counting processes
that are included in the epidemic mode from which esti-
mating equations for the parameters of interest may be
derived. �is technique may be used to temporal and �nal
size data and could be utilized to undertake nonparametric
inference in speci�c scenarios. While this approach is very
elegant, it is somewhat specialized and not as widely ap-
plicable as most other methods for �tting epidemic models
to data. �is paper aims to explore the e�ciency of this
approach in estimating model parameters as well as
comparing its estimation performance with the MCMC
method outcomes.

When analysing temporal data, the likelihood of the
observed data can become very di�cult to evaluate, and so is
the posterior distribution, as calculating the likelihood
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involves integration over all possible unobserved infection
times, which is rarely analytically possible. However, sim-
ulating realizations from a stochastic epidemic model can be
relatively straightforward. Implicit methods such as Ap-
proximate Bayesian Computation (ABC) may be suited to
make inference for the parameters of epidemic models based
on partially observed data, and this has been illustrated when
temporal data are available in [10–13]. However, the choice
of the tolerance parameter and the summary statistics are
nontrivial tasks and may require expensive pilot runs to
select the appropriate ones. Moreover, when working with
large amounts of data, it often becomes necessary to use
simplistic models due to computational restraints, especially
when performing time-sensitive analyses. Approximation
methods [14, 15] could be a natural solution under which
likelihood can be computed. However, the simplifying as-
sumptions used in approximation methods are not always
appropriate in epidemic context.

Our main focus in this paper is on the basic reproduction
number, a quantity of central importance in mathematical
epidemic theory, whose value essentially dictates whether or
not a large epidemic outbreak can occur. As the emphasis is
on the Martingale methods which need models to be
Markovian, we specifically consider the SIR model that is
routinely employed in the literature, namely, the SIR model
with exponentially distributed infectious period. )e mo-
tivations for this study are that Bayesian analysis of this
important quantity (R0) is of interest in its own right. In
addition, the Markovian SIR model offers guidance that is
valuable in analysing more complex and realistic models as
SIRmodels themselves are frequently used as components of
more complicated epidemic models, for instance those
featuring populations divided into households [16] or epi-
demics on networks [1].

A relative asymptotic efficiency of R0 was derived, using
Martingale method in [17] by comparing the variance of R0
with that of the maximum likelihood estimator based on
complete observation of the epidemic. )e asymptotic
performance of a Martingale estimator for the infection rate
was compared with the maximum likelihood estimator in
[18]. However, these comparisons are of limited value since
complete observation of epidemic is not possible. Large and
finite sample properties for the Martingale estimator of R0
were studied in [19], where the performance of Martingale
estimate with the maximum likelihood estimate based on
complete observation and the maximum likelihood estimate
based on the eventual size of the epidemic was compared.

Initial values and continuous observation of the removal
process are a plausible data set that may be observed during
the duration of an epidemic. )e time of diagnosis or
commencement of symptoms, which is often accessible,
might be used to approximate the time of removal for many
diseases. Using such type of data, Martingale technique was
applied in [9] to obtain estimating equations that enable the
model parameters to be estimated separately. Data aug-
mentation technique was implemented to deal with such
data by [6] in which the missing data (the infection times)
were treated as extra (unknown) parameters to be inferred
from the data.

Despite the extensive literature aboutR0, as far as the author
knows, Bayesian sensitivity and consistency are not covered in
much detail. Furthermore, given only the removal times, the
performance of theMartingale andMCMCmethods in terms of
estimatingR0 and the infection and removal rates is not assessed
yet. )is gap in the literature needs to be filled.

)e main purpose of this paper is to study Bayesian
sensitivity and consistency for the posterior distribution of R0
when Markovian SIR model is considered. Another important
aim of this work is to explore the performance of the Mar-
tingale method in terms of estimating the basic reproduction
number and the infection and removal rates, and compare it
with the performance of the MCMC method performance as
the most widely used method in epidemic inference.

)e rest of this paper is organized as follows: In Section
2, relevant preliminary information will be presented which
includes the definition of our stochastic epidemic model.
)en, MCMC methods for the Markovian SIR model based
on removal data will be introduced in Section 3. In Section 4,
Martingale methods for the Markovian SIR model will be
discussed. Bayesian consistency and sensitivity for R0 will be
investigated in Section 5. A comparison study of Bayesian
and Martingale estimation for R0 and the infection and
removal rates will be conducted using both simulated and
real data sets in Section 6. Some concluding remarks will be
given in Section 7.

2. Preliminaries

2.1. $e Stochastic SIR Epidemic Model. )e stochastic SIR
epidemic model is defined as follows [1, 6]. Consider a closed
population of size N individuals divided to n and k initial
susceptible and infected individuals, respectively. At any
given time during the epidemic, each individual is either
susceptible, infected, or removed. Susceptible individuals
have not yet developed the disease, but they are at risk.
Infected individuals carry the disease and can spread it to
others. Individuals who have been removed are no longer
infectious and have no role in disease transmission. )e
removed state is context-specific in applications, and it
might equate to immunity, isolation, death, or other com-
parable outcomes. Each infective individual remains so for a
period of time, called the infectious period, which is drawn
from a specified nonnegative probability distribution TI. At
the end of its infectious period, an individual is immediately
removed. During its infectious period, a given infectious has
contacts with a given susceptible in the population at times
given by the points of a Poisson process of rate βn− 1, where β
is the infection rate parameter. )e first such contact, if it
occurs, results in the susceptible immediately becoming
infected, and later contacts have no effect. All infectious
periods and all Poisson processes are mutually independent.
)e epidemic ends as soon as there are no more infections
remaining in the population.

For any time t, let X(t), Y(t), and Z(t) denote, re-
spectively, the numbers of susceptible, infected, and re-
moved individuals in the population. )e above model is
known as the Markovian SIR model when the infectious
periods follow an exponential distribution with rate c, say. In
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this case, the epidemic process (X((t), Y(t)): t≥ 0){ } is a
bivariate continuous time Markov chain with the following
transition rates:

(i, j)⟶ (i − 1, j + 1): βn
− 1

X(t)Y(t),

(i, j)⟶ (i, j − 1): cY(t).
(1)

)e corresponding transition probabilities to an infection
and removal are

P X(t + δt) − X(t) � −1, Y(t + δt) − Y(t) � 1|Ht 

� βn
− 1

X(t)Y(t) + o(δt), P X(t + δt) − X(t)[

� 0, Y(t + δt) − Y(t) � −1|Ht

� cY(t) + o(δt),

(2)

where all other transitions having probability o(δt), Ht is
the sigma-algebra generated by the history of the process up
to time t, and c denotes the removal rate parameter.

2.2. $e Basic Reproduction Number R0. For the Markovian
SIR model, the basic reproduction number is defined as R0 �

βE(TI) � βc− 1 (see for example [1]). )e importance of this
measure comes from its relation to the spread of epidemic.
In other words, in an infinitely large population, if R0 ≤ 1,
then with probability one, only a finite number of indi-
viduals will become infected, i.e., the epidemic will die out,
whereas when R0 > 1 there is a positive probability that the
epidemic will take off. Consequently, and more importantly,
knowing the value of R0 enables us to compute the pro-
portion of a population that should be vaccinated in order to
prevent an epidemic from spreading [1]. )at is to say,
vaccinating a fraction vc � 1 − 1/R0 (critical vaccination
coverage with perfect vaccine) of the community chosen
uniformly at random is sufficient to prevent a large outbreak.

2.3. Epidemic Outbreak Data. Although the details of out-
break data vary considerably from study to study, broadly
speaking, there are three types of epidemic data, namely,
complete temporal data, partial (incomplete) temporal data,
and final size data [20]. )e complete temporal data consist
of the time of infection and time of removal of all infected
individuals in the population. )e final size data do not
contain explicit temporal information regarding the disease
propagation throughout the population but instead consist
of the initial number of susceptible individuals and which of
these individuals were ultimately infected during the course
of the epidemic. )e partial temporal data are less detailed
than complete temporal data, but more detailed than final
size data. )is type of data is more common in practice and
typically consists of removal times.

3. MCMCMethods for theMarkovianSIRModel
Based on Removal Data

In the context of epidemic modeling, MCMC techniques are
appealing for two reasons. First, they provide a great deal of
modeling flexibility. Second, when used in combination with

the Bayesian framework, they allow for the analysis of all
model parameters or any function of them.

Suppose that an epidemic outbreak which results in a
total of m removals in a closed population of size N, n initial
susceptibles and one initial infectious is observed on (tI1, tRm],
so that all removals are assumed to be observed. Let 0 �

tR1 , tR2 , . . . , tRm be the observed ordered removal times and
write tR � (tR1 , . . . , tRm). Also, let tI1 < 0 be the first unobserved
infection time and tI � (tI2, . . . , tIm) be the rest of unobserved
ordered infection times, where tIh < t

I
h+1 < t

R
h for

h � 1, 2, . . . , m − 1. )en, the joint likelihood of tI and tR
given the model parameters and tI1 is [6, 21].

L tI, tR|β, c, tI1  � 
m

j�2
βn

− 1
X tIj− Y Ij−  × 

m

j�1
cY tRj − 

× exp − 
tRm

tI1
βn

− 1
X(t)Y(t) + cY(t) dt ,

(3)

where tIj− denotes the time just prior to tIj and tRj −is defined
similarly.

In practice, the infection times are hard to observe which
in turn makes the likelihood of observing only the removal
times tR given the model parameters intractable. One
possible solution to make the likelihood tractable is to use
the data augmentation technique [2, 22] by treating the
missing data as extra (unknown) parameters to be estimated
from the data [6]. By doing so, we can sample from the
conditional posterior distribution of the infection times in
order to produce samples from the conditional posterior
distributions of the model parameters.

Now, we assign an independent gamma prior distri-
bution for each rate parameter, namely, Gamma(λζ , ]ζ),
where ζ � β, c, and assume a priori that −tI1 ∼ Exp(θ),
where Gamma(a, b) represents a gamma distribution with
mean a/b and variance a/b2 and Exp(a) denotes an ex-
ponential distribution with mean a− 1. )en, by multi-
plying the likelihood and the priors, we obtain the
following full conditional posterior densities for β, c, and
tI1, that are

β|c, tI1, t
I
, tR ∼ Gamma λβ + m − 1, ]β + n

− 1

tRm

tI1
X(t)Y(t)dt ,

c|β, tI1, t
I
, tR ∼ Gamma λc + m, ]c + 

tRm

tI1
Y(t)dt ,

(4)

and

tI1|β, c, tI, tR ∼ tI2 − Exp(β + c + θ). (5)

Also, we have the following proportional full posterior
density for tI:

π tI|β, c, tI1, t
R

 ∝
m

j�2
X tIj− Y tIj−  × 

m

j�1
Y tRj − 

× exp − 
tRm

tI1
βn

− 1
 X(t)Y(t) + cY(t)dt .

(6)
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)e model parameters β, c, and the initial infection time
tI1, all can be updated using Gibbs sampling steps as they
have closed forms of the posterior density. However, the
infection times vector, tI, needs to be updated using Me-
tropolis-Hastings steps as its posterior density is not
available explicitly. Any function of these parameters, such
as the basic reproduction number R0 � β/c, can be obtained
easily by sampling from the parameters posterior distribu-
tions. Hence, we can produce an MCMC estimate for the
basic reproduction number, say R01.

4. Martingale Methods for the Markovian SIR
Model Based on Removal Data

Maximum likelihood estimation of parameters of the
Markovian epidemic model is tedious when only partial
information is available, as is often the case in practice. )is
motivates the development of easier methods of estimation

such as the one established in [8] which can lead to simple
but nevertheless efficient estimators.

Let N(t) � Y(t) + Z(t) count the number of infections
that occur by time t. Under the assumptions of the Mar-
kovian SIR epidemic model, there are two zero-mean
Martingale processes [8] defined by

Mβ tRm  − N tRm  + β n
− 1


tRm

0
X(t)Y(t)dt � 0,

Mc tRm  − Z tRm  + c 
tRm

0
Y(t)dt � 0.

(7)

Besides the Martingales considered above, the method of
moments and the Martingale process
X(t)(1 + R0/n)Z(tRm)− Z(t): t≥ 0  were used in [9] to derive
explicit estimators for the infection rate β and the mean
infectious period c− 1 based on observing only the removal
process. )ese estimators can be written as

β �
Z tRm  

Z tRm( )−1
j�1 n/(n + 1 − j)Z tRm 

NtRm − 
tRm
0 Z(t)dt − X tRm  

tRm
0 1 + 

Z tRm( )−1
j�1 n/(n + 1 − j)Z tRm( /n 

Z tRm( )−Z(t)

dt

,


c

− 1
�

NtRm − 
tRm
0 Z(t)dt − X tRm  

tRm
0 1 + 

Z tRm( )− 1
j�1 (n + 1 − j)Z tRm( /n 

Z tRm( )− Z(t)

dt

Z tRm 
,

(8)

provided at least one individual remains susceptible at time
tRm. Note that these estimators depend only on the initial
number of susceptible individuals n, the final number of
removals Z(tRm), and the removal times. A Martingale es-
timate for the basic reproduction number is given by

R02 � 

Z tRm( )−1

j�1

n

(n + 1 − j)Z tRm 
, (9)

with standard deviation given as

s.d R02  �
1

Z tRm 

����������������������������

Z tRm  R02
2

+ n
2



Z tRm( )−1

j�1

1
(n + 1 − j)

2




.

(10)

5. Bayesian Consistency and Sensitivity for R01

An estimator θn of a quantity of interest θ is said to be
consistent if θn⟶ θ as n⟶∞, in other words, if it is
guaranteed to converge to the true value. However, the
posterior is consistent for θ if the posterior distribution
concentrates around a mass point which is the true value of
the parameter [23].

Given complete observation of the epidemic, the fol-
lowing explicit posterior density for R01 was derived in [24]
using prior settings as in Section 3.

π R01|t
I
, tR, tI1  �

Γ 2m − 1 + λβ + λc 

Γ m + λc Γ m − 1 + λβ 
×

n
− 1

A + ]β/B + ]c 
m− 1+λβ

R
m−2+λβ
01

1 + n
−1

A + ]β/B + ]c  R01 
2m−1+λβ+λc

, (11)
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given that R01 > 0, where A � 
tRm
tI1

X(t)Y(t)dt and
B � 

tRm
tI1

Y(t)dt.
)e posterior mean and variance are given as follows:

E R01|t
I
, tR, tI1  �

m − 1 + λβ
m − 1 + λc

  ×
B + ]c

n
−1

A + ]β
⎛⎝ ⎞⎠,

Var R01|t
I
, tR, tI1  �

2(m − 1) + λβ + λc  m − 1 + λβ 

m − 2 + λc  m − 1 + λc 
2 ×

B + ]c

n−1A + ]β
 

2

,

(12)

given that m + λc > 2. Common choices of the prior parameters in the litera-
ture are λβ � λc � λ and ]β � ]c � ], where λ≥ 1 and ] is a
small positive number. )is prior setting yields

π R01|t
I
, tR, tI1  �

Γ(2m − 1 + 2λ)

Γ(m + λ)Γ(m − 1 + λ)
×

n
− 1

A + ]/B + ] 
m− 1+λ

R
m−2+λ
01

1 + n
−1

A + ]/B + ]  R01 
2m−1+2λ, (13)

with

E R01|t
I
, tR, tI1  �

B + ]
n

−1
A + ]

, (14)

Var R01|t
I
, tR, tI1  �

2
(m − 2 + λ)

×
B + ]

n−1A + ]
 

2
. (15)

It is of our interest to study the behaviour of posterior
density, the posterior mean, and the posterior variance in
two cases. )e first case is when the initial number of
susceptibles (n) tends to infinity; and the second case is
when the prior distributions of the model parameters (β and
c) get diffuse. We restrict our results on major outbreak
situation [18] as it may not be of importance to model and
investigate minor outbreak in practical situations.

5.1. Consistency for R01. Suppose that we have a sequence of
processes (Xn(t), Yn(t))  indexed by X(0) � n, the initial
number of susceptibles. Without the loss of generality, we set
tI1 � 0 and let tRm � τ be the time when the epidemic ends.

We need to examine the behaviour of the following
random variables as n⟶∞

mn, An � 
τn

0
Xn(t)Yn(t)dt, andBn � 

τn

0
Yn(t)dt. (16)

It was shown in [18, 25] that as n⟶∞, mn/n⟶P ρ,
where ρ is a constant satisfies 1 − ρ � e− ρR0 .

Also, it was proven that

n
− 1


τn

0
Yn(t)dt⟶P ρ/c and n

− 2

τn

0
Xn(t)Yn(t)dt⟶P ρ/β.

(17)

To indicate that the posterior mean is specific to n, we
rewrite (14) as

En R01|t
I
, tR, tI1  �

Bn + ]
n

−1
An + ]

�
Bn/n + ]/n

n
−2

An + ]/n
⟶

ρ/c
ρ/β

�
β
c

� R01, as n⟶∞.

(18)

Similarly, to indicate that the posterior variance is
specific to n, we rewrite (15) as

Varn R01|t
I
, tR, tI1  �

2
mn − 2 + λ( 

×
Bn + ]

n−1An + ]
 

2

�
2/n

mn/n − 2/n + λ/n( 
×

Bn/n + ]/n
n−2An + ]/n

 

2

⟶ 0 as n⟶∞.

(19)

)erefore, we conclude that as we have more and more
data, the posterior mean tends to the true value and the
posterior variance tends to zero and so the posterior
distribution concentrates around a mass point which is
the true value of the parameter. Mathematically, as
n⟶∞ we have

π R01|t
I
, tR, tI1 ⟶ δ 

R01
R01( , (20)

where δx(x) is a Dirac delta function and x is the true value
of x.

)at is to say, the posterior is consistent at R01, and the
Bayes estimate (the posterior mean) is a consistent estimator
for R01 as n⟶∞.

5.2. Sensitivity for R01. To see the effect of the prior’s dif-
fuseness on both posterior mean and variance of R01, we
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reformulate them in terms of the mean and variance of the
prior distribution, that are

E[Gamma(λ, ])] � λ/] � μ andVar[Gamma(λ, ])] � λ/]2 � σ2, (21)

which implies λ � μ2/σ2 and ] � μ/σ2. Substituting these
values into (14) and (15) gives

E R01|t
I
,tR, tI1  �

B + μ/σ2

n
−1

A + μ/σ2
⟶

nB

A
, as σ2⟶∞. (22)

)is is in accord with the maximum likelihood estimator
of R0 given by the ratio of the maximum likelihood esti-
mators of β and c, that is, R0 � n(m − 1)B/mA (see for
example [1]).

Also, we have

Var R01|t
I
, tR, tI1  �

2
m − 2 + μ2/σ2 

×
B + μ/σ2

n−1A + μ/σ2
 

2

⟶
2n

2
B
2

(m − 2)A
2, as σ

2⟶∞.

(23)

6. Comparison of MCMC and Martingale
Estimation for R0, β, and γ

In this section, we explored, via simulation study, the
accuracy of Martingale method for estimating R02, β, and
c given only a set of removal times. Moreover, a com-
parison between MCMC and Martingale estimation
methods was performed. Finally, a widely studied re-
moval data set obtained from a smallpox outbreak [26]
was considered.

We simulated epidemics under a Markovian SIR model.
All outbreaks were in a closed population consisting of
different initially susceptible individuals (n) and a single
initially infectious case (k � 1). In all simulations, the
value of cwas taken (without loss of generality) to be equal
to 1, corresponding to a mean infectious period of 1 day,
say.

To make our comparisons more useful, we wish to
eliminate realizations that resulted in early extinction,
thereby presenting results based on major epidemics only. A
working algorithm that excluded all simulations for which
R(τ)< 0.1n + k was implemented in [27], where τ is the
extinction time. Here, we followed [4, 21] and excluded
simulated epidemics in which the final size was not con-
sistent with the theoretical probability of a major epidemic.
In other words, we simulated the model until we have the
desired number of realizations that have final sizes fit well
within the major outbreak part of the simulation-based final
size distribution.

6.1. Simulation Study I. )ere have been several applications
of Martingale results to issues of epidemiological parameter
inference, but the investigation of their efficacy has been
unaddressed so far. To see how efficient the Martingale
method is in estimating R02, β, and c separately given a set of
removal times, we conducted this simulation study using
different population and final epidemic sizes. We set β � 2.5
and c � 1, so that R02 � 2.5. 1000 major outbreak realiza-
tions were simulated from the model. In Table 1, the column
labelled “Avge (Z(tRm))” gives the average number of re-
movals over the realizations. )e other columns represent
the average of the Martingale method outcomes for esti-
matingR02 and its standard deviation, β, and c. It can be seen
that the method is very efficient in recovering true values and
best results are achieved as both population and final epi-
demic size get large.

6.2. Simulation Study II. To make a reasonable and mean-
ingful comparison betweenMCMC andMartingale methods
for estimating the basic reproduction number and infection and
removal rates given only removal data, we simulated 10 typical
(in the sense that the final size fits within the high density of the
major outbreak component of the simulation-based final size
distribution) epidemic realizations from the model for different
population sizes as seen in Table 2 using various values of the
threshold parameter R0 (1.5, 2, and 3). Each outbreak simu-
lation ended when all the infections were removed. For each
outbreak, we computed both MCMC and Martingale estimates
and then average over the 10 realizations. In Table 2, the column
labelled “Avge (Z(tRm))” gives the average number of removals
over the 10 realizations. Martingale results were obtained using
8, 9, and 10, whereas MCMC results were produced using
standard algorithms (see for example [6, 21]).

)e findings of this simulation study can be summarized
as follows: For both MCMC and Martingale outcomes, the
estimation improved as both the population and epidemic
final size increase. When the population size gets large, the
Martingale method seems to be useful in terms of com-
putational times and precision. When looking to standard
deviation as a measure of discrepancy, MCMC results were
as good as the Martingale ones. However, as pointed out in
[28], in large-scale settings, MCMCmethods struggle due to
the increased computational burden as a result of high di-
mensional parameter space.

6.3. Abakaliki Smallpox Data. We now consider a widely
studied temporal data set obtained from a smallpox outbreak
in a closed population of N � 120 individual (n � 119, k � 1)
in Abakaliki, Nigeria [26], p. 125. )e data consist of times
between removals measured in days, which are
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13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5,

(24)

where zero indicates that the case occurred at the same day
as the previous one.

)erefore, in our notation, the observed removal times
are given by

tR �
0, 13, 20, 22, 25, 25, 25, 26, 30, 35, 38, 40, 40, 42, 42, 47, 50, 51, 55, 55, 56, 57, 58,

60, 60, 61, 66, 66, 71, 76
 . (25)

)e use of the SIR stochastic epidemic to model these
data is not entirely appropriate, since smallpox has an ap-
preciable latent period. However, it can be used for illus-
trative purpose [6]. In the literature, the basic reproductive
number for smallpox is about 3 − 6 [29]. However, using the
Martingale method, the authors of [8, 9] gave an estimate of
1.1 for R02, while MCMC method produces an estimate of
R01 � 1.13 in [6]. Using the ABC method, an estimate of 1.1
for the basic reproduction number parameter was obtained
in [10].

Surprisingly, no study in the literature has provided
Martingale estimates for the infection rate β and the mean
infectious period c− 1 based on these removal times. Using
(8), we obtained the following Martingale estimates, β �

0.335 and c− 1 � 3.292. It is of concern why these estimates
are not somehow similar to those obtained using different
methods. However, it was pointed out in [14] that assuming
that all the members are susceptible and are mixed ho-
mogeneously may cause a significant underestimation of the
basic reproduction number and hence related parameters.

Table 3 shows estimates of β, c− 1 and R0 for Abakaliki
smallpox data, using different approaches.

6.4. Comparison Discussion. )e simulation studies above
revealed the accuracy and the efficiency of the Martingale
method when estimating the basic reproduction number
and the infection and removal rates of the Markovian SIR
model. Although theMartingale method seems promising in
estimating all the parameters (see Table 1) and preforms well
with large population sizes, it is only applicable when epi-
demic models are Markov. Unfortunately, most sophisti-
cated epidemic models need to be non-Markov to mimic the
mechanism of infectious diseases.

)eMCMCmethod, on the other hand, estimated all the
parameters with very good precision. It is known that this
method struggles when the population size gets large [28]
and for this reason, we considered only N � 50, 100, and
300, to make a fair comparison.

In combination with the Bayesian approach, MCMC
method has no restriction that models beMarkov.)erefore,

Table 1: Results of simulation study I with R02 � 2.5, β � 2.5, and c � 1. Each row is obtained based on the average of 1000 major outbreak
realizations.

N Avge (Z(tR
m))

Avge (Martingale outcomes)
R02

s.d( R02)
β c− 1

50 42 2.1838 0.55 2.3348 1.0087
100 89 2.5414 0.40 2.2914 1.1608
300 268 2.5401 0.21 2.3685 1.0927
700 625 2.5080 0.16 2.4350 1.0382
1000 892 2.5082 0.13 2.4433 1.0322
1500 1339 2.5075 0.10 2.4646 1.0214

Table 2: Results of simulation study II for different values of R0, where c value is set to 1. Each row is obtained based on the average of 10
major outbreak realizations.

N True R0 Avge (Z(tR
m))

Avge (MCMC outcomes) Avge (Martingale outcomes)
R01(

s.d) β c− 1 R02(
s.d) β c− 1

50
1.5 33 1.7048 (0.43) 1.8546 1.1042 1.5695 (0.40) 2.0970 0.9207
2 41 2.2245 (0.52) 2.8048 0.9658 2.0556 (0.49) 2.3263 1.0876
3 46 3.0847 (0.74) 3.3996 0.9505 2.7089 (0.66) 2.4842 1.1067

100
1.5 67 1.6877 (0.30) 1.7777 1.0219 1.6297 (0.29) 1.6972 0.9858
2 81 2.0881 (0.34) 2.3713 0.9673 2.0321 (0.34) 1.9176 1.1331
3 91 2.8392 (0.48) 3.6982 0.8026 2.7349 (0.47) 2.8729 0.9635

300
1.5 182 1.5567 (0.17) 1.6460 1.0022 1.5313 (0.16) 1.7052 0.9057
2 238 2.0055 (0.19) 2.1683 0.9803 1.9856 (0.19) 2.0097 1.0259
3 280 2.9007 (0.28) 3.2939 0.8949 2.9288 (0.29) 2.8886 1.0316
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it is an attractive choice in the epidemic context as it permits
a huge amount of modeling flexibility, and it enables analysis
of all of the model parameters, or any function of them.

7. Concluding Remarks

In this paper, we have considered a quantity of central
importance in mathematical epidemic theory, that is, the
basic reproduction number. Bayesian sensitivity and
consistency of its posterior distribution were discussed,
particularly in the case where the infectious period is
exponentially distributed as this case is commonly used by
modellers, partly for mathematical convenience. )e
performance of the Martingale method in terms of esti-
mating the basic reproduction number and the infection
and removal rates was explored and compared to the
performance of the most widely used method, that is, the
MCMC method.

)e Martingale method’s key advantages were that it
reduced the stochastic epidemic model’s unreasonable as-
sumptions and it simplified the computations. However, this
approach seems to be undesirable as it requires models to be
Markov.)eMCMCmethod, on the other hand, allows for a
great deal of modeling adaptability. In most cases, no such
modeling constraint on infectious periods is required. It also
allows analysis of all model parameters, or any function of
them, when used in conjunction with the Bayesian
technique.

)is work is significant in the sense that it explores
Bayesian sensitivity and consistency for the posterior dis-
tribution of the basic reproduction number in the case of the
Markovian SIR model. In addition, it showed the interesting
performance of the Martingale method in terms of esti-
mating the basic reproduction number and the infection and
removal rates.

It is natural to study Bayesian sensitivity and con-
sistency for other models with different choices of in-
fectious period distribution. However, the posterior
distribution of the basic reproduction number given a
complete observation may not have a closed form, which
in turn makes the analysis harder.

Data Availability

We use simulated data sets for illustration. Abakaliki
Smallpox data set is published in the literature.
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