Research Article

Common Fixed Point Results via Set-Valued Generalized Weak Contraction with Directed Graph and Its Application

Muhammad Shoaib, 1 Muhammad Sarwar *, 1 Kamal Shah *, 1, 2 and Nabil Mlaiki 2

1 Department of Mathematics, University of Malakand, Chakdara Dir(L), Pakistan
2 Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Correspondence should be addressed to Muhammad Sarwar; sarwarswati@gmail.com

Received 22 February 2022; Accepted 4 April 2022; Published 9 May 2022

Academic Editor: A. Ghareeb

Copyright © 2022 Muhammad Shoaib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this manuscript, common fixed point results for set-valued mapping under generalized \((\psi, \phi_1)\) and \((\psi, \phi_2)\) weak contraction without using Hausdorff metric are studied endowing with a graph. To demonstrate the authenticity of the established result, a suitable example and application to integral inclusion are also discussed.

1. Introduction

The basic fixed point (F.P) result of Banach [1] has set the basis of metric fixed point theory (FPT) in a complete metric space for contraction mappings. Due to their results, FPT of specific single-valued mappings is interesting in its benefit owning constructive proofs and applications in industrial fields such as physics, computer science, engineering, image processing, telecommunication, and economics.

The theory of set-valued mapping has applications in convex optimization, control theory, economics and differential inclusions, and integral inclusion. Differential inclusions are also used to analyze modeling errors and analyze robustness to bounded perturbations to model physical phenomena such as to model differential games and Coulomb friction and impact [2, 3]. Following the Banach contraction principle (BCP), Nadler [4] presented the idea of set-valued contractions and established that in complete metric space, a set-valued contraction possesses a F.P. Consequently, many authors generalized Nadler F.P theorem in various ways.

Let \(Q \neq \emptyset\), \(\Delta\) represent the diagonal of \(Q \times Q\) and \(G = (v(G), e(G))\) be a directed graph (with no parallel edges). The set \(v(G)\) denoted vertices coincides with \(Q\), and the set \(e(G)\) is the edges of the graph furthermore \(\Delta \subseteq e(G)\). \(e'(G)\) denotes the set all edges which is not loops, i.e., \(e'(G) = e(G) - \Delta\). If path exist between any two vertices, then a graph \(G\) is connected. It is weakly connected if \(G\) is connected; here, \(\bar{G}\) is an undirected form of the graph \(G\).
A clique, C, in an undirected graph $G = (\mathbf{v}(G), e(G))$ is a subset of the vertices, $C \subseteq \mathbf{v}(G)$, such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph.

Jachymski and Jozwik [15] used the property (P) stated that for any sequence $\{\eta_n\}$ in Q: if $\eta_n \rightarrow \eta$ and $(\eta_n, \eta_{n+1}) \in e(G)$, then $(\eta_n, \eta) \in e(G)$.

A mapping $T: Q \rightarrow CL(Q)$ is said to be upper semi-continuous if for any sequence $\{\eta_n\}$ in Q and $\eta_n \in T\eta_n$ with $\eta_n \rightarrow \eta_0$ and $\eta_0 \in T\eta_0$.

Assume $T_1, T_2: Q \rightarrow CL(Q)$. Set $Q_{\{r, t, \} = \{r \in Q: (r, \theta_r) \in e(G)\}$ where $\theta_r \in T_1(r) \cap T_2(r)$.

(1)

\[
\Phi = \left\{ \psi: \mathbb{R}^+ \rightarrow \mathbb{R}^+ \text{ non-decreasing, continuous mapping such that} \right. \\
\left. \psi(0) = 0 \text{ if and only if } \psi(0) = 0 \right\},
\]

\[
\Psi_1 = \left\{ \psi_1: \mathbb{R}^5 \rightarrow \mathbb{R}^+ \text{ non-decreasing and non-decreasing in each coordinate} \right. \\
\left. \psi_1: \mathbb{R}^5 \rightarrow \mathbb{R}^+ \text{ decreasing in each coordinate} \right\}.
\]

(2)

\[
\begin{align*}
\Lambda_{\psi_1}(r, t; \theta_r, \theta_t) &= \psi_1 \left(d(r, t) + d(r, \theta_t), d(r, \theta_r), d(t, \theta_r) + d(t, \theta_t), d(t, \theta_t) + d(r, \theta_r) \right) = \frac{1}{2} \left(d(r, \theta_t) + d(t, \theta_r) + d(t, \theta_t) + d(r, \theta_r) \right), \quad \text{for } r, t \in Q. \\
\Lambda_{\psi_2}(r, t; \theta_r, \theta_t) &= \psi_2 \left(d(r, t) + d(r, \theta_t), d(r, \theta_r), d(t, \theta_r) + d(t, \theta_t), d(t, \theta_t) + d(r, \theta_r) \right) = \frac{1}{2} \left(d(r, \theta_t) + d(t, \theta_r) + d(t, \theta_t) + d(r, \theta_r) \right), \quad \text{for } r, t \in Q.
\end{align*}
\]

(3)

\[
\begin{align*}
\psi(d(r, t; \theta_r, \theta_t)) &\leq \psi(\Lambda_{\psi_1}(r, t; \theta_r, \theta_t)) - \phi(\Lambda_{\psi_1}(r, t; \theta_r, \theta_t)), \\
\psi(d(T_t, T_t)) &\leq \psi(\Lambda_{\psi_2}(r, t; \theta_r, \theta_t)) - \phi(\Lambda_{\psi_2}(r, t; \theta_r, \theta_t)),
\end{align*}
\]

(4)

(5)

Theorem 1. Consider a complete (Q, d) metric space endowed with a directed graph G such that $v(G) = Q$ and
\textbf{(i)} If \(F_x(T_1) \neq \emptyset \) or \(F_x(T_2) \neq \emptyset \), then the following statement holds:

\(\Lambda_{\psi_1}(r^1, r^2; r^*) = \psi_1\left(\frac{d(r^1, r^2) + d(r^1, r^*) + d(r^2, r^*)}{2}, \frac{d(r^1, r^2) + d(r^1, r^*) + d(r^2, r^*)}{2}\right) \leq \psi_1\left(\frac{d(r^1, r^2) + d(r^1, r^*) + d(r^2, r^*)}{2}, \frac{d(r^1, r^2) + d(r^1, r^*) + d(r^2, r^*)}{2}\right) \)

where

\(\Lambda_{\psi_1}(r^1, r^2; r^*) = \psi_1(d(r^1, r^2), d(r^1, r^2), d(r^1, r^2), d(r^2, r^2), d(r^2, r^2)) \)

To prove (ii), let \(F_x(T_1) \cap F_x(T_2) \neq \emptyset \), then there exists \(r \in Q \) such that \(r \in T_1(r) \cap T_2(r) \). As \(e(G) \subseteq \Delta \), we conclude that \(Q_{T_1, T_2} \neq \emptyset \).

\(\Lambda_{\psi_1}(r_0, r_1; r_2) = \psi_1\left(\frac{d(r_0, r_1) + d(r_0, r_2) + d(r_1, r_2)}{2}, \frac{d(r_0, r_1) + d(r_0, r_2) + d(r_1, r_2)}{2}\right) \)

If \(d(r_0, r_1) \leq d(r_1, r_2) \), then by simple calculation, we get

\(\Lambda_{\psi_1}(r_0, r_1; r_1, r_2) \leq d(r_1, r_2) \),

\(\psi(d(r_1, r_2)) \leq \psi(d(r_1, r_2)) - \phi(d(r_1, r_2)) \)

which gives contradiction; therefore,

\(\Lambda_{\psi_1}(r_0, r_1; r_1, r_2) = d(r_0, r_1) \)

and further we have

\(\Lambda_{\psi_1}(r_1, r_2; r_2, r_3) = \psi_1\left(\frac{d(r_1, r_2) + d(r_1, r_3) + d(r_2, r_3)}{2}, \frac{d(r_1, r_2) + d(r_1, r_3) + d(r_2, r_3)}{2}\right) \)

\(\Lambda_{\psi_1}(r_1, r_2; r_2, r_3) = \psi_1\left(\frac{d(r_1, r_2) + d(r_1, r_3) + d(r_2, r_3)}{2}, \frac{d(r_1, r_2) + d(r_1, r_3) + d(r_2, r_3)}{2}\right) \)
If \(d(r_1, r_2) \leq d(r_2, r_3) \), then
\[
\Lambda_{\psi_1}(r_1, r_2; r_2, r_3) \leq d(r_2, r_3),
\]
and then
\[
\psi(d(r_2, r_3)) = \psi(d(r_2, r_3)) - \phi(d(r_2, r_3)),
\]
which gives contradiction; therefore
\[
\Lambda_{\psi_1}(r_1, r_2; r_2, r_3) = d(r_1, r_2),
\]
\[
\psi(d(r_2, r_3)) \leq \psi(d(r_1, r_3)) - \phi(d(r_1, r_3)).
\]
Continuing this way, for \(r_{2y} \in T_j(r_{2y-1}) \), there exist \(r_{2y+1} \in T_j(r_{2y}) \) such that \((r_{2y}, r_{2y+1}) \in \mathbf{e}^* (G) \) and
\[
\psi(d(r_{2y+1}, r_{2y+2})) \leq \psi(\Lambda_{\psi_1}(r_{2y-1}, r_{2y}; r_{2y}, r_{2y+1})),
\]
\[
- \phi(\Lambda_{\psi_1}(r_{2y-1}, r_{2y}; r_{2y}, r_{2y+1})),
\]
where
\[
\Lambda_{\psi_1}(r_{2y-1}, r_{2y}; r_{2y+1}) \leq d(r_{2y-1}, r_{2y}).
\]
Therefore,
\[
\psi(d(r_{2y+1}, r_{2y+2})) \leq \psi(d(r_{2y-1}, r_{2y})) - \phi(d(r_{2y-1}, r_{2y})).
\]
In similar pattern \(r \) for \(r_{2y+1} \in T_j(r_{2y}) \), there exist \(r_{2y+2} \in T_j(r_{2y+1}) \) such that \((r_{2y+1}, r_{2y+2}) \in \mathbf{e}^* (G) \) and
\[
\psi(d(r_{2y+1}, r_{2y+2})) \leq \psi(\Lambda_{\psi_1}(r_{2y}, r_{2y+1}; r_{2y+1}, r_{2y+2})),
\]
\[
- \phi(\Lambda_{\psi_1}(r_{2y}, r_{2y+1}; r_{2y+1}, r_{2y+2})),
\]
where
\[
d(r_{\delta(k)}, r_{\gamma(k)-1}) < \varepsilon, \quad \forall \varepsilon \in \mathbb{N},
\]
\[
\psi(d(r_{\delta(k)}, r_{\gamma(k)})) = \psi(\Lambda_{\psi_1}(r_{\gamma(k)-1}, r_{\delta(k)}; r_{\delta(k)}, r_{\gamma(k)})) - \phi(\Lambda_{\psi_1}(r_{\gamma(k)-1}, r_{\delta(k)}; r_{\delta(k)}, r_{\gamma(k)})),
\]
\[
\Lambda_{\psi_1}(r_{\gamma(k)-1}, r_{\delta(k)}; r_{\delta(k)}, r_{\gamma(k)}) = \psi(d(r_{\gamma(k)-1}, r_{\delta(k)})), d(r_{\gamma(k)-1}, r_{\delta(k)}), d(r_{\delta(k)}, r_{\gamma(k)}),
\]
\[
\frac{d(r_{\gamma(k)-1}, r_{\delta(k)}) + d(r_{\delta(k)}, r_{\gamma(k)}) + d(r_{\gamma(k)-1}, r_{\gamma(k)})}{2}.
\]
Applying limit \(\kappa \to \infty \), we get
\[
\lim_{\kappa \to \infty} \Lambda_{\psi_1}(r_{\gamma(k)-1}, r_{\delta(k)}; r_{\delta(k)}, r_{\gamma(k)}) \leq \varepsilon.
\]
Taking limit of (32) using (33), (29), and lower semi-continuity of \(\phi \), we have
\[
\psi(\varepsilon) \leq \psi(\varepsilon) - \phi(\varepsilon) < \psi(\varepsilon),
\]
which is contradiction; therefore, \(r_y \) is a Cauchy sequence. Now, if \(T_j \) is upper semicontinuous (USC), then as \(r_{2y} \in Q \),
\[
\Lambda_{\psi_1}(r_{2y}, r_{2y+1}; r_{2y+1}, r_{2y+2}) \leq d(r_{2y-1}, r_{2y}).
\]
Therefore,
\[
\psi(d(r_{2y+1}, r_{2y+2})) \leq \psi(d(r_{2y-1}, r_{2y})) - \phi(d(r_{2y-1}, r_{2y})).
\]
Hence, we obtain a sequence \(\{ r_y \} \) in \(Q \) such that for \(r_y \in T_j(r_{y-1}) \), there exist \(r_{y+1} \in T_j(r_y) \) such that \((r_y, r_{y+1}) \in \mathbf{e}^* (G) \), and
\[
\psi(d(r_{y+1}, r_{y+2})) \leq \psi(d(r_{y-1}, r_y)) - \phi(d(r_{y-1}, r_y)).
\]
Let \(d_y = d(r_y, r_{y+1}) \), then the above equation implies that \(d_{y+1} \leq d_y \) for all \(y \geq 1 \). Since \(\{ d_y \} \) is a decreasing positive real sequence, there exists \(\xi \geq 0 \), such that
\[
\lim_{y \to \infty} d_y = \xi.
\]
We shall show that \(\xi = 0 \); by applying limit, we have
\[
\psi(\xi) \leq \psi(\xi) - \phi(\xi) < \psi(\xi),
\]
which is a contradiction; therefore, \(\xi = 0 \) which implies that
\[
\lim_{y \to \infty} d_y = 0.
\]
Now, we want show that \(\{ r_y \} \) is Cauchy. Suppose that \(\{ r_y \} \) is not Cauchy. Then, there exist \(\varepsilon > 0 \) and subsequences \(\{ r_{y(k)} \} \) and \(\{ r_{\delta(k)} \} \) of \(\{ r_y \} \) with \(\gamma(\kappa) > \delta(\kappa) > \kappa \) such that
\[
d(r_{\delta(k)}, r_{\gamma(k)}) \geq \varepsilon, \quad \forall \kappa \in \mathbb{N}.
\]
Moreover, one can choose \(\gamma(\kappa) \) corresponding to \(\delta(\kappa) \) such that it is the smallest possible integer with \(\gamma(\kappa) > \delta(\kappa) \) holding (30); then,
\[
d(r_{\delta(k)}, r_{\gamma(k)-1}, r_{\delta(k)}; r_{\delta(k)}, r_{\gamma(k)}) = \psi(d(r_{\gamma(k)-1}, r_{\delta(k)})), d(r_{\gamma(k)-1}, r_{\delta(k)}), d(r_{\delta(k)}, r_{\gamma(k)}),
\]
\[
\frac{d(r_{\gamma(k)-1}, r_{\delta(k)}) + d(r_{\delta(k)}, r_{\gamma(k)}) + d(r_{\gamma(k)-1}, r_{\gamma(k)})}{2}.
\]
where

\[
\Lambda_{\psi_1}(r_{2y-1}, r^*: r_{2y}, \emptyset) = \psi_1\left(d(r_{2y-1}, r^*), d(r_{2y-1}, r_{2y}), d(r^*, \emptyset), \frac{d(r_{2y}, \emptyset) + d(r, r_{2y}) + d(r, r_{2y}) + d(r_{2y}, \emptyset)}{2}\right).
\]

By applying limit and after simple calculation, we get contradiction; hence, \(\emptyset^* = r^* \). Similarly, taking the liminf gives \(\emptyset^* = r^* \). Since \(\emptyset^* \in T_1(r^*) \) for all \(y \geq 1 \) and \(T_1(r^*) \) is closed set, it follows that \(r^* T_1(r^*) \). Now, from (i), we get \(r^* \in T_1(r^*) \) and hence \(F_\emptyset(T_1) = F_\emptyset(T_2) \).

To prove (iv), assume the set \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) is a clique of \(\tilde{G} \). We have shown that \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) is singleton set. Assume on contrary that there exist \(\emptyset \) and \(v \) such that

\[
\Lambda_{\psi_1}(\emptyset, v; \emptyset, v) = \psi_1\left(d(\emptyset, v), d(\emptyset, \emptyset), d(v, v), \frac{d(r_{2y}, \emptyset) + d(r, r_{2y}) + d(r, r_{2y}) + d(r_{2y}, \emptyset)}{2}\right),
\]

which is a contradiction. Hence, \(\emptyset = v \). Conversely, if \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) is singleton, then it follows \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) is a clique of \(\tilde{G} \).

By the same technique, it is easy to prove the following result. \(\square \)

Theorem 2. Consider a complete \((Q, d)\) metric space endowed with a directed graph \(G \) such that \(\nu(G) = Q \) and \(\nu(G) \geq \Delta \). If mapping \(T_1, T_2 : Q \longrightarrow \text{CL}(Q) \) make a graphic \((\psi, \phi)\) contraction, then the following statement holds:

(i) \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) or \(F_\emptyset(T_2) \cap F_\emptyset(T_2) \) \(F_\emptyset(T_1) \cap F_\emptyset(T_1) \) ;

(ii) \(Q_{\{t_1, t_2\}} \) or \(Q_{\{t_1, t_2\}} \) provided that \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) \(F_\emptyset(T_1) \cap F_\emptyset(T_1) \);

(iii) \(G \) is weakly connected and \(Q_{\{t_1, t_2\}} \) provided that either

(a) \(T_1 \) or \(T_2 \) is upper semicontinuous(USC)

(b) \(G \) has property \((P)\) and either \(T_1 \) or \(T_2 \) is bounded;

(iv) \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) is a clique of \(\tilde{G} \) or \(F_\emptyset(T_1) \cap F_\emptyset(T_2) \) which is singleton.

Now, we give example which satisfying Theorem 1.

Example 1. Let \(Q = \{r_\gamma : (\gamma(\gamma + 1)/2) : \gamma \in N\} = \nu(G) \)

\[
e(G) = \left\{\frac{(r_t, t)}{t} : 2r, \forall r, t \in \nu(G)\right\},
\]

\[
e'(G) = \left\{\frac{(r_t, t)}{t} : 2r, \forall r, t \in \nu(G)\right\}.
\]

Let \(\nu(G) \) be endowed with usual metric space. Let \(T_1, T_2 : Q \times Q \longrightarrow P(Q), \psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+ \), and \(\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+ \) define by

\[
T_1(r) = \{r_2\},
\]

\[
T_2(r) = \begin{cases}
\{r_2\}, & \text{if } r = r_2, \\
\{r_1, r_{2y}\}, & \text{if } r = r_{2y},
\end{cases}
\]

\[
\phi(t) = \begin{cases}
t, & \text{if } r = r_2, \\
t, & \text{if } r = r_{2y},
\end{cases}
\]

\[\psi\left(\frac{d(r_{2y}, \emptyset)}{2} + \frac{d(r, r_{2y})}{2} + \frac{d(r, r_{2y})}{2} + \frac{d(r_{2y}, \emptyset)}{2}\right).
\]

\[
\psi\left(\frac{d(\emptyset, \emptyset)}{2} + \frac{d(r, \emptyset)}{2} + \frac{d(r, \emptyset)}{2} + \frac{d(r, \emptyset)}{2}\right),
\]

For \((\emptyset, \emptyset, \emptyset) \in \emptyset(G) \), we discuss the following cases:

Case 1. If \(r = r_1, t = r_{2y} \) for \(\delta > 2 \), then for \(\emptyset_1 = r_2 \in T_1(r) \), there exist \(\emptyset_2 = r_{2y} \in T_2(t) \) such that

\[
\psi\left(\frac{d(\emptyset_1, \emptyset_2)}{2} + \frac{d(r, \emptyset_{2y})}{2} + \frac{d(r, \emptyset_{2y})}{2} + \frac{d(r_{2y}, \emptyset_2)}{2}\right)
\]

\[
\leq \frac{\delta^2 + \delta - 2}{4}
\]

\[
\leq \psi\left(\frac{\psi_1(r, \emptyset; \emptyset_2)}{2}\right) - \psi\left(\frac{\psi_1(r, \emptyset; \emptyset)}{2}\right).
\]
Case 1.2. If \(r = r_\gamma \) and \(t = r_{\gamma+1} \) for \(\gamma > 1 \), then for
\(\theta_e = r_2 \in T_1(r) \), there exist \(\theta_i = r_{\gamma-1} \in T_2(t) \) such that
\[
\phi(d(\theta_e, \theta_i)) = \frac{d(\theta_e, \theta_i)}{2} = \frac{d(r_{\gamma-1}, r_2)}{2} \]
\[
= \frac{\delta^2 - \delta - 2}{4} \leq \frac{\delta^2 + \delta - 2}{4} \]
\[
\leq \Lambda_{\psi}(r;t; \theta_e, \theta_i) \]
\[
\leq \frac{1}{2} \leq \psi(\Lambda_{\psi}(r;t; \theta_e, \theta_i)) - \phi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)).
\] (42)

Case 1.3. If \(r = r_\delta \) and \(t = r_\delta \) for \(\delta > 1 \), then for
\(\theta_e = r_2 \in T_1(r) \), there exist \(\theta_i = r_{\delta-1} \in T_2(t) \) such that
\[
\phi(d(\theta_e, \theta_i)) = \frac{d(\theta_e, \theta_i)}{2} = \frac{d(r_{\delta-1}, r_2)}{2} \]
\[
= \frac{\gamma^2 - \gamma - 2}{4} \leq \frac{\gamma^2 + \gamma - 2}{4} \]
\[
\leq \Lambda_{\psi}(r,t; \theta_e, \theta_i) \]
\[
\leq \frac{1}{2} \leq \psi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)) - \phi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)).
\] (43)

Now, for \(r, t \in Q, \theta_e \in T_1(r) \), there exist \(\theta_i \in T_1(r) \) such that
\((\theta_e, \theta_i) \in e^e(G) \), we consider the following cases.

Case 1.4. If \(r = r_\gamma \) and \(t = r_1 \) for \(\gamma > 1 \), then for
\(\theta_e = r_{\gamma-1} \in T_2(r) \), there exist \(\theta_i = r_2 \in T_1(t) \) such that
\[
\phi(d(\theta_e, \theta_i)) = \frac{d(\theta_e, \theta_i)}{2} = \frac{d(r_{\gamma-1}, r_2)}{2} \]
\[
= \frac{\gamma^2 - \gamma - 2}{4} \leq \frac{\gamma^2 + \gamma - 2}{4} \]
\[
\leq \Lambda_{\psi}(r,t; \theta_e, \theta_i) \]
\[
\leq \frac{1}{2} \leq \psi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)) - \phi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)).
\] (44)

Case 1.5. If \(r = r_\delta \) and \(t = r_\delta \) for \(\delta > 1 \), then for
\(\theta_e = r_{\delta-1} \in T_2(r) \), there exist \(\theta_i = r_2 \in T_1(t) \) such that
\[
\phi(d(\theta_e, \theta_i)) = \frac{d(\theta_e, \theta_i)}{2} = \frac{d(r_{\delta-1}, r_2)}{2} \]
\[
= \frac{\gamma^2 - \gamma - 2}{4} \leq \frac{\gamma^2 + \gamma - 2}{4} \]
\[
\leq \Lambda_{\psi}(r,t; \theta_e, \theta_i) \]
\[
\leq \frac{1}{2} \leq \psi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)) - \phi(\Lambda_{\psi}(r,t; \theta_e, \theta_i)).
\] (45)

3. Application to Integral Inclusion

Set-valued (SV) F.P results are explored extensively and have interesting application in integral and differential inclusion [16–19]. In this section, we derive sufficient conditions for the solutions of Fredholm-type integral inclusion. Set of all continuous function defined on \([\zeta, \xi]\) is denoted by \(W = C[\zeta, \xi]\). Define \(d: W \times W \to R^*\), by
\[
d(r,t) = \sup_{\xi \in [\zeta, \xi]} |r - t|, \text{ which is a complete metric space on } W.
\]
Assume that the metric is endowed with a graph \(G\). Consider the integral inclusion
\[
r(\xi) \in \phi(\xi) + \int_{\zeta}^\xi K(\xi, \eta, r(\eta))d\eta, \quad \zeta \in [\zeta, \xi],
\] (46)

where \(K: [\zeta, \xi] \times [\zeta, \xi] \times R \to P_{cv}(R)\), where \(P_{cv}(R)\) is the family (collection) of nonempty compact and convex subsets of \(R\). For each \(r \in C([\zeta, \xi], R)\), the operator \(K(.,.,.)\) is lower semicontinuous. Further, the function \(\phi: [\zeta, \xi] \to R\) is continuous.

Define \(T: C([\zeta, \xi], R) \to CL(C([\zeta, \xi], R)\) by,
\[
\text{Tr}(\xi) = \left\{ \theta \in C([\zeta, \xi], R): \theta \in \phi(\xi) + \int_{\zeta}^\xi K(\xi, \eta, r(\eta))d\eta \right\},
\] (47)

for \(r \in C([\zeta, \xi], R)\), and set \(K_r: [\zeta, \xi, r(\eta)] \to P_{cv}(R)\), \(\eta \in [\zeta, \xi]\). Now, for \(K: [\zeta, \xi] \times [\zeta, \xi] \times R \to P_{cv}(R)\), by Michael’s selection theorem, there exist a continuous operator
\(m_r: [\zeta, \xi] \times [\zeta, \xi] \to R\) with \(m_r \in K_r\)
\[
\phi(\xi) + \int_{\zeta}^\xi K(\xi, \eta, r(\eta))d\eta \in \text{Tr}(\xi).
\] (48)

This implies that \(\text{Tr} \# \varnothing\). Therefore, \(\text{Tr}\) is closed [18].

Theorem 3. Assume that the following assumptions holds:

(A1) There exist a continuous function \(G: [\zeta, \xi] \times [\zeta, \xi] \to [0, \infty)\) such that
\[
H(K(\xi, \eta, r), K(\xi, \eta, t)) \leq G(\xi, \eta)\Lambda_{\psi}(r,t; \theta_e, \theta_i),
\] (49)

for each \(\xi, \eta \in [\zeta, \xi]\).

(A2) \(\sup_{\xi \in [\zeta, \xi]} |G(\xi, \eta)| \leq (1/2)\).

(A3) Assume that for every vertex \(r\) in \(G\) and for every
\(\theta_e \in T_i(r), i = 1, 2, \) we have \((\theta_e, \theta_i) \in e^e(G)\).

(A4) If any \(r, t \in Q \) with \((r,t) \in e(G) \) and \(\theta_e \in T_i(r) \), there exists \(\theta_i \in T_j(t) \) for \(i, j = 1, 2 \) and \(i \neq j \) such that
\((\theta_e, \theta_i) \in e^e(G)\).

Then, the integral inclusion (46) has a solution.

Proof. Let \(r, t \in W \) be such that \(t \in T_s \). Then, we have
\(m_r(\xi, \eta) \in K_r(\zeta, \eta)\) for \(\zeta, \eta \in [\zeta, \xi]\) such that
\[
\nu(\xi) = \phi(\xi) + \int_{\zeta}^\xi m_r(\xi, \eta, s(\eta))d\eta.
\]
On other side, hypothesis ensures that there exist \(\nu(\xi, \eta) \in \Lambda_\xi(\zeta, \eta)\) such that
\[
|m_r(\xi, \eta) - \nu(\xi, \eta)| \leq G(\xi, \eta)\Lambda_{\psi}(r,t; \theta_e, \theta_i).
\] (50)

Consider the set valued operator \(S\) defined by
\begin{equation}
S(\zeta, \eta) = \Lambda_r(\zeta, \eta) \cap \left\{ \omega \in \mathbf{R} : |m_r(\zeta, \eta) - \nu(\zeta, \eta)| \leq G(\zeta, \eta) \Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t) \right\}, \tag{51}
\end{equation}

Since the operator \(T \) is lower semicontinuous, there exists \(m_r : [\zeta, \xi] \times [\zeta, \xi] \rightarrow \mathbf{R} \), such that \(m_r(\zeta, r) \in S(\zeta, \eta) \) for each \(\zeta, \eta \in [\zeta, \xi] \); thus,
\begin{equation}
\vartheta_r(\zeta) = \phi(\zeta) + \int_{\zeta}^{\xi} m_r(\zeta, \eta, r(\eta))d\eta \in \phi(\zeta)
+ \int_{\zeta}^{\xi} K(\zeta, \eta, r(\eta))d\eta, \quad \zeta \in [\zeta, \xi]. \tag{52}
\end{equation}

Now, we have
\begin{equation}
d(\vartheta_r(\zeta), \vartheta_t(\xi)) = \sup_{\zeta \in [\zeta, \xi]} |\vartheta_r(\zeta) - \vartheta_t(\xi)|
\leq \sup_{\zeta \in [\zeta, \xi]} \left(\int_{\zeta}^{\xi} |m_r(\zeta, \eta, r(\eta)) - m(\zeta, \eta, t(\eta))|d\eta \right)
\leq \sup_{\zeta \in [\zeta, \xi]} \left(\int_{\zeta}^{\xi} G(\zeta, \eta) \Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t)d\eta \right)
\leq \Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t) \sup_{\zeta \in [\zeta, \xi]} \int_{\zeta}^{\xi} G(\zeta, \eta)d\eta
\leq \frac{\Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t)}{2}, \tag{53}
\end{equation}
and we have
\begin{equation}
\psi(\vartheta_r(\zeta), \vartheta_t(\xi)) \leq \psi(\Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t))
- \phi(\Lambda_{\psi_r}(r, t; \vartheta_r, \vartheta_t)). \tag{54}
\end{equation}

By taking \(\psi(\zeta) = \zeta, \phi(\zeta) = \zeta/2 \). From Theorem 1, the integral inclusion (46) has a solution. \(\square \)

4. Conclusion

Common fixed point results for single-valued mappings are used to solve nonlinear integral, functional, and matrix equations, etc. However, the studies of the set-valued mapping generalize the concept of single valued mappings. Such studies have been applied to prove the existence of solution for integral and differential inclusion and existence of equilibria in game theory. The result of Abbas et al. [12] generalized many results for set-valued mapping related with F-contraction while our results generalized many results related with weak-contraction; for detail, Alber and Guerre-Delabriere [20] established results for single valued mapping and relax contraction condition in form of weak contraction. Then, Doric [21] proved common fixed point for generalized \((\psi, \phi) \)-weak contractions. Dutta and Choudhury [22] generalized the result in metric space. Louang and Thuam [23] and Rhoades [24] also used weak contraction in this line and established fixed point results in metric spaces. Similarly Zhang and Song [25] further explored the results for generalized \(\phi \)-weak contractions. Our results generalized the mention results and many more in this direction for set-valued mapping induced with graph without using Hausdorff metric.

Data Availability

No data were used in the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The author N. Mlaiki would like to thank Prince Sutan University Riyadh, Saudi Arabia for Paying the APC and for the support through the TAS research lab.

References

