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Crystal structures are of great scrutiny due to the elegant and well-ordered symmetry that in�uences a signi�cant role in de-
termining numerous physical properties. Our aim is to perceive the role of topological descriptors in the �eld of crystallography
using chemical graph theory to examine symmetrical crystal structure HEX. Simple hexagonal (HEX) is a crystal structure formed
by arranging the same layer of atoms in a hexagon with one additional atom at the center. Chemical graph theory allows us to
study a variety of molecular structures via graphical representation where each atom is denoted as a vertex and the bond form
between them is de�ned as edge. In this research work, we compute the general Randiĉ index, atom bond connectivity index,
geometric arithmetic index, �rst and second Zagreb indices. Furthermore, we will compute their neighborhood and reverse
degree-based versions and visualize which descriptor stands high in accordance with its numerical value.

1. Introduction

HEX (hexagonal) crystal structure, due to its prominent
symmetry following by the atoms arranged in it, portrays a
critical role in determining wide range of physiochemical
properties such as sublimation point, heat of fusion, and
molar heat capacity etc to establish strong metallic bodies.
­ere are very few elements which attains this crystal
structure namely, H, C, N, Se, and Te. Chemical graph theory
allows us to study vast and complex structures by consid-
ering the vertex set as atom set, and the edges in the cor-
responding graphs formed by the structure are de�ned as
bond between two atoms. ­e unit cell of the HEX structure
[1] is formed by considering two hexagonal layers formed by
atoms arranged in hexagon with an atom that lies in their
center, as shown in Figure 1, and each of the layers forms
bond between each atoms that lies exactly around its
symmetry.

­e lattice is formed by arranging its unit cells in one
dimension, as shown in Figure 2. In this paper, we present
closed formulas for two dimensional topological descriptors

based on degree, reverse degree, and neighborhood degree,
and for this purpose, we calculate these degrees for each
atom (vertex) of a lattice formed by HEX.­is kind of crystal
lattice has a vertex set Vn � 7n + 7 and edge set
En � 19n + 12, where n is the no. of unit cells that forms
lattice.

2. Preliminaries

In this section, we give a brief view for the two-dimensional
topological descriptors for which we compute closed for-
mulas for HEX(n).

­e �rst Zagreb index [2] is de�ned as

M1(G) � ∑
fg∈E(G)

df + dg( ). (1)

Zagreb index is one of the oldest and important indices
introduced by Gutman and Das [3] de�ned as

M2(G) � ∑
fg∈E(G)

dfdg. (2)
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-e general Randić index [4] is defined as

Rα(G) � 􏽘
fgεE(G)

dfdg􏼐 􏼑
α
. (3)

-e atom bond connectivity index [5] is defined as

ABC(G) � 􏽘
fg∈E(G)

����������
df + dg − 2

dfdg

􏽳

. (4)

-e geometric arithmetic index [6] is defined as

GA(G) � 􏽘
fg∈E(G)

2
�����
dfdg

􏽱

df + dg

. (5)

Mondal et al. introduced some prominent neighborhood
degree-based versions of topological descriptors, namely,
neighborhood forgotten and harmonic index [7], given as

F
∗
N(G) � 􏽘

fg∈E(G)

δ2f + δ2g􏼐 􏼑,

NH(G) � 􏽘
fg∈E(G)

2
δf + δg

.

(6)

Neighbor versions of first [8] and second Zagreb index
[7] are defined as

M
∗
1(G) � 􏽘

fg∈E(G)

δf + δg􏼐 􏼑,

M
∗
2(G) � 􏽘

fg∈E(G)

δfδg􏼐 􏼑.
(7)

Sanskruti index [9] is given as

S(G) � 􏽘
fg∈E(G)

δfδg

δf + δg − 2
􏼠 􏼡

3

. (8)

Neighborhood inverse sum index [10] is defined as

NI(G) � 􏽘
fg∈E(G)

δfδg

δf + δg

. (9)

-e neighborhood modified second Zagreb index [11] is
defined as

M
nm
2 (G) � 􏽘

fg∈E(G)

1
δfδg

. (10)

3rd and 5th NDe index [12] is defined as

ND3(G) � 􏽘
fg∈E(G)

δfδg δf + δg􏼐 􏼑,

ND5(G) � 􏽘
fg∈E(G)

δf

δg

+
δg

δf

􏼢 􏼣.

(11)

Reverse degree-based Randić index [13] is defined as

RRα(G) � 􏽘
fg∈E(G)

RfRg􏽨 􏽩
α
, (12)

where α is real.
-e atom bond connectivity index is presented by

Estrada et al. [14]. -e reverse atom bond connectivity index
is defined as

RABC(G) � 􏽘
fg∈E(G)

�����������
Rf + Rg − 2

RfRg

􏽳

. (13)

-e geometric arithmetic index of a graph G is presented
by Vukičević and Furtula [15]. -e reverse geometric
arithmetic index is defined as

RGA(G) � 􏽘
fg∈E(G)

2
������
RfRg

􏽱

Rf + Rg

. (14)

Shirdel et al. [16] presented a reverse hyper Zagreb index
defined as

RHM(G) � 􏽘
fg∈E(G)

Rf + Rg􏼐 􏼑
2
. (15)

Metallic structures are of great importance and are using
widely in the scientific environment. To study them and
investigate their properties is one of the greatest aspects
because of their toxicity and strong physio chemical and
electrical properties, in order to utilize the best chemical
formed by metallic crystal structures that required the right
amount of data. For this purpose, we examine HEX crystal
structure which found rarely in a few elements, and many of
its existence are unknown. Newly, the metallic structures
due to their end-to-end symmetry attaining by its atoms
bonding and arrangement become the noteworthy idea.
Mujahed and Nagy measured Wiener index on diamond
cubic crystal [17]. Siddiqui et al. investigated FCC for various
degree based and their polynomial indices in [18]. Admiring
their works, we present and investigate HEX crystal lattice by
means of two-dimensional descriptors. As our work is
depending on the crystal structures that uniquely found in

Figure 1: HEX unit cell.
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metals, so to basically study the simple one-dimensional
hexagonal system through descriptors, we refer the viewer to
the following works: Ahmad and Imran [19] computed the
exact values for vertex edge degree-based topological de-
scriptors for HEX derived networks, namely, HDN1(p) and
HDN2(p), where p is the dimension. In [20], Ahmad et al.
computed degree-based topological indices for metal or-
ganic networks (MONs). Amić et al. [21] recommended that
a improved version of the (valence) vertex-connectivity
index should be routinely employed in the structure-
property modeling instead of the standard version of the
index.

3. Results

In this section, we discuss how to compute the closed
formulas for descriptors based on degree reverse degree and
neighborhood degree.

3.1. Topological Descriptors based on Degree. -e degree of a
vertex f is the no. of edges incident with that vertex defined
as df [22]. In the first and last layer for each n unit cell lattice,
the vertices arranged in hexagon have degree 4, and the
degree of centered vertex is 7, and as we add unit cells, the
degree of the other hexagonal layer vertices increases. To
compute well-defined formulas in the theorems for each
descriptor, we compute each vertex degree and categorize
them in Table 1.

3.1.1. Evaluation and Discussion

Theorem 1. We consider the HEX(n) (hexagonal lattice);
then, its first and second Zagreb index is equal to

(a) First Zagreb index of HEX(n) � 76 + 214n

(b) Second Zagreb index of HEX(n) � 62 + 604n

Proof. We consider hexagonal lattice. We prove the above
results for first and second Zagreb index by using Table 1 and
formula for these indices.

(a) Computations for the first Zagreb index:

M1(HEX(n)) � 􏽘
fg∈E(HEX(n))

df + dg􏼐 􏼑

� 􏽘
fg∈E1

df + dg􏼐 􏼑 + 􏽘
fg∈E2

df + dg􏼐 􏼑 + 􏽘
fg∈E3

df + dg􏼐 􏼑 + · · · + 􏽘
fg∈E7

df + dg􏼐 􏼑

� 12(4 + 4) +(12n − 18)(5 + 5) + 12(4 + 5) + 12(4 + 7) +(6n − 6)(5 + 8) +(n − 2)(8 + 8) + 2(7 + 8)

� 76 + 214n.

(16)

(b) Computations for the second Zagreb index:

Table 1: Degree-based edge partition.

Edge notation (df, dg) order of(df, dg)

E1 (4, 4) 12
E2 (5, 5) 12n − 18
E3 (4, 5) 12
E4 (4, 7) 12
E5 (5, 8) 6n − 6
E6 (8, 8) n − 2
E7 (7, 8) 2

Figure 2: HEX(n) crystal lattice.
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M2(HEX(n)) � 􏽘
fg∈E(HEX(n))

dfdg

� 􏽘
fg∈E1

dfdg + 􏽘
fg∈E2

dfdg + 􏽘
fg∈E3

dfdg + · · · + 􏽘
fg∈E7

dfdg

� 12(4 × 4) +(12n − 18)(5 × 5) + 12(4 × 5) + 12(4 × 7) +(6n − 6)(5 × 8) +(n − 2)(8 × 8) + 2(7 × 8)

� 62 + 604n.

(17)

□
Theorem 2. We consider the HEX(n) (hexagonal lattice);
then, its general Randić index is equal to

Rα(HEX(n)) �

M2(HEX(n)) � 62 + 604n, if α � 1(a),

5113
5600

+
1033
1600

n, if α � − 1(b),

36.18296055 + 105.9473319n, if α �
1
2

(c),

3.419646355 + 3.473683298n, if α � −
1
2

(d).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Proof. We consider the HEX(n) and formula for general
Randić index to compute results.

Rα(HEX(n)) � 􏽘
fg∈E(HEX(n))

dfdg􏼐 􏼑
α

� 􏽘
fg∈E1

dfdg􏼐 􏼑
α

+ 􏽘
fgεE2

dfdg􏼐 􏼑
α

+ 􏽘
fgεE3

dfdg􏼐 􏼑
α

+ · · · + 􏽘
fgεE7

dfdg􏼐 􏼑
α
.

(19)
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n
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Figure 3: Graphical analysis of degree-based topological descriptors.
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We obtain the following results by using Table 1:

(a) When α � 1, general Randić index is equal to second
Zagreb index

(b) When α � − 1,

R− 1(HEX(n)) � 􏽘
fg∈E(HEX(n))

dfdg􏼐 􏼑
− 1

� 􏽘
fg∈E1

dfdg􏼐 􏼑
− 1

+ 􏽘
fgεE2

dfdg􏼐 􏼑
− 1

+ 􏽘
fgεE3

dfdg􏼐 􏼑
− 1

+ · · · + 􏽘
fgεE7

dfdg􏼐 􏼑
− 1

�
12

4 × 4
+

(12n − 18)

5 × 5
+

12
4 × 5

+
12

4 × 7
+
6n − 6
5 × 8

+
n − 2
8 × 8

+
2

7 × 8

(20)

(c) When α � (1/2),

R(1/2)(HEX(n)) � 􏽘
fg∈E(HEX(n))

�����
dfdg

􏽱

� 12
����
4 × 4

√
+(12n − 18)

����
5 × 5

√
+ 12

����
4 × 5

√
+ 12

����
4 × 7

√
+(6n − 6)

����
5 × 8

√
+(n − 2)

����
8 × 8

√
+ 2

����
7 × 8

√

� 36.18296055 + 105.9473319n

(21)

(d) When α � − (1/2),

R− (1/2)(HEX(n)) � 􏽘
fg∈E(HEX(n))

1
�����
dfdg

􏽱

�
12
����
4 × 4

√ +
(12n − 18)

����
5 × 5

√ +
12
����
4 × 5

√ +
12
����
4 × 7

√ +
(6n − 6)

����
5 × 8

√ +
(n − 2)

����
8 × 8

√ +
2

����
7 × 8

√

� 3.419646355 + 3.473683298n

(22)

□
Theorem 3. We consider the HEX(n); then,

(a) Atom bond connectivity index of
HEX(n) � 10.402355882n + 7.950571054

(b) Geometric arithmetic index of
HEX(n) � 18.83805106n + 11.62829205

Table 2: Neighborhood degree-based edge partition.

Edge notation (Nf, Ng) order of(Nf, Ng)

E1 (20, 20) 12
E2 (27, 27) 12
E3 (28, 28) 12n − 42
E4 (20, 32) 12
E5 (20, 27) 12
E6 (32, 45) 2
E7 (27, 45) 12
E8 (27, 28) 12
E9 (28, 46) 6n − 18
E10 (45, 46) 2
E11 (46, 46) n − 4
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Proof. We consider the hexagonal lattice. We use Table 1
and general formulas for the following indices to compute
results.

(a) ­e atom bond connectivity index is given as

ABC(HEX(n)) � ∑
fg∈E(HEX(n))

����������
df + dg − 2
dfdg

√

� 12
�������
4 + 4 − 2
4 × 4

√
+(12n − 18)

�������
5 + 5 − 2
5 × 5

√
+ 12

�������
4 + 5 − 2
4 × 5

√
+ 12

�������
4 + 7 − 2
4 × 7

√
+(6n − 6)

�������
5 + 8 − 2
5 × 8

√
+(n − 2)

�������
8 + 8 − 2
8 × 8

√
+ 2

�������
7 + 8 − 2
7 × 8

√

� 10.402355882n + 7.950571054.

(23)

(b) ­e geometric arithmetic index is given as

GA(HEX(n)) � ∑
fg∈E(HEX(n))

2
�����
dfdg
√

df + dg

� 12
2
����
4 × 4

√

4 + 4
+(12n − 18)

2
����
5 × 5

√

5 + 5
+ 12

2
����
4 × 5

√

4 + 5
+ 12

2
����
4 × 7

√

4 + 7
+(6n − 6)

2
����
5 × 8

√

5 + 8
+(n − 2)

2
����
8 × 8

√

8 + 8
+ 2

2
����
7 × 8

√

7 + 8

� 18.83805106n + 11.62829205.
(24)

Amongst all the computed degree-based indices, we
encounter for n � 1, . . . , 10 that the secondZagreb index
M2(HEX(n)) ranks high and Randić index for
α � − 1, R− 1(HEX(n)) ranks lowest, where we use the colors
green, blue, purple, yellow, red, pink and magenta for the
descriptors, namely, M1(HEX(n)), M2(HEX(n)), R
− 1(HEX(n)), R(1/2)(HEX(n)), R− (1/2)(HEX(n)), ABC
(HEX(n)), and GA(HEX(n)) as shown in Figure 3. □

3.2. Topological Descriptors based on Neighborhood Degree.
­e neighborhood degree is de�ned as δf denoted the
degree sum of neighbors of vertex f [22]. All the
neighborhood degrees are categorized in Table 2 corre-
sponding to their edge sets to depict exact values for the
descriptors based on neighborhood degree in the fol-
lowing theorems.

2.5 × 107

2. × 107

1.5 × 107

1. × 107

5. × 106

1
0

2 3 4 5 6 7 8 9 10
n

Figure 4: Graphical analysis of neighborhood degree-based topological descriptors.
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3.2.1. Evaluation and Discussion

Theorem 4. We consider HEX(n). :e neighborhood ver-
sions of Zagreb indices for HEX(n) are

(a) First neighborhood Zagreb index for
HEX(n) � 124 + 1208n

(b) Second neighborhood Zagreb index of
HEX(n) � 19252n − 6196

(c) :e neighborhood second modified Zagreb index of
HEX(n) � 0.0461008161 + 0.02043709733n

Proof. We consider the general formula for neighborhood
versions of Zagreb indices and evaluate results for HEX(n)
by using Table 2.

(a) Calculations for M∗1(HEX(n)):

M
∗
1(HEX(n)) � 􏽘

fg∈E(HEX(n))

δf + δg􏼐 􏼑

� 􏽘
fg∈E1

δf + δg􏼐 􏼑 + 􏽘
fg∈E2

δf + δg􏼐 􏼑 + 􏽘
fg∈E3

δf + δg􏼐 􏼑 + · · · + 􏽘
fg∈E11

δf + δg􏼐 􏼑

� 12(40) + 12(54) +(12n − 42)(56) + 12(52) + 12(47) + 2(77) + 12(72) + 12(55)

+(6n − 18)(74) + 2(91) +(n − 4)(92)

� 124 + 1208n.

(25)

(b) Calculations for M∗2(HEX(n)):

M
∗
2(HEX(n)) � 􏽘

fg∈E(HEX(n))

δfδg􏼐 􏼑

� 􏽘
fg∈E1

δfδg􏼐 􏼑 + 􏽘
fg∈E2

δfδgg􏼐 􏼑 + 􏽘
fg∈E3

δfδg􏼐 􏼑 + · · · + 􏽘
fg∈E11

δfδg􏼐 􏼑

� 12(400) + 12(729) +(12n − 42)(784) + 12(640) + 12(540) + 2(1440) + 12(1215)

+ 12(756) +(6n − 18)(1288) + 2(2070) +(n − 4)(2116)

� 19252n − 6196.

(26)

(c) Calculations for Mnm
2 (HEX(n)):

M
nm
2 (HEX(n)) � 􏽘

fg∈E(HEX(n))

1
δfδg

� 􏽘
fg∈E1

1
δfδg

+ 􏽘
fg∈E2

1
δfδg

+ 􏽘
fg∈E3

1
δfδg

+ · · · + 􏽘
fg∈E11

1
δfδg

� 12
1
400

􏼒 􏼓 + 12
1
729

􏼒 􏼓 +(12n − 42)
1
784

􏼒 􏼓 + 12
1
640

􏼒 􏼓 + 12
1
540

􏼒 􏼓 + 2
1

1440
􏼒 􏼓 + 12

1
1215

􏼒 􏼓 + 12
1
756

􏼒 􏼓

+(6n − 18)
1

1288
􏼒 􏼓 + 2

1
2070

􏼒 􏼓 +(n − 4)
1

2116
􏼒 􏼓

� 0.0461008161 + 0.02043709733n.

(27)

□

Table 3: Reverse degree-based edge partition.

Edge notation (Rf,Rg) order of(Rf,Rg)

E1 (5, 5) 12
E2 (4, 4) 12n − 18
E3 (5, 4) 12
E4 (5, 2) 12
E5 (4, 1) 6n − 6
E6 (1, 1) n − 2
E7 (2, 1) 2
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Theorem 5. We consider the neighborhood forgotten topo-
logical index of HEX(n) � 40448n − 11668.

Proof. We consider HEX(n), and using Table 2, we have the
following evaluations for the neighborhood forgotten to-
pological index:

F
∗
N(HEX(n)) � 􏽘

fg∈E(HEX(n))

δ2f + δ2g􏼐 􏼑

� 􏽘
fg∈E1

δ2f + δ2g􏼐 􏼑 + 􏽘
fg∈E2

δ2f + δ2g􏼐 􏼑 + 􏽘
fg∈E3

δ2f + δ2g􏼐 􏼑 + · · · + 􏽘
fg∈E11

δ2f + δ2g􏼐 􏼑

� 12(800) + 12(1458) +(12n − 42)(1568) + 12(1424) + 12(1129) + 2(3049) + 12(2754) + 12(1513) +(6n

− 18)(2900) + 2(4141) +(n − 4)(4232)

� 40448n − 11668.

(28)

□
Theorem 6. :e third and fifth NDe index of HEX(n):

NDe �
ND3 � 2730640n − 1652752 (a),

ND5 � 26.7125 + 39.50931677n (b).
􏼨 (29)

Proof. We consider HEX(n). we compute the results using
Table 2 and general formulas for the indices as mentioned in
this theorem.

(a) -e computations for ND3 are given as

ND3(HEX(n)) � 􏽘
fg∈E(HEX(n))

δfδg δf + δg􏼐 􏼑

� 􏽘
fg∈E1

δfδg δf + δg􏼐 􏼑 + 􏽘
fg∈E2

δfδg δf + δg􏼐 􏼑 + 􏽘
fg∈E3

δfδg δf + δg􏼐 􏼑 + · · · + 􏽘
fg∈E11

δfδg δf + δg􏼐 􏼑

� 12(800)(40) + 12(1458)(54) +(12n − 42)(1568)(56) + 12(1424)(52) + 12(1129)(47) + 2(3049)(77)

+ 12(2754)(72) + 12(1513)(55) +(6n − 18)(2900)(74) + 2(4141)(91) +(n − 4)(4232)(92)

� 2730640n − 1652752.

(30)

6000

7000

8000

9000

10000

5000

4000

3000

2000

1000

1 2 3 4 5 6 7
n

8 9 10

Figure 5: Graphical analysis of reverse degree-based topological descriptors.
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(b) ­e computations for ND5 are given as

ND5(HEX(n)) � ∑
fg∈E(HEX(n))

δf
δg
+
δg
δf

[ ]

� ∑
fg∈E1

δf
δg
+
δg
δf

[ ] + ∑
fg∈E2

δf
δg
+
δg
δf

[ ] + ∑
fg∈E3

δf
δg
+
δg
δf

[ ] + · · · + ∑
fg∈E11

δf
δg
+
δg
δf

[ ]

� 12(2) + 12(2) +(12n − 42)(2) + 12
89
40
( ) + 12

1129
540

( ) + 2
3049
1440
( ) + 12

34
15
( ) + 12

1513
756

( ) +(6n − 18)
725
322
( )

+ 2
4141
2070
( ) +(n − 4)(2)

� 26.7125 + 39.50931677n.
(31)

□
Theorem 7. In this theorem, we compute closed formulas for
the following indices:

(a) �e neighborhood Harmonic index of
HEX(n) � 0.2087792612 + 0.6124727212n

(b) �e neighborhood inverse sum index of
HEX(n) � 24.60990826 + 295.4324324n

(c) �e Sanskruti index of
HEX(n) � 84068.12956n − 53703.85814

Proof. To prove the results (a), (b), and (c), we consider the
hexagonal crystal lattice. Next, we consider the general
formulas for the indices and evaluate them, respectively, by
using Table 2.

(a) ­e neighborhood Harmonic index of HEX(n):

2.5 × 107

2. × 107

1.5 × 107

1. × 107

5. × 106

1 2 3 4 5 6 7 8 9 10

(a)
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1 2 3 4 5
n

6 7 8 9 10

(b)

6000

7000

8000

9000

10000

5000
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1 2 3 4 5 6 7 8 9 10

(c)

Figure 6: (a)ND3(HEX(n)), (b)M2(HEX(n)), and (c)RHM(HEX(n)).
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NH(HEX(n)) � 􏽘
fg∈E(HEX(n))

2
δf + δg

� 􏽘
fg∈E1

2
δf + δg

+ 􏽘
fg∈E2

2
δf + δg

+ 􏽘
fg∈E3

2
δf + δg

+ · · · + 􏽘
fg∈E11

2
δf + δg

�
12(2)

40
+
12(2)

54
+

(12n − 42)(2)

56
+
12(2)

52
+
12(2)

47
+
2(2)

77
+
12(2)

72
+
12(2)

55
+

(6n − 18)(2)

74
+
2(2)

91
+

(n − 4)(2)

92

� 0.2087792612 + 0.6124727212n.

(32)

(b) -e neighborhood inverse sum index of HEX(n):

NI(HEX(n)) � 􏽘
fg∈E(HEX(n))

δfδg

δf + δg

� 􏽘
fg∈E1

δfδg

δf + δg

+ 􏽘
fg∈E2

δfδg

δf + δg

+ 􏽘
fg∈E3

δfδg

δf + δg

+ · · · + 􏽘
fg∈E11

δfδg

δf + δg

�
12(400)

40
+
12(729)

54
+

(12n − 42)(784)

56
+
12(640)

52
+
12(540)

47
+
2(1440)

77
+
12(1215)

72
+
12(756)

55

+
(6n − 18)(1288)

74
+
2(2070)

91
+

(n − 4)(2116)

92

� 24.60990826 + 295.4324324n.

(33)

(c) -e Sanskruti index of HEX(n):

S(HEX(n)) � 􏽘
fg∈E(HEX(n))

δfδg

δf + δg − 2
􏼠 􏼡

3

� 􏽘
fg∈E1

δfδg

δf + δg − 2
􏼠 􏼡

3

+ 􏽘
fg∈E2

δfδg

δf + δg − 2
􏼠 􏼡

3

+ 􏽘
fg∈E3

δfδg

δs + δt − 2
􏼠 􏼡

3

+ · · · + 􏽘
fg∈E11

δfδg

δf + δg − 2
􏼠 􏼡

3

�
12(400)

3

54872
+
12(729)

3

140608
+

(12n − 42)(784)
3

157464
+
12(640)

3

125000
+
12(540)

3

91125
+
2(1440)

3

421875
+
12(1215)

3

343000
+
12(756)

3

148877

+
(6n − 18)(1288)

3

373248
+
2(2070)

3

704969
+

(n − 4)(2116)
3

729000

� 84068.12956n − 53703.85814.

(34)

Amongst all the computed neighborhood degree-based
indices, we can visualize from the graphical representation
that the index ND3 ranks highest and Mnm

2 (HEX(n)) ranks

lowest for hexagonal lattice by substituting it for n ranging
from 1 to10. Here, we use colors cyan, gold, plum, violet,
green, purple, blue, yellow, and orange for the descriptors
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named as M∗1(HEX(n)), M∗2
(HEX(n)), F∗N(HEX(n)), Mnm

2 (HEX(n)),ND3
(HEX(n)),ND5(HEX(n)),

NH(HEX(n)),NI(HEX(n)), S(HEX(n)), respectively, as
shown in Figure 4. □

3.3. Topological Descriptors based on Reverse Degree.
Reverse degree of the vertex depends on the maximum
degree in a graph and df. It is defined as
Rf � Δ(HEX(n)) − df + 1,whereΔ(HEX(n)) � 8. We
compute neighborhood degree for the n dimensional lattice.
In Table 3, we mention all the neighborhood degrees for the
entire lattice or for each value of n, and we categorized these
values through the edge distributions according to the edges
having same degrees, and we also mention cardinality of
each edge having vertices with same reverse degree. For each
no. of unit cells n, we use Table 3 to compute results for the
following theorems.

3.3.1. Evaluation and Discussion. In this section, we com-
pute results in the form of theorems.

Theorem 8. We consider the HEX(n) (hexagonal lattice);
then, its general Randić index is equal to

RRα(HEX(n)) �

350 + 217n, if α � 1 (a),

13
4

n −
5
8
, if α � − 1 (b),

68.44139051 + 61n, if α �
1
2

(c),

0.7922283276 + 7n, if α � −
1
2

(d).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Proof. We consider the HEX(n) and formula for general
reverse Randić index to compute results. We perform
evaluations by using Table 3.

(a) When α � 1,RR1(HEX(n)) is given as

RR1(HEX(n)) � 􏽘
fg∈E(HEX(n))

RfRg􏽨 􏽩
1

� 􏽘
fg∈E1

RfRg􏽨 􏽩 + 􏽘
fg∈E2

RfRg􏽨 􏽩 + · · · + 􏽘
fg∈E7

RfRg􏽨 􏽩

� 12(5 × 5) +(12n − 18)(4 × 4) + 12(5 × 4) + 12(5 × 2) +(6n − 6)(4 × 1) +(n − 2)(1 × 1) + 2(2 × 1)

� 350 + 217n

(36)

(b) When α � − 1,RR− 1(HEX(n)) is given as

RR− 1(HEX(n)) � 􏽘
fg∈E(HEX(n))

RfRg􏽨 􏽩
− 1

� 􏽘
fg∈E1

RfRg􏽨 􏽩
− 1

+ 􏽘
fg∈E2

RfRg􏽨 􏽩
− 1

+ · · · + 􏽘
fg∈E7

RfRg􏽨 􏽩
− 1

� 12(5 × 5)
− 1

+(12n − 18)(4 × 4)
− 1

+ 12(5 × 4)
− 1

+ 12(5 × 2)
− 1

+(6n − 6)(4 × 1)
− 1

+(n − 2)(1 × 1)
− 1

+ 2(2 × 1)
− 1

�
13
4

n −
5
8
.

(37)

(c) When α � (1/2), RR(1/2)(HEX(n)) is given as
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RR(1/2)(HEX(n)) � RR(1/2)(HEX(n)) � 􏽘
fg∈E(HEX(n))

RfRg􏽨 􏽩
(1/2)

� 􏽘
fg∈E1

RfRg􏽨 􏽩
(1/2)

+ 􏽘
fg∈E2

RfRg􏽨 􏽩
(1/2)

+ · · · + 􏽘
fg∈E7

RfRg􏽨 􏽩
(1/2)

� 12
����
5 × 5

√
+(12n − 18)

����
4 × 4

√
+ 12

����
5 × 4

√
+ 12

����
5 × 2

√
+(6n − 6)

����
4 × 1

√
+(n − 2)

����
1 × 1

√
+ 2

����
2 × 1

√

� 68.44139051 + 61n

(38)

(d) When α � − (1/2),RR− (1/2)(HEX(n)) is given as

RR− (1/2)(HEX(n)) � 􏽘
fg∈E(HEX(n))

RfRg􏽨 􏽩
− (1/2)

� 􏽘
fg∈E1

RfRg􏽨 􏽩
− (1/2)

+ 􏽘
fg∈E2

RfRg􏽨 􏽩
− (1/2)

+ · · · + 􏽘
fg∈E7

RfRg􏽨 􏽩
− (1/2)

�
12
����
5 × 5

√ +
12n − 18

����
4 × 4

√ +
12
����
5 × 4

√ +
12
����
5 × 2

√ +
6n − 6

����
4 × 1

√ +
n − 2
����
1 × 1

√ +
2

����
2 × 1

√

� 0.7922283276 + 7n.

(39)

□
Theorem 9. In this theorem, we evaluate closed forms for the
following indices:

(a) Reverse atom bond connectivity index of
HEX(n) � ((12

��
15

√
+ 15

�
3

√
)/5)n + 7.56815951

(b) Reverse geometric arithmetic index of
HEX(n) � (89/5)n + 9.967790715

(c) Reverse hyper Zagreb index of
HEX(n) � 1468 + 922n

Proof. We consider HEX(n). We use general formulas for
the reverse atom bond connectivity, geometric, and hyper
Zagreb indices by using Table 3.

(a) Computations for reverse atom bond connectivity
index are given as

RABC(HEX(n)) � 􏽘
fg∈E(HEX(n))

�����������
Rf + Rg − 2

RfRg

􏽳

� 􏽘
fg∈E1

�����������
Rf + Rg − 2

RfRg

􏽳

+ 􏽘
fg∈E2

�����������
Rf + Rg − 2

RfRg

􏽳

+ · · · + 􏽘
fg∈E7

�����������
Rf + Rg − 2

RfRg

􏽳

� 12
�������
5 + 5 − 2
5 × 5

􏽲

+(12n − 18)

�������
4 + 4 − 2
4 × 4

􏽲

+ 12
�������
5 + 4 − 2
5 × 4

􏽲

+ 12
�������
5 + 2 − 2
5 × 2

􏽲

+(6n − 6)

�������
4 + 1 − 2
4 × 1

􏽲

+(n − 2)

�������
1 + 1 − 2
1 × 1

􏽲

+ 2
�������
2 + 1 − 2
2 × 1

􏽲

�
12

��
15

√
+ 15

�
3

√

5
􏼠 􏼡n + 7.56815951.

(40)

(b) Computations for reverse geometric connectivity
index are given as
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RGA(HEX(n)) � 􏽘
fg∈E(HEX(n))

2
������
RfRg

􏽱

Rf + Rg

� 􏽘
fg∈E1

2
������
RfRg

􏽱

Rf + Rg

+ 􏽘
fg∈E2

2
������
RfRg

􏽱

Rf + Rg

+ 􏽘
fg∈E3

2
������
RfRg

􏽱

Rf + Rg

+ · · · + 􏽘
fg∈E7

2
������
RfRg

􏽱

Rf + Rg

� 12
2

����
5 × 5

√

5 + 5
􏼠 􏼡 +(12n − 18)

2
����
4 × 4

√

4 + 4
􏼠 􏼡 + 12

2
����
5 × 4

√

5 + 4
􏼠 􏼡 + 12

2
����
5 × 2

√

5 + 2
􏼠 􏼡 +(6n − 6)

2
����
4 × 1

√

4 + 1
􏼠 􏼡

+(n − 2)
2

����
1 × 1

√

1 + 1
􏼠 􏼡 + 2

2
����
2 × 1

√

2 + 1
􏼠 􏼡

�
89
5

n + 9.967790715.

(41)

(c) Computations for reverse hyper Zagreb index are
given as

RHM(HEX(n)) � 􏽘
fg∈E(HEX(n))

Rf + Rg􏼐 􏼑
2

� 􏽘
fg∈E1

Rf + Rg􏼐 􏼑
2

+ 􏽘
fg∈E2

Rf + Rg􏼐 􏼑
2

+ 􏽘
fg∈E3

Rf + Rg􏼐 􏼑
2

+ · · · + 􏽘
fg∈E7

Rf􏼐 + Rg􏼐 􏼑
2

� 12(5 + 5)
2

+(12n − 18)(4 + 4)
2

+ 12(5 + 4)
2

+ 12(5 + 2)
2

+(6n − 6)(4 + 1)
2

+(n − 2)(1 + 1)
2

+ 2(2 + 1)
2

� 1468 + 922n.

(42)

Amongst all the evaluated reverse degree-based indices,
reverse hyper Zagreb index ranks first and reverse Randić index
for α � − 1, R− 1(HEX(n)) ranks lowest, where n varies from 1
to 10. We use color palette in the following way for individual
descriptor as yellow, green, pink, purple, brown, blue, and
magenta for RR1(HEX(n)), RR− 1(HEX(n)),RR (1/2)

(HEX(n)),RR− (1/2)(HEX(n)),RABC(HEX(n)), and
RGA(HEX(n)),RHM(HEX(n)), as shown in Figure 5. □

4. Conclusion

After evaluating the results, we have concluded that the ND3
two-dimensional descriptor is of virtuous quality for the
hexagonal crystal structure lattice as it ranks high among all
the computed descriptors based on degree, neighborhood
degree, and reverse degree. -ese calculations and closed
form theorems will benefit math chemists by utilizing it in
many mathematical techniques, and worthy quantitative
studies include QSAR/QSPR/QSTR to study in depth the
metallic crystallography formed in both inorganic and or-
ganic compounds attaining crystal structures. Below is the
individual graphical representation of the descriptors that
ranks high from each subsection of results, namely, degree
based, neighborhood degree, and reverse degree, where
green color graph representing ND3(HEX(n)), yellow

representing M2(HEX(n)), and magenta representing
RHM(HEX(n)) to visualize the best ranking descriptor for
hexagonal crystal structure lattice HEX(n), as shown in
Figures 6(a)–6(c).
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