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In this manuscript, common ­xed point results for set-valued mapping under generalized (ψ, ϕ)1 and (ψ, ϕ)2 weak contraction
without using Hausdor� metric are studied endowing with a graph. To demonstrate the authenticity of the established result, a
suitable example and application to integral inclusion are also discussed.

1. Introduction

�e basic ­xed point (F.P) result of Banach [1] has set the
basis of metric ­xed point theory (FPT) in a complete metric
space for contraction mappings. Due to their results, FPT of
speci­c single-valued mappings is interesting in its bene­t
owning constructive proofs and applications in industrial
­elds such as physics, computer science, engineering, image
processing, telecommunication, and economics.

�e theory of set-valued mapping has applications in
convex optimization, control theory, economics and dif-
ferential inclusions, and integral inclusion. Di�erential in-
clusions are also used to analyze modeling errors and analyze
robustness to bounded perturbations to model physical
phenomena such as to model di�erential games and Cou-
lomb friction and impact [2, 3]. Following the Banach
contraction principle (BCP), Nadler [4] presented the idea of
set-valued contractions and established that in complete
metric space, a set-valued contraction possesses a F.P.
Consequently, many authors generalized Nadler F.P theo-
rem in various ways.

Connecting FPT and graph theory, Echenique [5] pro-
vided a proof of Tarski ­xed point result by using graphs.
Espinola and Kirk [6] in 2006 applied ­xed point results in
graph theory. Recently, two fundamental results have

appeared for FPT with a graph. �e ­rst result was given by
Jachymski [7] for single-valued mappings and consequently
Beg et al. [8] continued Jachymski result for set-valued
mappings. Subsequently, Beg et al. [8] extended some results
in [9] for set-valued mappings. Recently, Bojor [10] suc-
ceeded Jachymsky idea for Kannan contractions applying a
new postulate called the weak T-connectivity of the graph.
Fallahi and Aghanians formulated Chatterjea contractions
using graphs in metric spaces endowed with a graph and
investigated the existence of F.Ps. Kutbi and Sintunavarat
established F.P analysis for set-valued owith graph approach
by the generalized Hausdor� distance. Abbas and Nazir [11]
got few results for pair of power graphic contraction on a
metric space along with a graph. On metric space along with
a graph, Abbas et al. [12] established the presence of
common F.Ps of set-valued F- contraction mappings. For
more details, see [13, 14].

Let Q≠∅, △ represent the diagonal of Q × Q and G �
(v(G), e(G)) be a directed graph (with no parallel edges).
�e set v(G) denoted vertices coincides with Q, and the set
e(G) is the edges of the graph furthermore △⊆e(G). e∗(G)
denotes the set all edges which is not loops, i.e.,
e∗(G) � e(G) −△. If path exist between any two vertices,
then a graph G is connected. It is weakly connected if G̃ is
connected; here, G̃ is an undirected form of the graph G.
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A clique, C, in an undirected graph G � (v(G), e(G)) is
a subset of the vertices, C⊆v(G), such that every two distinct
vertices are adjacent. %is is equivalent to the condition that
the induced subgraph ofG induced by C is a complete graph.

Jachymski and Jozwik [15] used the property (P) stated
that for any sequence ϑn􏼈 􏼉 in Q; if ϑn⟶ ϑ and
(ϑn, ϑn+1) ∈ e(G), then (ϑn, ϑ) ∈ e(G).

A mapping T: Q⟶ CL(Q) is said to be upper semi-
continuous if for ϑn ∈ Q and ηn ∈ Tϑn with ϑn⟶ ϑ0 and
ηn⟶ η0 implies η0 ∈ Tϑ0.

Assume T1, T2: Q⟶ CL(Q). Set

Q T1 ,T2{ } � r ∈ Q: r, ϑr( 􏼁 ∈ e(G)where ϑr ∈ T1(r)∩T2(r)􏼈 􏼉.

(1)

Definition 1. Consider a metric space (Q, d),
G � (v(G), e(G)) be a graph such that v(G) � Q, and let
T: Q⟶ CL(Q). If (m1, n1) ∈ e(G), (u1, v1) ∈ e(G) for all
u1 ∈ Tm1 and v1 ∈ Tn1, then T is said to be graph-
preserving.

Motivated from above in the present work, we give
common F.P results for generalized (ψ, ϕ)1 and (ψ,ϕ)2 weak
contraction, in metric spaces (endowed with a graph). To
demonstrate the authenticity of our result, we give suitable
example. Also, we discuss application to integral inclusion.

2. Fixed Point Results

In our main work, we used the following three classes:

Ψ �
ψ: R

+⟶ R
+ is non − decreasing, continuousmapping such that

ψ(ς) � 0 if and only if ς � 0

⎧⎨

⎩

⎫⎬

⎭,

Φ � ϕ: R
+⟶ R

+ non − decreasing lim
n⟶∞

ϕ ςn( 􏼁 � 0⇒ lim
n⟶∞

ςn � 0􏼚 􏼛,

Ψ1 �

ψ1: R
5⟶ R

+

(i)ψ1 is continuous and non − decreasing in each coordinate

(ii)ψ1 ς1, ς2, ς3, ς4, ς5( 􏼁 � 0 implies ς1 � ς2 � ς3 � ς4 � ς5 � 0 and

ψ1(ς, ς, ς, ς, ς)≤ ς for ς> 0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(2)

Definition 2. Consider a complete (Q, d) metric space.
Assume T1, T2: Q⟶ CL(Q) be two set valued mapping.
Assume that for each vertex r in G and for each
ϑr ∈ Ti(r), i � 1, 2, we have (r, ϑr) ∈ e(G). A pair (T1, T2) is
said to be

(i) A graphic (ψ,ϕ)1 contraction if for any r, t ∈ Q with
(r, t) ∈ e(G) and ϑr ∈ Ti(r), there exists ϑt ∈ Tj(t)

for i≠ j and i, j � 1, 2 and (ϑr, ϑt) ∈ e∗(G) and

ψ d ϑr, ϑt( 􏼁( ≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑,

(3)

hold where ψ ∈ Ψ, ϕ ∈ Φ and ψ1 ∈ Ψ1 and

Λψ1
r, t; ϑr, ϑt( 􏼁 � ψ1 d(r, t), d r, ϑr( 􏼁, d t, ϑt( 􏼁,

d r, ϑt( 􏼁 + d t, ϑr( 􏼁

2
,
d t, ϑr( 􏼁 + d r, ϑt( 􏼁

2
􏼠 􏼡, (4)

∀ r, t ∈ Q.
(ii) A graphic (ψ,ϕ)2 contraction if any r, t ∈ Q with

(r, t) ∈ e(G) and ϑr ∈ Ti(r), there exists ϑt ∈ Tj(t)

for i, j � 1, 2, i≠ j; furthermore, (ϑr, ϑt) ∈ e∗(G) and

ψ(d(Tr, Tt)≤ψ Λψ2
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ2

r, t; ϑr, ϑt( 􏼁􏼐 􏼑,

(5)

hold where ψ ∈ Ψ, ϕ ∈ Φ, and ψ2 ∈ Ψ1 and

Λψ2
r, t; ϑr, ϑt( 􏼁 � ψ1 α d(r, t) + β d r, ϑr( 􏼁 + c d t, ϑt( 􏼁 + σ1

d r, ϑt( 􏼁 + d t, ϑr( 􏼁

2
+ σ2

d t, ϑr( 􏼁 + d r, ϑt( 􏼁

2
􏼠 􏼡. (6)

∀ r, t ∈ Q and α, β, c, σ1, σ2 ≥ 0 with
α + β + c + σ1 + σ2 + σ3 ≤ 1.

Theorem 1. Consider a complete (Q, d) metric space
endowed with a directed graph G such that v(G) � Q and

2 Journal of Mathematics



e(G)⊇Δ. If mapping T1, T2: Q⟶ CL(Q) form a graphic
(ψ, ϕ)1 contraction, then the following statement holds:

(i) Fx(T1)≠∅ or Fx(T2)≠∅⇔Fx(T1) � Fx(T1)≠∅
(ii) Q T1 ,T2{ }≠∅ provided that Fx(T1)∩Fx(T2)≠∅
(iii) If G is weakly connected and Q T1 ,T2{ }≠∅, then

Fx(T1) � Fx(T2)≠∅ provided that either

(a) T1 or T2 is upper semicontinuous or
(b) G has property (P) and either T1 or T2 is

bounded

(iv) Fx(T1)∩Fx(T2) is a clique of 􏽥G⇔Fx(T1)∩Fx(T2)

which is singleton.

Proof. To prove (i), let r∗ ∈ T1(r∗). Assume r∗ ∉ T2(r∗),
then since (T1, T2) form a graphic (ψ, ϕ)1 contraction, there
exists an r ∈ T2(r) with (r∗, r) ∈ e∗(G) such that

ψ d r
∗
, r( 􏼁( 􏼁≤ψ Λψ1

r
∗
, r
∗
; r
∗
, r( 􏼁􏼐 􏼑 − ϕ Λψ1

r
∗
, r
∗
; r
∗
, r( 􏼁􏼐 􏼑,

(7)

where

Λψ1
r
∗
, r
∗
; r
∗
, r( 􏼁 � ψ1 d r

∗
, r
∗

( 􏼁, d r
∗
, r
∗

( 􏼁, d r
∗
, r( 􏼁,

d r, r
∗

( 􏼁 + d r
∗
, r
∗

( 􏼁

2
,
d r
∗
, r
∗

( 􏼁 + d r
∗
, r( 􏼁

2
􏼠 􏼡

≤ψ1 d r
∗
, r
∗

( 􏼁, d r
∗
, r
∗

( 􏼁, d r
∗
, r( 􏼁, d r

∗
, r( 􏼁, d r

∗
, r( 􏼁( 􏼁.

(8)

Using property (i) of ψ1, we have

Λψ1
r
∗
, r
∗
; r
∗
, r( 􏼁≤d r

∗
, r
∗

( 􏼁, (9)

which is contradiction. Hence, r∗ ∈ T(r∗) and so
Fx(T1)⊆Fx(T2). Similarly, Fx(T2)⊆Fx(T1); therefore,
Fx(T1) � Fx(T2).

To prove (ii), let Fx(T1)∩Fx(T2)≠∅, then there exists
r ∈ Q such that r ∈ T1(r)∩T2(r). As e(G)⊇Δ, we conclude
that QT1 ,T2

≠∅.

To prove (iii), let r0 is an arbitrary point of Q. If
r0 ∈ T1(r0) or r0 ∈ T1(r0), then the proof is completed. So,
we assume that r0 ∉ Ti(r0) for i ∈ 1, 2{ }. Now, for
i, j ∈ 1, 2{ }i≠ j if r1 ∈ Ti(r0), then there exists r2 ∈ Tj(r1)

with (r1, r2) ∈ e∗(G) such that

ψ d r1, r2( 􏼁( 􏼁≤ψ Λψ1
r0, r1;r1,r2( 􏼁􏼐 􏼑 −ϕ Λψ1

r0, r1;r1,r2( 􏼁􏼐 􏼑,

(10)

where,

Λψ1
r0, r1; r1, r2( 􏼁 � ψ1 d r0, r1( 􏼁, d r0, r1( 􏼁, d r1, r2( 􏼁,

d r0, r2( 􏼁 + d r1, r1( 􏼁

2
,
d r1, r1( 􏼁 + d r0, r2( 􏼁

2
􏼠 􏼡,

Λψ1
r0, r1; r1, r2( 􏼁 � ψ1 d r0, r1( 􏼁, d r0, r1( 􏼁, d r1, r2( 􏼁,

d r0, r2( 􏼁 + d r1, r1( 􏼁

2
,
d r0, r2( 􏼁

2
􏼠 􏼡.

(11)

If d(r0, r1)≤d(r1, r2), then by simple calculation, we get

Λψ1
r0, r1; r1, r2( 􏼁≤d r1, r2( 􏼁,

ψ d r1, r2( 􏼁( 􏼁≤ψ d r1, r2( 􏼁( 􏼁 − ϕ d r1, r2( 􏼁( 􏼁,
(12)

which gives contradiction; therefore,

Λψ1
r0, r1; r1, r2( 􏼁 � d r0, r1( 􏼁, (13)

and further we have

ψ d r1, r2( 􏼁( 􏼁≤ψ d r0, r1( 􏼁( 􏼁 − ϕ d r0, r1( 􏼁( 􏼁. (14)

Similarly, for the point r2 ∈ Tj(r1), there exists
r3 ∈ Ti(r1) with (r2, r3) ∈ e∗(G) such that

ψ d r2, r3( 􏼁( 􏼁≤ψ Λψ1
r1, r2; r2, r3( 􏼁􏼐 􏼑 − ϕ Λψ1

r1, r2; r2, r3( 􏼁􏼐 􏼑, (15)

where

Λψ1
r1, r2; r2, r3( 􏼁 � ψ1 d r1, r2( 􏼁, r1( , r2( 􏼁, d r2, r3( 􏼁,

d r1, r3( 􏼁 + d r2, r2( 􏼁

2
,
d r2, r2( 􏼁 + d r1, r3( 􏼁

2
􏼠 􏼡,

Λψ1
r1, r2; r2, r3( 􏼁 � ψ1 d r1, r2( 􏼁, r1( , r2( 􏼁, d r2, r3( 􏼁,

d r1, r3( 􏼁

2
,

d r1, r3( 􏼁

1 + d r1, r2( 􏼁
􏼠 􏼡.

(16)
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If d(r1, r2)≤d(r2, r3), then

Λψ1
r1, r2; r2, r3( 􏼁≤ d r2, r3( 􏼁, (17)

and then

ψ d r2, r3( 􏼁( 􏼁≤ψ d r2, r3( 􏼁( 􏼁 − ϕ d r2, r3( 􏼁( 􏼁, (18)

which gives contradiction; therefore

Λψ1
r1, r2; r2, r3( 􏼁 � d r1, r2( 􏼁,

ψ d r2, r3( 􏼁( 􏼁≤ψ d r1, r2( 􏼁( 􏼁 − ϕ d r1, r2( 􏼁( 􏼁.
(19)

Continuing this way, for r2c ∈ Tj(r2c−1), there exist
r2c+1 ∈ Tj(r2c) such that (r2c,, r2c+1) ∈ e∗(G) such that

ψ d r2c, r2c+1􏼐 􏼑􏼐 􏼑≤ψ Λψ1
r2c−1, r2c; r2c, r2c+1􏼐 􏼑􏼐 􏼑

− ϕ Λψ1
r2c−1, r2c; r2c, r2c+1􏼐 􏼑􏼐 􏼑,

(20)

where

Λψ1
r2c−1, r2c; r2c, r2c+1􏼐 􏼑≤d r2c−1, r2c􏼐 􏼑. (21)

%erefore,

ψ d r2c, r2c+1􏼐 􏼑􏼐 􏼑≤ψ d r2c−1, r2c􏼐 􏼑􏼐 􏼑 − ϕ d r2c−1, r2c􏼐 􏼑􏼐 􏼑. (22)

In similar pattern r for r2c+1 ∈ Tj(r2c), there exist
r2c+2 ∈ Tj(r2c+1) such that (r2c+1,, r2c+2) ∈ e∗(G) such that

ψ d r2c+1, r2c+2􏼐 􏼑􏼐 􏼑≤ψ Λψ1
r2c, r2c+1; r2c+1, r2c+2􏼐 􏼑􏼐 􏼑

− ϕ Λψ1
r2c, r2c+1; r2c+1, r2c+2􏼐 􏼑􏼐 􏼑,

(23)

where

Λψ1
r2c, r2c+1; r2c+1, r2c+2􏼐 􏼑≤ d r2c−1, r2c􏼐 􏼑. (24)

%erefore,

ψ d r2c, r2c+1􏼐 􏼑􏼐 􏼑≤ψ d r2c−1, r2c􏼐 􏼑􏼐 􏼑 − ϕ d r2c−1, r2c􏼐 􏼑􏼐 􏼑. (25)

Hence, we obtain a sequence rc􏽮 􏽯 in Q such that for
rc ∈ Tj(rc−1), there exist rc+1 ∈ Tj(rc) such that
(rc,, rc+1) ∈ e∗(G), and

ψ d rc, rc+1􏼐 􏼑􏼐 􏼑≤ψ d rc−1, rc􏼐 􏼑􏼐 􏼑 − ϕ d rc−1, rc􏼐 􏼑􏼐 􏼑. (26)

Let dc � d(rc, rc+1), then the above equation implies that
dc+1 ≤ dc for all c≥ 1. Since dc􏽮 􏽯 is a decreasing positive real
sequence, there exists ξ ≥ 0, such that

lim
c⟶∞

dc � ξ. (27)

We shall show that ξ � 0; by applying limit, we have

ψ(ξ)≤ψ(ξ) − ϕ(ξ)<ψ(ξ), (28)

which is a contradiction; therefore, ξ � 0 which implies that

lim
c⟶∞

dc � 0. (29)

Now, we want show that rc􏽮 􏽯 is Cauchy. Suppose that
rc􏽮 􏽯 is not Cauchy. %en, there exist ϵ> 0 and subsequences
rc(κ)􏽮 􏽯 and rδ(κ)􏽮 􏽯 of rc􏽮 􏽯 with c(κ)> δ(κ)> κ such that

d rδ(κ), rc(κ)􏼐 􏼑≥ ϵ, ∀κ ∈ N. (30)

Moreover, one can choose c(κ) corresponding to δ(κ)

such that it is the smallest possible integer with c(κ)> δ(κ)

holding (30); then,

d rδ(κ), rc(κ)−1􏼐 􏼑< ϵ, ∀κ ∈ N, (31)

ψ d rδ(κ), rc(κ)􏼐 􏼑􏼐 􏼑≤ψ Λψ1
rc(κ)−1, rδ(κ); rδ(κ), rc(κ)􏼐 􏼑􏼐 􏼑 − ϕ Λψ1

rc(κ)−1, rδ(κ); rδ(κ), rc(κ)􏼐 􏼑􏼐 􏼑,

Λψ1
rc(κ)−1, rδ(κ); rδ(κ), rc(κ)􏼐 􏼑 � ψ1 d rc(κ)−1, rδ(κ)􏼐 􏼑, d rc(κ)−1, rδ(κ)􏼐 􏼑􏼐 􏼑, d rδ(κ), rc(κ)􏼐 􏼑

·
d rc(κ)−1, rc(κ)􏼐 􏼑 + d rδ(κ), rδ(κ)􏼐 􏼑

2
,
d rδ(κ), rδ(κ)􏼐 􏼑 + d rc(κ)−1, rc(κ)􏼐 􏼑

2
⎞⎠.

(32)

Applying limit κ⟶∞, we get

lim
κ⟶∞
Λψ1

rc(κ)−1, rδ(κ); rδ(κ), rc(κ)􏼐 􏼑≤ ϵ. (33)

Taking limit of (32) using (33), (29), and lower semi-
continuity of ϕ, we have

ψ(ϵ)≤ψ(ϵ) − ϕ(ϵ)<ψ(ϵ), (34)

which is contradiction; therefore, rc is a Cauchy sequence.
Now, if Ti is upper semicontinuous (USC), then as r2c ∈ Q,

r2c+1 ∈ Ti(r2c) with s2c⟶ r∗ and r2c+1⟶ r∗ as c⟶∞
which implies that r∗ ∈ Ti(r∗). Using (i), we get
r∗ ∈ Ti(r∗) � Tj(r∗). Similarly, the result holds when Tj is
upper semicontinuous (USC).

Assume that F is continuous. Since s2c converges to r∗ as
c⟶∞ and (r2c, r2c+1) ∈ e(G), we have (r2c, r∗) ∈ e∗(G).
For r2c ∈ Tj(r2c−1), there exists ϑc ∈ Ti(r∗) such that
(r2c, ϑc) ∈ e∗(G). As rc􏽮 􏽯 is bounded, limsupc⟶∞ϑc � ϑ∗
and liminfc⟶∞ϑc � ϑ∗, both exist. Assume that ϑ∗ ≠ r∗.
Since (T1, T2) form a graphic F1− contraction,
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ψ d r2n, r3( 􏼁( 􏼁≤ψ Λψ1
r2c−1, r

∗
; r2c, ϑc􏼐 􏼑􏼐 􏼑 − ϕ Λψ1

r2c−1, r
∗
; r2c, ϑc􏼐 􏼑􏼐 􏼑, (35)

where

Λψ1
r2c−1, r

∗
; r2c, ϑc􏼐 􏼑 � ψ1 d r2c−1, r

∗
􏼐 􏼑, d r2c−1, r2c􏼐 􏼑, d r

∗
, ϑc􏼐 􏼑,

d r2c, ϑc􏼐 􏼑 + d r2, r2( 􏼁

2
,
d r2, r2( 􏼁 + d r2c, ϑc􏼐 􏼑

2
⎛⎝ ⎞⎠. (36)

By applying limit and after simple calculation, we get
contradiction; hence, ϑ∗ � r∗. Similarly, taking the liminf
gives ϑ∗ � r∗. Since ϑc ∈ Ti(r∗) for all c≥ 1 and Ti(r∗) is
closed set, it follows that r∗Ti(r∗). Now, from (i), we get
r∗ ∈ Ti(r∗) and hence Fx(T1) � Fx(T2).

To prove (iv), assume the set Fx(T1)∩Fx(T2) is a clique
of 􏽥G. We have shown that Fx(T1)∩Fx(T2) is singleton set.
Assume on contrary that there exist ϑ and v such that

ϑ, v ∈ Fx(T1)∩Fx(T2) but ϑ≠ v. As (ϑ, v) ∈ e∗(G) and T1
and T2 form a graphic F1− contraction, so for
(ϑs, ϑt) ∈ e∗(G) which implies

ψ(d(ϑ, v))≤ψ Λψ1
(ϑ, v; ϑ, v)􏼐 􏼑 − ϕ Λψ1

(ϑ, v; ϑ, v)􏼐 􏼑, (37)

where

Λψ1
(ϑ, v; ϑ, v) � ψ1 d(ϑ, v), d(ϑ, ϑ), d(v, v),

d r2c, ϑc􏼐 􏼑 + d r2, r2( 􏼁

2
,
d r2, r2( 􏼁 + d r2c, ϑc􏼐 􏼑

2
⎛⎝ ⎞⎠, (38)

which is a contradiction. Hence, ϑ � v. Conversely, if
Fx(T1)∩Fx(T2) is singleton, then it follows
Fx(T1)∩Fx(T2) is a clique of 􏽥G.

By the same technique, it is essay to prove the following
result. □

Theorem 2. Consider a complete (Q, d) metric space
endowed with a directed graph G such that v(G) � Q and
e(G)⊇Δ. If mapping T1, T2: Q⟶ CL(Q) make a graphic
(ψ, ϕ)2 contraction, then the following statement holds:

(i) Fx(T1)≠∅ or Fx(T2)≠∅⇔Fx(T1) � Fx(T1)≠∅;
(ii) Q T1 ,T2{ }≠∅ provided that Fx(T1)∩Fx(T2)≠∅;
(iii) G is weakly connected and Q T1 ,T2{ }≠∅, then

Fx(T1) � Fx(T2)≠∅ provided that either

(a) T1 or T2 is upper semicontinuous(USC) or
(b) G has property (P) and either T1 or T2 is

bounded;

(iv) Fx(T1)∩Fx(T2) is a clique of 􏽥G⇔Fx(T1)∩Fx(T2)

which is singleton.

Now, we give example which satisfying ;eorem 1.

Example 1. Let Q � rc � (c(c + 1)/2): c ∈ N􏽮 􏽯 � v(G)

e(G) �
(r, t)

t
� 2r,∀r, t ∈ v(G)􏼨 􏼩,

e∗(G) �
(r, t)

t
≠ 2r,∀r, t ∈ v(G)􏼨 􏼩.

(39)

Let v(G) be endowed with usual metric space. Let
T1, T2: Q × Q⟶ P(Q), ϕ: R+⟶ R+, and ψ: R+⟶ R+

define by

T1(r) � r2􏼈 􏼉,

T2(r) �

r2􏼈 􏼉, if r � r2,

r1, rc􏽮 􏽯, if r � rc,

⎧⎪⎨

⎪⎩

ϕ(t) �
t

4
,

ψ(t) �
t

2
,

ψ1 ς1, ς2, ς3, ς4, ς5( 􏼁 � max ς1, ς2, ς3, ς4, ς5􏼈 􏼉.

(40)

For (ϑr, ϑt) ∈ e(G), we discuss the following cases:

Case 1.1. If r � r1, t � rδ for δ > 2, then for
ϑr � r2 ∈ T1(r), there exist ϑt � rδ−1 ∈ T2(t) such that

ψ d ϑr, ϑt( 􏼁( 􏼁 �
d ϑr, ϑt( 􏼁

2
�

d r2, rδ−1( 􏼁

2

�
δ2 − δ − 2

4
≤
δ2 + δ − 2

4

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2

≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(41)
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Case 1.2. If r � rc and t � rc+1 for c> 1, then for
ϑr � r2 ∈ T1(r), there exist ϑt � rc−1 ∈ T2(t) such that

ψ d ϑs, ϑt( 􏼁( 􏼁 �
d ϑr, ϑt( 􏼁

2
�

d r2, rc−1􏼐 􏼑

2

�
δ2 − δ − 2

4
≤
δ2 + δ − 2

4

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2

≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(42)

Case 1.3. If r � rc and t � rδ for δ > c> 1, then for
ϑr � r2 ∈ T1(r), there exist ϑt � rc−1 ∈ T2(t) such that

ψ d ϑr, ϑt( 􏼁( 􏼁 �
d ϑr, ϑt( 􏼁

2
�

d r2, rc−1􏼐 􏼑

2

�
c
2

− c − 2
4
≤

c
2

+ c − 2
4

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2

≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(43)

Now, for r, t ∈ Q, ϑr ∈ T2(r), there exist ϑt ∈ T1(r)

such that (ϑr, ϑt) ∈ e∗(G), we consider the following
cases.
Case 1.4. If r � rc and t � r1 for c> 1, then for
ϑr � rc−1 ∈ T2(r), there exist ϑt � r2 ∈ T1(t) such that

ψ d ϑr, ϑt( 􏼁( 􏼁 �
d ϑr, ϑt( 􏼁

2
�

d rc−1, r2􏼐 􏼑

2

�
c
2

− c − 2
4
≤

c
2

+ c − 2
4

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2

≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(44)

Case 1.5. If r � rc and t � rδ for δ > c> 1, then for
ϑr � rc−1 ∈ T2(r), there exist ϑt � r2 ∈ T1(t) such that

ψ d ϑr, ϑt( 􏼁( 􏼁 �
d ϑr, ϑt( 􏼁

2
�

d rc−1, r2􏼐 􏼑

2

�
c
2

− c − 2
4
≤

c
2

+ c − 2
4

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2

≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑 − ϕ Λψ1

r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(45)

3. Application to Integral Inclusion

Set-valued (SV) F.P results are explored extensively and have
interesting application in integral and differential inclusion
[16–19]. In this section, we derive sufficient conditions for
the solutions of Fredholm-type integral inclusion. Set of all
continuous function defined on [ς, ξ] is denoted by
W � C[ς, ξ]. Define d: W × W⟶ R+, by
d(r, t) � supt∈[ς,ξ]|r − t|, which is a complete metric space on
W. Assume that the metric is endowed with a graph G.
Consider the integral inclusion

r(ζ) ∈ ϕ(ζ) + 􏽚
ξ

ς
K(ζ , η, r(η))dη, ζ ∈ [ς, ξ], (46)

where K: [ς, ξ] × [ς, ξ] × R⟶ Pcv(R), where Pcv(R) is the
family (collection) of nonempty compact and convex subsets
of R. For each r ∈ C([ς, ξ],R), the operator K(., .r) is lower
semicontinuous. Further, the function ϕ: [ς, ξ]⟶ R is
continuous.

Define T: C([ς, ξ],R)⟶ CL(C[ς, ξ],R) by,

Tr(ζ) � ϑ ∈ C([ς, ξ],R): ϑ ∈ ϕ(ζ) + 􏽚
ξ

ς
K(ζ , η, r(η))dη􏼨 􏼩,

(47)

r ∈ C([ς, ξ],R), and set Kr: K(ζ , η, r(η)), ζ, η ∈ [ς, ξ]. Now,
for K: [ς, ξ] × [ς, ξ] × R⟶ Pcv(R), by Michael’s selection
theorem, there exist a continuous operator
ms: [ς, ξ] × [ς, ξ]⟶ R with mr ∈ Kr

ϕ(ζ) + 􏽚
ξ

ς
K(ζ , η, r(η))dη ∈ Tr(ζ). (48)

%is implies that Tr≠∅. %erefore, Tr is closed [18].

Theorem 3. Assume that the following assumptions holds:

(A1) ;ere exist a continuous function
G: [ς, ξ] × [ς, ξ]⟶ [0,∞) such that

H(K(ζ , η, r), K(ζ , η, t))≤G(ζ , η)Λψ1
r, t; ϑr, ϑt( 􏼁, (49)

for each ζ, η ∈ [ς, ξ].
(A2) supζ∈[ς,ξ] 􏽒

ξ
ς |G(ζ , η)|≤ (1/2).

(A3) Assume that for every vertex r in G and for every
ϑr ∈ Ti(r), i � 1, 2, we have (r, ϑr) ∈ e(G).
(A4) If any r, t ∈ Q with (r, t) ∈ e(G) and ϑr ∈ Ti(r),
there exists ϑt ∈ Tj(t) for i, j � 1, 2 and i≠ j such that
(ϑr, ϑt) ∈ e∗(G).

;en, the integral inclusion (46) has a solution.

Proof. Let r, t ∈W be such that t ∈ Ts. %en, we have
mr(ζ, η) ∈ Kr(ζ, η) for ζ, η ∈ [ς, ξ] such that
u(ζ) � ϕ(ζ) + 􏽒

ξ
ς mr(ζ, η, s(η))dη. On other side, hypothesis

ensures that there exist v(ζ, η) ∈ Λt(ζ, η) such that

mr(ζ, η) − v(ζ , η)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤G(ζ , η)Λψ1
r, t; ϑr, ϑt( 􏼁. (50)

Consider the set valued operator S defined by
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S(ζ , η) � Λt(ζ, η)∩ w ∈ R: mr(ζ, η) − v(ζ , η)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮

≤G(ζ , η)Λψ1
r, t; ϑr, ϑt( 􏽯.

(51)

Since the operator T is lower semicontinuous, there
exists mt: [ς, ξ] × [ς, ξ]⟶ R such that mt(ζ, r) ∈ S(ζ, η)

for each ζ, η ∈ [ς, ξ]; thus,

ϑr(ζ) � ϕ(ζ) + 􏽚
ξ

ς
mr(ζ, η, r(η))dη ∈ ϕ(ζ)

+ 􏽚
ξ

ς
K(ζ , η, r(η))dη, ζ ∈ [ς, ξ].

(52)

Now, we have

d ϑr(ζ), ϑt(ζ)( 􏼁 � supζ∈[ς,ξ] ϑr(ζ) − ϑt(ζ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ sup
ζ∈[ς,ξ]

􏽚
ξ

ς
mr(ζ, η, r(η)) − m(ζ , η, t(η))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη􏼠 􏼡

≤ sup
ζ∈[ς,ξ]

􏽚
ξ

ς
G(ζ , η)Λψ1

r, t; ϑr, ϑt( 􏼁dη􏼠

≤Λψ1
r, t; ϑr, ϑt( 􏼁 sup

ζ∈[ς,ξ]

􏽚
ξ

ς
G(ζ , η)dη

≤
Λψ1

r, t; ϑr, ϑt( 􏼁

2
,

(53)

and we have

ψ d ϑr(ζ), ϑt(ζ)( 􏼁( 􏼁≤ψ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑

− ϕ Λψ1
r, t; ϑr, ϑt( 􏼁􏼐 􏼑.

(54)

By taking ψ(ζ) � ζ, ϕ(ζ) � (ζ/2). From %eorem 1, the
integral inclusion (46) has a solution. □

4. Conclusion

Common fixed point results for single-valued mappings are
used to solve nonlinear integral, functional, and matrix
equations, etc. However, the studies of the set-valued
mapping generalize the concept of single valued mappings.
Such studies have been applied to prove the existence of
solution for integral and differential inclusion and existence
of equilibria in game theory. %e result of Abbas et al. [12]
generalized many results for set-valued mapping related
with F-contraction while our results generalized many re-
sults related with weak-contraction; for detail, Alber and
Guerre-Delabriere [20] established results for single valued
mapping and relax contraction condition in form of weak
contraction. %en, Doric [21] proved common fixed point
for generalized (ψ,ϕ)-weak contractions. Dutta and
Choudhury [22] generalized the result in metric space.
Loung and %uan [23] and Rhoades [24] also used weak
contraction in this line and established fixed point results in
metric spaces. Similarly Zhang and Song [25] further ex-
plored the results for generalized ϕ-weak contractions. Our

results generalized the mention results and many more in
this direction for set-valued mapping induced with graph
without using Hausdorff metric.
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for set valued mappings on a metric space with a graph,”
Computers & Mathematics with Applications, vol. 60, no. 5,
pp. 1214–1219, 2010.

[9] M. A. Kutbi and W. Sintunavarat, “Fixed point analysis for
multi-valued operators with graph approach by the gener-
alized Hausdorff distance,” Fixed Point ;eory and Applica-
tions, vol. 2014, no. 1, p. 142, 2014.

[10] F. Bojor, “Fixed points of Kannan mappings in metric spaces
endowed with a graph,” Analele Universitatii “Ovidius”
Constanta-Seria Matematica, vol. 20, no. 1, pp. 31–40, 2012.

[11] M. Abbas and T. Nazir, “Common fixed point of a power
graphic contraction pair in partial metric spaces endowed
with a graph,” Fixed Point ;eory and Applications, vol. 20,
p. 8, 2013.

[12] M. Abbas, M. R. Alfuraidan, M. R. Alfuraidan, and T. Nazir,
“Common fixed points of multivalued F-contractions on
metric spaces with a directed graph,” Carpathian Journal of
Mathematics, vol. 32, no. 1, pp. 1–12, 2016.

[13] M. R. Alfuraidan, “Remarks on Caristi’s fixed point theorem
in metric spaces with a graph,” Fixed Point ;eory and Ap-
plications, vol. 240, 2014.

Journal of Mathematics 7



[14] J. Tiammee and S. Suantai, “Coincidence point theorems for
graph-preserving multi-valuedmappings,” Fixed Point;eory
and Applications, vol. 70, 2014.

[15] J. Jachymski and I. Jozwik, “Nonlnear contractive conditions:
a comparison and related problems,” Banach Center Publi-
cations, vol. 77, pp. 123–146, 2007.

[16] S. Abdullah Al-Mezel and J. Ahmad, “Generalized fixed-point
results for almost (α, Fσ)-contractions with applications to
Fredholm integral inclusions,” Symmetry, vol. 11, no. 9, 2019.

[17] H. H. Al-Sulami Jamshaid Ahmad, N. Hussain, and A. Latif,
“Solutions to fredholm integral inclusions via generalized
fuzzy contractions,” Mathematics, vol. 7, no. 9, 2019.

[18] A. Sintam Arian, “Integral inclusions of Fredholm type rel-
ative to multivalued ϕ contractions,” Fixed Point ;eory,
vol. 3, pp. 361–368, 2002.

[19] M. Usman, A. T. Kamran, and M. Postolachec, “Solution of
Volterra integral inclusion in b-metric spaces via new fixed
point theorem,” Nonlinear Analysis: Modelling and Control,
vol. 22, no. 1, pp. 17–30, 2017.

[20] Y. I. Alber and S. Guerre-Delabriere, “Principles of weakly
contractive maps in Hilbert spaces, new results in operator
theory,” New Results in Operator ;eory and its Applications,
vol. 98, pp. 7–22, 1997.

[21] D. Doric, “Common fixed point for generalized (ψ, ϕ)-weak
contractions,” Applied Mathematics Letters, vol. 22,
pp. 1896–1900, 2009.

[22] P. N. Dutta and B. S. Choudhury, “A generalization of
contractive principle in metric space,” Fixed Point ;eory and
Applications, vol. 2008, pp. 1–8, 2010.

[23] N. V. Loung and N. X. %uan, “A fixed point theorem for
weakly contractive mapping in metric spaces,” International
Journal of Math Analysis, vol. 4, pp. 233–242, 2010.

[24] B. E. Rhoades, “Some theorems on weakly contractive maps,”
Nonlinear Analysis: ;eory, Methods & Applications, vol. 47,
no. 4, pp. 2683–2693, 2001.

[25] Q. Zhang and Y. Song, “Fixed point theory for generalized
ϕ-weak contractions,” Applied Mathematics Letters, vol. 22,
pp. 75–78, 2009.

8 Journal of Mathematics


