
Research Article
Nonexpansive Mappings on New Premodular Special
Space of Sequences

Awad A. Bakery 1,2 and OM Kalthum S. K. Mohamed 1,3

1University of Jeddah, College of Science and Arts at Khulis, Department of Mathematics, Jeddah, Saudi Arabia
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt
3Academy of Engineering and Medical Sciences, Department of Mathematics, Khartoum, Sudan

Correspondence should be addressed to OM Kalthum S. K. Mohamed; om_kalsoom2020@yahoo.com

Received 13 November 2021; Accepted 15 December 2021; Published 4 January 2022

Academic Editor: Sun Young Cho

Copyright © 2022 Awad A. Bakery and OMKalthum S. K. Mohamed.-is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

For different premodular, which is a generalization of modular, defined by weighted Orlicz sequence space and its prequasi
operator ideal, we have examined the existence of a fixed point for both Kannan contraction and nonexpansive mappings acting
on these spaces. Some numerous numerical experiments and practical applications are presented to support our results.

1. Introduction

-e spaces of all, bounded, r-absolutely summable, and null
sequences of real numbers will be denoted throughout the
article by RZ+

, l∞, lr, and c0, respectively, where Z
+ is the

set of nonnegative integers.

Definition 1. [1, 2] An Orlicz function is a function
M: [0,∞)⟶ [0,∞), which is continuous and strictly in-
creasing with M(0) � 0, M(v)> 0 for v> 0, and
M(v)⟶∞, as v⟶∞.

Definition 2. An Orlicz function M is said to satisfy
Δ2-condition for every values of v≥ 0, if there is k> 0, such
that M(2v)≤ kM(v). *e Δ2-condition is equivalent to
M(lv)≤ klM(v) for every values of l> 1 and v.

Lindentrauss and Tzafriri [3] utilized the idea of a convex
Orlicz function to define Orlicz sequence space:

lM � v ∈ RZ+

: ρ(ωv)<∞for someω> 0􏽮 􏽯,where ρ(v)

� 􏽘
∞

y�0
M vy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.
(1)

(lM, ‖.‖) is a Banach space with the Luxemburg norm:

‖v‖ � inf ω> 0: ρ
v

ω
􏼒 􏼓≤ 1􏼚 􏼛. (2)

Every Orlicz sequence space contains a subspace that is
isomorphic to c0 or lr, for some 1≤ r<∞ ([4], -eorem
4.a.9). -e space of all bounded linear operators from a
Banach space X into a Banach space Y will be denoted by
B(X,Y) and if X � Y, we write B(X).
ex � 0, 0, . . . , 1, 0, 0, . . .{ }, while 1 lies in the xth place, with
x ∈ Z+.

Definition 3. [5] An s-number function is a mapping from
B(X,Y) into [0,∞)Z

+

which transforms every map
H ∈B(X,Y) to (sx(H))∞x�0 satisfying the next conditions:

(i) ‖H‖ � s0(H)≥ s1(H)≥ s2(H)≥ · · · ≥ 0, for every
H ∈B(X,Y),

(ii) sy+x− 1(H1 + H2)≤ sy(H1) + sx(H2), for every
H1, H2 ∈B(X,Y), and y, x ∈ Z+,

(iii) ideal property: sx(UTH) ≤ ‖U‖sx(T)‖H‖, for every
H ∈B(X0,X), T ∈B(X,Y) and U ∈B(Y,Y0),
where X0 and Y0 are any two Banach spaces,
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(iv) for H ∈B(X,Y) and ω ∈ R, we have
sx(ωH) � |ω|sx(H),

(v) rank property: If rank(H)≤x, then sx(H) � 0, for
all H ∈B(X,Y),

(vi) norming property: sl≥x(Ix) � 0 or sl<x(Ix) � 1,
where Ix explains the unit map on the x-dimensional
Hilbert space lx

2 .

-e xth approximation number, αx(W), is defined as

αx(H) � inf ‖H − Y‖: Y ∈B(X,Y) and rank(Y)≤x{ }.

(3)

Notations 1. -e sets SW, SW(X,Y), SappW , and S
app
W (X,Y) (cf.

[6]) are defined as follows:

SW ≔ SW(X,Y)􏼈 􏼉,where SW(X,Y)

≔ H ∈B(X,Y): sx(H)( 􏼁
∞
x�0 ∈W(􏼈 􏼉.Also

S
app
W ≔ S

app
W (X,Y)􏼈 􏼉,where S

app
W (X,Y)

≔ H ∈B(X,Y): αx(H)( 􏼁
∞
x�0 ∈W(􏼈 􏼉.

(4)

Fixed point theory, Banach space geometry, normal
series theory, ideal transformations, and approximation
theory are all examples of ideal operator theorems and
summability. Faried and Bakery [6] established the concept
of a prequasi operator ideal that encapsulates the quasi
operator ideal. Bakery and Abou Elmatty investigated the
sufficient (but not necessary) conditions on l(c, r) that
allowed Sl(c,r) to build a simple Banach prequasi operator
ideal in [7]. For varied weights and powers, the prequasi
operator ideal S

app
l(c,r) was once rigorously contained and

small prequasi operator ideal. Several mathematicians were
able to investigate many extensions for contraction maps
defined on the space or on the space itself thanks to the
Banach fixed point theorem [8]. Kannan [9] investigated an
example of a class of operators that perform the same fixed
point actions as contractions but are not continuous.
Kannan operators in modular vector spaces have only been
described by Ghoncheh [10]. He demonstrated the existence
of a Kannan mapping fixed point in complete modular
spaces with Fatou property. For more details on Kannan’s
fixed point theorems and modular vector spaces (see
[11–14]). Bakery and Mohamed [15] introduced the concept
of the prequasi norm on l((ra)) with variable exponent in
(0, 1]. -ey looked at the Fatou property of different pre-
quasi norms on l((ra)), as well as the sufficient requirements
on l((ra)) with the definite prequasi norm to construct
prequasi Banach and closed space. -ey also demonstrated
the existence of a fixed point of Kannan prequasi norm
contraction maps on l((ra)) and the prequasi Banach op-
erator ideal constructed by l((ra)) and s-numbers. Recently,
Reich and Zaslavski [16] showed the existence of a unique
fixed point for nonlinear contractive self-mappings of a
nonbounded closed subset of a Banach space.-ey extended
this conclusion to contractive mappings, which map into a
Banach space a closed subset of the space. For nonexpansive

mappings defined by an intersection of a finite number of
closed bounded and convex nonempty subsets in Banach
spaces, Dehici and Redjel [17] obtained certain fixed point
results. According to Bendahmane and Bendoukha [18], a
(p, q)-metric space is a generalization of the metric and
S-metric spaces. -ey equipped them a Hausdorff topology
and specified several fundamental features. Several well-
known findings from fixed point theory are generalized to
these new spaces. -e paper is structured as follows: we
present conditions on the weighted Orlicz sequence space
(lM(λ))μ, under definite prequasi norm of μ to construct
prequasi Banach and closed sequence space in Section 3.-e
Fatou property of lM(λ) has been investigated for various
prequasi norms. In Section 4, the existence of fixed point for
Kannan μ-contraction mapping acting on (lM(λ))μ
equipped with different prequasi norms are presented.
Several numerical experiments are shown to demonstrate
our results. In Section 5, the conditions for which the space
(lM(λ))μ satisfies the property (R) and has the μ-normal
structure property are presented. -e existence of a fixed
point of Kannan prequasi norm nonexpansive mapping on
(lM(λ))μ has been given. In Section 6, we explain the ex-
istence of a fixed point of Kannan prequasi norm contraction
mapping in the prequasi Banach operator ideal S(lM(λ))μ

. In
Section 7, we give some applications to the existence of
solutions of summable equations.

2. Definitions and Preliminaries

Here and after, the space of all functions μ: Y⟶ [0,∞) is
[0,∞)Y, θ is the zero vector of Y, [x/2] is the integral part of
x/2, F is the space of finite sequences, and B is the class of
each bounded linear mapping between any two Banach
spaces. Nakano [19] introduced the concept of modular
vector spaces.

Definition 4. Let Y be a vector space. A function μ ∈ [0,∞]Y

is called modular if the following conditions hold:

(i) If β ∈ Y, β � θ⇔ μ(β) � 0 and μ(β)≥ 0,
(ii) if β ∈ Y and |ω| � 1, then μ(ωβ) � μ(β),
(iii) assume β, η ∈ Y and ω ∈ [0, 1], then

μ(ωβ + (1 − ω)η)≤ μ(β) + μ(η).

-e concept of premodular vector spaces, which is more
general than modular vector spaces.

Definition 5. [6]-e linear space of sequences Y is said to be
a special space of sequences (sss), if:

(1) ex􏼈 􏼉x∈Z+ ⊆Y,
(2) Y is solid, i.e., for β � (βx) ∈ RZ+

, η � (ηx) ∈ Y and
|βx|≤ |ηx|, for all x ∈Z+, then β ∈ Y,

(3) If (βx)∞x�0 ∈ Y, then (β[x/2])
∞
x�0 ∈ Y.

Definition 6. [6] A subclass Yμ of Y is called a premodular
(sss), if we have μ ∈ [0,∞)Y that satisfies the following
conditions:
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(i) When β ∈ Y, β � θ⇔μ(β) � 0,
(ii) For every β ∈ Y and ω ∈ R, then there is B≥ 1 with

μ(ωβ)≤B|ω|μ(β),
(iii) μ(β + η)≤ J(μ(β) + μ(η)), for all β, η ∈ Y, holds for

some J≥ 1,
(iv) If x ∈Z+ and |βx|≤ |ηx|, then μ((βx))≤ μ((ηx)),
(v) For some J0 ≥ 1, we have

μ((βx))≤ μ((β[x/2]))≤ J0μ((βx)),
(vi) F � Yμ,
(vii) *ere exists ς> 0 such that

μ(ω, 0, 0, 0, . . .)≥ ς|ω|μ(1, 0, 0, 0, . . .), for all ω ∈ R.

Example 1. *e function μ(β) � (􏽐x∈Z+

���
|βx|5

􏽰
)5 is a pre-

modular (not a modular) on the vector space l1/5. As for every
β, η ∈ l1/5, one has

μ
β + η
2

􏼠 􏼡 � 􏽘
x ∈Z+

�������
βx + ηx

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

5

􏽳

⎛⎝ ⎞⎠

5

≤ 8(μ(β) + μ(η)). (5)

Definition 7. [15] Suppose Y is a (sss). -e function
μ ∈ [0,∞)Y is said to be prequasi norm on Y, if it holds the
settings (i), (ii), and (iii) of Definition 6.

Theorem 1. [15] Let Y be a premodular (sss), then it is
prequasi normed (sss).

Theorem 2. [15] Y is a prequasi normed (sss), when it is
quasi-normed (sss).

Definition 8. [20]

(i) *e prequasi norm μ on Xμ is said to be μ-convex,
when μ(ωβ + (1 − ω)η)≤ωμ(β) + (1 − ω)μ(η), for
all ω ∈ [0, 1] and β, η ∈ Xμ.

(ii) βx􏼈 􏼉x∈Z+⊆(X)μ is μ-convergent to β ∈ (X)μ, if and
only if, limx⟶∞ μ(βx − β) � 0. If the μ-limit exists,
hence it is unique.

(iii) βx􏼈 􏼉x∈Z+⊆(X)μ is μ-Cauchy, if limx,h⟶∞
μ(βx − βh) � 0.

(iv) Φ ⊂ (X)μ is μ-closed, if for every μ-converging
βx􏼈 􏼉x∈Z+ ⊂ Φ to β, then β ∈ Φ.

(v) Φ ⊂ (X)μ is μ-bounded, if
υμ(Φ) � sup μ(β − η): β, η ∈ Φ􏼈 􏼉<∞.

(vi) *e μ-ball of radius r≥ 0 and center β, for every
β ∈ (X)μ, is defined as

Bμ(β, r) � η ∈ (X)μ: μ(β − η)≤ r􏽮 􏽯. (6)

(vii) A prequasi norm μ on X satisfies the Fatou property,
if for every sequence ηx􏼈 􏼉⊆(X)μ with
limx⟶∞ μ(ηx − η) � 0 and any β ∈ (X)μ, we have
μ(β − η)≤ supminfx≥m μ(β − ηx).

Recall that the μ-balls are μ-closed under the Fatou
property.

Definition 9. [21] A subclass G of B is called an operator
ideal, if every vector G(X,Y) � G∩B(X,Y) holds the
following conditions:

(i) Ic ∈ G, where c indicates Banach space of one
dimension.

(ii) *e space G(X,Y) is linear over R.
(iii) If H ∈B(X0,X), T ∈ G(X,Y), and

V ∈B(Y,Y0), then VTH ∈ G(X0,Y0), where X0
and Y0 are normed spaces.

Recall that the quasi operator ideals are a special case of
the prequasi operator ideals.

Definition 10. [6] A function Υ ∈ [0,∞)G is said to be a
prequasi norm on the ideal G if the following conditions
verify:

(1) Suppose H ∈ G(X,Y), Υ(H)≥ 0 and Υ(H) � 0, if
and only if, H � 0,

(2) there exists D≥ 1 such that Υ(ωH)≤D|ω|Υ(H), for
every H ∈ G(X,Y) and ω ∈ R,

(3) we have J≥ 1 so that
Υ(H1 + H2)≤ J[Υ(H1) + Υ(H2)], for all
H1, H2 ∈ G(X,Y),

(4) we get ω≥ 1 so that if H ∈B(X0,X), T ∈ G(X,Y),
and V ∈B(Y,Y0), then Υ(VTH) ≤ω‖V‖Υ(T)‖H‖.

Theorem 3. [15] *e function Υ(H) � μ(sx(H))∞x�0 is a
prequasi norm on SYμ

, when Yμ is a premodular (sss).

Theorem 4. [6] If Υ is a quasi norm on the idealG, then Υ is
a prequasi norm on the ideal G.

Lemma 1. [22, 23] Assume M: (0,∞)⟶ [0,∞) is a
continuous function and strictly increasing with
limx⟶0 M(x) � 0, and if the functions M(x) and
ln(M(ex)) are convex on [0,∞), then

M
− 1

􏽘

∞

x�0
λxM βx + ηx( 􏼁⎛⎝ ⎞⎠≤M

− 1
􏽘

∞

x�0
λxM βx( 􏼁⎛⎝ ⎞⎠

+ M
− 1

􏽘

∞

x�0
λxM ηx( 􏼁⎛⎝ ⎞⎠.

(7)

λx, βx, ηx ∈ [0,∞), for all x ∈Z+ and 􏽐
∞
x�0 λx � 1.

3. Main Results

3.1. Properties of Different Prequasi Norms. In this section,
we have studied some topological structures and the Fatou
property of the weighted Orlicz sequence space, lM(λ), for
various prequasi norms.

Lemma 2. If M is a concave Orlicz function, then
M(x + y)≤M(x) + M(y), for all x, y ∈ [0,∞).

Proof. It is easy so omitted. □
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Theorem 5. (lM(λ))μ, where μ(β) � 􏽐
∞
y�0 λyM(|βy|), for

each β ∈ lM(λ), is a premodular (sss), ifM is a concave Orlicz
function or convex Orlicz function satisfying Δ2-condition.

Proof. Suppose M is a convex Orlicz function satisfying
Δ2-condition. First, we must demonstrate that lM(λ) is a
(sss):

(1)

(i) Let β, t ∈ lM(λ). AsM is a strictly increasing and
convex function satisfying Δ2-condition, we get

μ(β + η) � 􏽘
∞

y�0
λyM βy + ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤
k

2
􏽘

∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘
∞

y�0
λyM ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦

�
k

2
(μ(β) + μ(η))<∞,

(8)

this implies β + η ∈ lM(λ).
(ii) Suppose ω ∈ R and β ∈ lM(λ). Since M satisfies
Δ2-condition, we have

μ(ωβ) � 􏽘
∞

y�0
λyM ωβy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ k|ω| 􏽘
∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤D|ω|μ(β)<∞.

(9)

So ωβ ∈ lM(λ). -erefore, from conditions 1 (i)
and (ii), one has lM(λ) is linear. We have
ey ∈ lM(λ), for every y ∈Z+, as

(2) Let |βy|≤ |ηy|, for every y ∈ Z+ and η ∈ lM(λ).
Since M is a nondecreasing function, then

μ(β) � 􏽘
∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ 􏽘
∞

y�0
λyM ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � μ(η)<∞,

(10)

one has β ∈ lM(λ).
(3) Assume (βy) ∈ lM(λ), we get

μ β[y/2]􏼐 􏼑􏼐 􏼑 � 􏽘
∞

y�0
λyM β[y/2]

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ 2 􏽘

∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � 2μ βy􏼐 􏼑􏼐 􏼑<∞,

(11)

then (β[y/2]) ∈ lM(λ). Second, to prove that the
functional μ on lM(λ) is a premodular:

(i) Obviously, μ(β)≥ 0 and μ(β) � 0⇔β � θ.
(ii) -ere are D � max 1, k{ }≥ 1 with

μ(ωβ)≤D|ω|μ(β), for every β ∈ lM(λ) and
ω ∈ R.

(iii) -ere exists J � max 1, k/2{ }≥ 1 with
μ(β + η)≤ J(μ(β) + μ(η)), for every
β, η ∈ lM(λ).

(iv) Follows the proof part (2).
(v) Follows from the proof part (3) that J0 � 2≥ 1.
(vi) Obviously, F � lM(λ).
(vii) -ere exists 0< ς≤M0(|ω|)/|ω|M0(1), for ω≠ 0

or ς> 0, for ω � 0 so that μ(ω, 0, 0, 0, . . .)

≥ ς|ω|μ(1, 0, 0, 0, . . .).

If M is a concave Orlicz function. By applying Lemma 2
and the parallel proof follows. □

Theorem 6. If M is a concave Orlicz function or convex
Orlicz function satisfying Δ2-condition, then (lM(λ))μ is a
prequasi Banach (sss), where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for

each β ∈ lM(λ).

Proof. Suppose M is a convex Orlicz function satisfying
Δ2-condition. By using -eorem 5, the space (lM(λ))μ is a
premodular (sss). From -eorem 1, the space (lM(λ))μ is a
prequasi normed (sss). To prove that (lM(λ))μ is a prequasi
Banach (sss), let βr � (βr

y)
∞
y�0 be a Cauchy sequence in

(lM(λ))μ. -erefore, for all ϵ ∈ (0, 1), we have that for every
r, t≥ r0, we get

μ βr
− βt

􏼐 􏼑 � 􏽘

∞

y�0
λyM βr

y − βt
y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓< ϵ. (12)

Hence, for r, t≥ r0 and y ∈ Z+, one has |βr
y − βt

y|< ϵ
-en (βt

y) is a Cauchy sequence in R, for fixed y ∈ Z+. -is
gives limt⟶∞β

t
y � β0y, for constant y ∈ Z+. -erefore,

μ(βr − β0)< ϵ, for all r≥ r0. To investigate that β0 ∈ lM(λ),
one has μ(β0) � μ(β0 − βr + βr)≤ J(μ(βr − β0)
+μ(βr))<∞, so β0 ∈ lM(λ). -is implies that (lM(λ))μ is a
prequasi Banach (sss). If M is a concave Orlicz function. By
applying Lemma 2 and the parallel proof follows. □

Theorem 7. If M is a concave Orlicz function or convex
Orlicz function satisfying Δ2-condition, then (lM(λ))μ is a
prequasi closed (sss), where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every

β ∈ lM(λ).

Proof. Let M be a convex Orlicz function satisfying
Δ2-condition. According to -eorem 5, the space (lM(λ))μ
is a premodular (sss). From -eorem 1, the space (lM(λ))μ
is a prequasi normed (sss). To prove that (lM(λ))μ is a
prequasi closed (sss), suppose βr � (βr

y)
∞
y�0 ∈ (lM(λ))μ and

limr⟶∞ μ(βr − β0) � 0, hence for all ϵ ∈ (0, 1), one has
r0 ∈ Z

+ so that for every r≥ r0, we have

μ βr
− β0􏼐 􏼑 � 􏽘

∞

y�0
λyM βr

y − β0y
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓< ϵ. (13)

-erefore, for r≥ r0 and y ∈Z+, one has |βr
y − β0y|< ϵ.

Hence, (βr
y) is a convergent sequence in R, for constant

y ∈Z+. So, limr⟶∞β
r
y � β0y, for constant y ∈Z+. Finally to

show that β0 ∈ lM(λ), one has
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μ β0􏼐 􏼑 � μ β0 − βr
+ βr

􏼐 􏼑≤ J μ βr
− β0􏼐 􏼑 + μ βr

( 􏼁􏼐 􏼑<∞. (14)

Hence, HTML translation failed. -is implies that
(lM(λ))μ is a prequasi closed (sss). If M is a concave Orlicz
function, by applying Lemma 2 and the parallel proof
follows. □

Theorem 8. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then the function

μ(β) � M− 1(􏽐
∞
y�0 λyM(|βy|)) verifies the Fatou property, for

all β ∈ lM(λ).

Proof. Assume that ηb􏼈 􏼉⊆(lM(λ))μ such that limb⟶∞ μ
(ηb − η) � 0. As the space (lM(λ))μ is a prequasi closed
space, one has t ∈ (lM(λ))μ. Hence, for every β ∈ (lM(λ))μ,
from Lemma 1, we have

μ(β − η) � M
− 1

􏽘

∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠≤M
− 1

􏽘

∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠ + M
− 1

􏽘

∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

≤ supj inf
b≥j

μ β − ηb
􏼐 􏼑.

(15)

Hence, μ satisfies the Fatou property. □

Theorem 9. If M is a concave Orlicz function, then the
function μ(β) � 􏽐

∞
y�0 λyM(|βy|) holds the Fatou property, for

all β ∈ lM(λ).

Proof. Suppose ηb􏼈 􏼉⊆(lM(λ))μ so that limb⟶∞
μ(ηb − η) � 0. As the space (lM(λ))μ is a prequasi closed
space; hence, η ∈ (lM(λ))μ. As M is continuous, concave
and M(0) � 0. -erefore, for every β ∈ (lM(λ))μ, one has

μ(β − η) � 􏽘
∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ 􏽘
∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+ 􏽘
∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ supj inf
b≥j

μ β − ηb
􏼐 􏼑.

(16)

Hence, μ satisfies the Fatou property. □

Theorem 10. *e function μ(β) � 􏽐
∞
y�0 λyM(|βy|) does not

satisfy the Fatou property, for all β ∈ lM(λ), if M is a strictly
convex Orlicz function satisfying Δ2-condition.

Proof. Since M is a strictly convex Orlicz function satisfying
Δ2-condition, then there exists k> 2 such that
2M(u)<M(2u)< kM(u), for all u≥ 0. Let the conditions be
fulfilled and ηb􏼈 􏼉⊆(lM(λ))μ with limb⟶∞ μ(ηb − η) � 0. As
the space (lM(λ))μ is a prequasi closed space; hence,
η ∈ (lM(λ))μ. Since M is continuous, then for any
β ∈ (lM(λ))μ, we have

μ(β − η) � 􏽘

∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤
k

2
􏽘

∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘

∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦≤
k

2
supj inf

b≥j
μ β − ηb

􏼐 􏼑. (17)

-erefore, μ does not hold the Fatou property. □

Example 2. For every β ∈ lM(λ), the function μ(β) � ln(1 +

􏽐
∞
y�0 λy(e|βy | − 1)) is a prequasi norm, not quasi, and not a

norm.

Example 3. For all β ∈ lM(λ), the function
μ(β) � (􏽐

∞
y�0 λy

���
|βy|

􏽱
)2 is a prequasi norm, quasi norm, and

not a norm.

Example 4. *e function μ(β) � inf κ> 0: 􏽐
∞
y�0 λyM􏽮

(|βy|/κ)≤ 1} is a prequasi norm, a quasi norm, and a norm
on lM(λ).

4. Kannan μ-Contraction Operator

We now define Kannan μ-Lipschitzian mapping acting on
(lM(λ))μ. -e sufficient conditions for a fixed point of
Kannan contraction mapping on (lM(λ))μ under various
prequasi norms are investigated.

Definition 11. An operator H: (lM(λ))μ⟶ (lM(λ))μ is
called a Kannan μ-Lipschitzian, if there exists ]≥ 0, so that

μ(Hβ − Hη)≤ ](μ(Hβ − β) + μ(Hη − η)), (18)

for every β, η ∈ (lM(λ))μ.

(1) -e operator H is said to be Kannan μ-contraction,
when ] ∈ [0, 1/2).
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(2) -e operator H is said to be Kannan μ-non-
expansive, whenever ] � 1/2.

A vector β ∈ (lM(λ))μ is called a fixed point of H, when
H(β) � β.

Theorem 11. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, and

H: (lM(λ))μ⟶ (lM(λ))μ is Kannan μ-contraction map-
ping, where μ(β) � M− 1(􏽐

∞
y�0 λyM(|βy|)), for all

β ∈ lM(λ); hence, H has a unique fixed point.

Proof. Assume that β ∈ lM(λ), one has Htβ ∈ lM(λ). Since
H is a Kannan μ-contraction mapping, we have

μ H
t+1β − H

tβ􏼐 􏼑≤ ] μ H
t+1β − H

tβ􏼐 􏼑 + μ H
tβ − H

t− 1β􏼐 􏼑􏼐 􏼑⇒

μ H
t+1β − H

tβ􏼐 􏼑≤
]

1 − ]
μ H

tβ − H
t− 1β􏼐 􏼑≤

]
1 − ]

􏼒 􏼓
2
μ H

t− 1β − H
t− 2β􏼐 􏼑≤ · · · ≤

]
1 − ]

􏼒 􏼓
t

μ(Hβ − β).

(19)

-erefore, for every t, v ∈Z+ with v> t, then we get

μ H
tβ − H

vβ􏼐 􏼑≤ ] μ H
tβ − H

t− 1β􏼐 􏼑 + μ H
vβ − H

v− 1β􏼐 􏼑􏼐 􏼑

≤ ]
]

1 − ]
􏼒 􏼓

t− 1
+

]
1 − ]

􏼒 􏼓
v− 1

􏼠 􏼡μ(Hβ − β).

(20)

So, Htβ􏼈 􏼉 is a Cauchy sequence in (lM(λ))μ. As the
space (lM(λ))μ is prequasi Banach space. -erefore, there is
η ∈ (lM(λ))μ such that limt⟶∞Htβ � η. To prove that
Hη � η. As μ holds the Fatou property, we obtain

μ(Hη − η)≤ supp inf
t≥p

μ H
t+1β − H

tβ􏼐 􏼑

≤ supp inf
t≥p

]
1 − ]

􏼒 􏼓
t

μ(Hβ − β) � 0,

(21)

hence Hη � η. Hence, η is a fixed point of H. To prove the
uniqueness of the fixed point. For different fixed points
ζ, η ∈ (lM(λ))μ of H. We have that

μ(ζ − η)≤ μ(Hζ − Hη)≤ ](μ(Hζ − ζ) + μ(Hη − η)) � 0.

(22)

-erefore, ζ � η. □

Corollary 1. Let M be a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) be convex, and
H: (lM(λ))μ⟶ (lM(λ))μ be Kannan μ-contraction
mapping, with μ(β) � M− 1(􏽐

∞
y�0 λyM(|βy|)), for every

β ∈ lM(λ), then H has a unique fixed point ζ such that
μ(Htβ − ζ)≤ ](]/1 − ])t− 1μ(Hβ − β).

Proof. From -eorem 11, there is a unique fixed point ζ of
H. Hence, one has

μ H
tβ − ζ􏼐 􏼑 � μ H

tβ − Hζ􏼐 􏼑≤ ] μ H
tβ − H

t− 1β􏼐 􏼑 + μ(Hζ − ζ)􏼐 􏼑 � ]
]

1 − ]
􏼒 􏼓

t− 1
μ(Hβ − β). (23)

□

Theorem 12. Suppose M is a concave Orlicz function, and
H: (lM(λ))μ⟶ (lM(λ))μ is Kannan μ-contraction map-
ping, where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for all β ∈ lM(λ); hence,

H has a unique fixed point.

Proof. It is easy so omitted. □

Definition 13. Assume (lM(λ))μ is a pr-quasi normed (sss),
H: (lM(λ))μ⟶ (lM(λ))μ and ζ ∈ (lM(λ))μ. *e operator
H is called μ-sequentially continuous at ζ, if and only if, when
limy⟶∞ μ(βy − ζ) � 0, then limy⟶∞ μ(Hβy − Hζ) � 0.

Theorem 14. Let M be a strictly convex Orlicz function
satisfying Δ2-condition, and H: (lM(λ))μ⟶ (lM(λ))μ,
where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every β ∈ lM(λ). *e el-

ement η ∈ (lM(λ))μ is the unique fixed point of H, if the next
conditions are satisfied:

(i) H is Kannan μ-contraction mapping,

(ii) H is μ-sequentially continuous at a point
η ∈ (lM(λ))μ,

(iii) *ere exists β ∈ (lM(λ))μ such that the sequence of
iterates Htβ􏼈 􏼉 has a subsequence Htpβ􏼈 􏼉 converging
to η.

Proof. Since M is a strictly convex Orlicz function satisfying
Δ2-condition, then there exists k> 2 such that
2M(u)<M(2u)< kM(u), for all u≥ 0. Let the conditions be
verified. If η is not a fixed point of H, then Hη≠ η. By the
conditions (ii) and (iii), we have

lim
tp⟶∞

μ H
tpβ − η􏼐 􏼑 � 0,

lim
tp⟶∞

μ H
tp+1β − Hη􏼐 􏼑 � 0.

(24)

As the operator H is Kannan μ-contraction, one can see
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0< μ(Hη − η) � μ Hη − H
tp+1β􏼐 􏼑 + H

tpβ − η􏼐 􏼑 + H
tp+1β − H

tpβ􏼐 􏼑􏼐 􏼑

≤
k
2

4
μ H

tp+1β − Hη􏼐 􏼑 +
k
2

4
μ H

tpβ − η􏼐 􏼑 +
k

2
]

]
1 − ]

􏼒 􏼓
tp− 1

μ(Hβ − β).

(25)

Since tp⟶∞, this gives a contradiction. Hence, η is a
fixed point of H. To prove that the uniqueness of the fixed
point η. For different fixed points η, ζ ∈ (lM(λ))μ of H.
-erefore, one has

μ(η − ζ)≤ μ(Hη − Hζ)≤ ](μ(Hη − η) + μ(Hζ − ζ)) � 0.

(26)

So, η � ζ. □

Example 15. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) �

�
t3

√
+

�
t4

√
and μ(β) � 􏽐

∞
y�0 λyM(|βy|), for all

β ∈ lM(λ) and

H(β) �

β
18

, μ(β) ∈ [0, 1),

β
20

, μ(β) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
18

􏼠 􏼡≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 + μ
17β2
18

􏼠 􏼡􏼠 􏼡

�
1
��
174

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(28)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
20

−
β2
20

􏼠 􏼡≤
1
��
194

√ μ
19β1
20

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
1
��
194

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(29)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we obtain

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
20

􏼠 􏼡≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 +
1
��
194

√ μ
19β2
20

􏼠 􏼡

≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
1
��
174

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(30)

Hence, the operator H is Kannan μ-contraction. As μ
verifies the Fatou property. From -eorem 11, the operator
H has a unique fixed point θ ∈ (lM(λ))μ.

Assume β(y)
􏽮 􏽯⊆(lM(λ))μ is such that limy⟶∞ μ

(β(y) − β(0)) � 0, where
β(0) ∈ (lM(λ))μ with μ(β(0)) � 1.
As the prequasi norm μ is continuous, one can see

lim
tp⟶∞

μ Hβ(y)
− Hβ(0)

􏼐 􏼑 � lim
tp⟶∞

μ
β(y)

18
−
β(0)

20
􏼠 􏼡

� μ
β(0)

180
􏼠 􏼡> 0.

(31)

-erefore, H is not μ-sequentially continuous at β(0).
Hence, the operator H is not continuous at β(0).

Let μ(β) � [􏽐
∞
y�0 λyM(|βy|)]4, for all β ∈ lM(λ).

As for all β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
18

􏼠 􏼡≤
8
17

μ
17β1
18

􏼠 􏼡 + μ
17β2
18

􏼠 􏼡􏼠 􏼡

�
8
17

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(32)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
20

−
β2
20

􏼠 􏼡≤
8
19

μ
19β1
20

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
8
19

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(33)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we get

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
20

􏼠 􏼡≤
8
17

μ
17β1
18

􏼠 􏼡 +
8
19

μ
19β2
20

􏼠 􏼡

≤
8
17

μ
17β1
18

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
8
17

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(34)

So, the operator H is Kannan μ-contraction and Ht(β) �

β/18t μ(β) ∈ [0, 1)

β/20t μ(β) ∈ [1,∞)
􏼨

Clearly, H is μ-sequentially continuous at θ ∈ (lM(λ))μ
and Htβ􏼈 􏼉 contains a subsequence Htpβ􏼈 􏼉 converging to θ.
From -eorem 14, then θ ∈ (lM(λ))μ is the unique fixed
point of H.
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Example 5. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) � t2 and μ(β) �

�������������
􏽐
∞
y�0 λyM(|βy|)

􏽱
, for all β ∈ lM(λ)

and

H(β) �

β
4

, μ(β) ∈ [0, 1),

β
5

, μ(β) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
4

􏼠 􏼡≤
1
3

μ
3β1
4

􏼠 􏼡 + μ
3β2
4

􏼠 􏼡􏼠 􏼡

�
1
3

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(36)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
5

−
β2
5

􏼠 􏼡≤
1
4

μ
4β1
5

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
4

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(37)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we get

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
5

􏼠 􏼡≤
1
3
μ

3β1
4

􏼠 􏼡 +
1
4
μ

4β2
5

􏼠 􏼡

≤
1
3

μ
3β1
4

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
3

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(38)

Hence, the operator H is Kannan μ-contraction. As μ
satisfies the Fatou property. From-eorem 11, the operator
H has one fixed point θ ∈ (lM(λ))μ.

Suppose β(y)
􏽮 􏽯⊆(lM(λ))μ is so that

limy⟶∞ μ(β(y) − β(0)) � 0, where.
β(0) ∈ (lM(λ))μ with μ(β(0)) � 1. As the prequasi norm

μ is continuous, one can see

lim
y⟶∞

μ Hβ(y)
− Hβ(0)

􏼐 􏼑 � lim
y⟶∞

μ
β(y)

4
−
β(0)

5
􏼠 􏼡

� μ
β(0)

20
􏼠 􏼡> 0.

(39)

-erefore, H is not μ-sequentially continuous at β(0).
Hence, the map H is not continuous at β(0).

Let μ(β) � 􏽐
∞
y�0 λyM(|βy|), for every β ∈ lM(λ).

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
4

􏼠 􏼡≤
2
9

μ
3β1
4

􏼠 􏼡 + μ
3β2
4

􏼠 􏼡􏼠 􏼡

�
2
9

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(40)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
5

−
β2
5

􏼠 􏼡≤
1
8

μ
4β1
5

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
8

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(41)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we obtain

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
5

􏼠 􏼡≤
2
9
μ

3β1
4

􏼠 􏼡 +
1
8
μ

4β2
5

􏼠 􏼡

≤
2
9

μ
3β1
4

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
2
9

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(42)

So, the operator H is Kannan μ-contraction and.

Ht(β) �
β/4t μ(β) ∈ [0, 1)

β/5t μ(β) ∈ [1,∞)
􏼨

Obviously, H is μ-sequentially continuous at
θ ∈ (lM(λ))μ and Htβ􏼈 􏼉 has a subsequence Htpβ􏼈 􏼉 con-
verging to θ. From -eorem 14, then θ ∈ (lM(λ))μ is the
unique fixed point of H.

Example 16. Suppose H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) �

�
t3

√
+

�
t4

√
and μ(β) � (􏽐

∞
y�0 λyM(|βy|))4, for every

β ∈ lM(λ) and

H(β) �

1
18

e0 + β( 􏼁, β0 ∈ − ∞,
1
17

􏼒 􏼓,

1
17

e0, β0 �
1
17

,

1
18

e0, β0 ∈
1
17

,∞􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

As for each β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/17),
one has

μ(Hβ − Hη) � μ
1
18

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
8
17

μ
17β
18

􏼠 􏼡 + μ
17t

18
􏼒 􏼓􏼠 􏼡

≤
8
17

(μ(Hβ − β) + μ(Hη − η)).

(44)
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For every β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/17,∞), then
for all ϵ> 0 one has

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (45)

For every β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) and
η0 ∈ (1/17,∞), we get

μ(Hβ − Hη) � μ
β
18

􏼠 􏼡≤
1
17

μ
17β
18

􏼠 􏼡 �
1
17

μ(Hβ − β)

≤
1
17

(μ(Hβ − β) + μ(Hη − η)).

(46)

Hence, the operator H is Kannan μ-contraction. Evi-
dently, H is μ-sequentially continuous at 1/17e0 ∈ (lM(λ))μ,
and we have β ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) under
Htβ􏼈 􏼉 � 􏽐

t
n�1 1/18

ne0 + 1/18tβ􏼈 􏼉 contains a subsequence

Htpβ􏼈 􏼉 � 􏽐
tp

n�1 1/18ne0 + 1/18tpβ􏼚 􏼛 converging to 1/17e0.

From -eorem 14, the map H has a unique fixed point
1/17e0 ∈ (lM(λ))μ. Observe that H is not continuous at
1/17e0 ∈ (lM(λ))μ.

If μ(β) � 􏽐y∈Z+λyM(|βy|), for every β ∈ lM(λ). As for

all β, η ∈ (lM(λ)) μ with β0, η0 ∈ (− ∞, 1/17), one has

μ(Hβ − Hη) � μ
1
18

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
1
��
174

√ μ
17β
18

􏼠 􏼡 + μ
17t

18
􏼒 􏼓􏼠 􏼡

≤
1
��
174

√ (μ(Hβ − β) + μ(Hη − η)).

(47)

For each β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/17,∞), then
for all ϵ> 0 we get

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (48)

For every β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) and
η0 ∈ (1/17,∞), this gives

μ(Hβ − Hη) � μ
β
18

􏼠 􏼡≤
1
��
174

√ μ
17β
18

􏼠 􏼡 �
1
��
174

√ μ(Hβ − β)

≤
1
��
174

√ (μ(Hβ − β) + μ(Hη − η)).

(49)

So, the operator H is Kannan μ-contraction. As μ sat-
isfies the Fatou property. From-eorem 11, the operator H

holds one fixed point 1/17e0 ∈ (lM(λ))μ.

Example 6. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) � t2 + 2t and μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every

β ∈ lM(λ) and

H(β) �

1
6

e1 + β( 􏼁, β0 ∈ − ∞,
1
5

􏼒 􏼓,

1
5
e1, β0 �

1
5

,

1
6
e1, β0 ∈

1
5
,∞􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

As for each β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/5), one
has

μ(Hβ − Hη) � μ
1
6

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
2
5

μ
5β
6

􏼠 􏼡 + μ
5t

6
􏼒 􏼓􏼠 􏼡

≤
2
5

(μ(Hβ − β) + μ(Hv − η)).

(51)

Suppose β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/5,∞), then for
any ϵ> 0 we obtain

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (52)

Assume β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) and
η0 ∈ (1/5,∞), one can see

μ(Hβ − Hη) � μ
β
6

􏼠 􏼡≤
1
5
μ

5β
6

􏼠 􏼡 �
1
5
μ(Hβ − β)

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(53)

Hence, the operator H is Kannan μ-contraction. Clearly,
H is μ-sequentially continuous at 1/5e1 ∈ (lM(λ))μ and
there exists β ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) under
Htβ􏼈 􏼉 � 􏽐

n�1
n�11/6

ne1 + 1/6tβ􏽮 􏽯 contains a subsequence

Htpβ􏼈 􏼉 � 􏽐
tp

n�1 1/6ne1 + 1/6tpβ􏼚 􏼛 converging to 1/5e1. From

-eorem 14, the operator H holds a unique fixed point
1/5e1 ∈ (lM(λ))μ. Observe that H is not continuous at
1/5e1 ∈ (lM(λ))μ.

If M(t) � t2 and μ(β) �
�������������
􏽐
∞
y�0 λyM(|βy|)

􏽱
, for every

β ∈ lM(λ).
Since for all β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/5),

one has

μ(Hβ − Hη) � μ
1
6

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
1
5

μ
5β
6

􏼠 􏼡 + μ
5η
6

􏼒 􏼓􏼠 􏼡

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(54)

If β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/5,∞), then for all
ϵ> 0 one has
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μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (55)

Assume β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) and
η0 ∈ (1/5,∞), we get

μ(Hβ − Hη) � μ
β
6

􏼠 􏼡≤
1
5
μ

5β
6

􏼠 􏼡 �
1
5
μ(Hβ − β)

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(56)

So, the operator H is Kannan μ-contraction. As μ sat-
isfies the Fatou property. From-eorem 11, the operator H

contains one fixed point 1/5e1 ∈ (lM(λ))μ.

5. Kannan Nonexpansive Operator

We have presented in this section the uniform convexity of
the space (lM(λ))μ, where

lM(λ) � u ∈ RZ+

: ϱ(ωu)<∞, for someω> 0􏽮 􏽯, (57)

and ϱ(u) � 􏽐
∞
y�0 λyM(|uy|), under the Luxemburg norm

μ(u) � inf ω> 0: ϱ
u

ω
􏼒 􏼓≤ 1􏼚 􏼛. (58)

Definition 12.
(1) *e continuous function M is called strictly convex

(SC), if

M
v + t

2
􏼒 􏼓<

M(v) + M(t)

2
, (59)

for all v, t ∈ [0,∞) and v≠ t.
(2) [24] -e following statements are equivalent:

(i) M is a uniformly convex function on [0,∞).
(ii) For any ϵ> 0 and u0 > 0, there exists a number

δ ∈ (0, 1) such that for all u, v, and
|u − v|≥ ϵmax |u|, |v|{ }≥ ϵu0 imply

M
u + v

2
􏼒 􏼓≤

1 − δ
2

(M(u) + M(v)), (60)

if u≥ u0.
(iii) For any u0 > 0 and a ∈ (0, 1), there exists a

number δ ∈ (0, 1) such that

if u≥ u0.
(3) [25] A normed space (X, μ) is said to be strictly

convex if for any u, v ∈ X and b> 0 satisfying
μ(u)≤ b, μ(v)≤ b, and μ(u − v)> 0 imply
μ(u + v/2)< b.

(4) [26] A normed space (X, μ) is said to be uniformly
convex if for any b> 0 and ϵ> 0, there exists δ > 0
such that for all u, v ∈ X satisfying μ(u)≤ b, μ(v)≤ b

and μ(u − v)≥ ϵ imply μ(u + v/2)≤ b − δ.

Theorem 17. If limn⟶∞ μ(xn) � b, limn⟶∞ μ(yn) � b and
limn⟶∞ μ(xn + yn/2) � b imply limn⟶∞ μ(xn − yn) � 0,
for all xn􏼈 􏼉, yn􏼈 􏼉 ⊂ lM(λ) and b> 0, then lM(λ) is uniformly
convex, where M is a convex Orlicz function satisfying
Δ2-condition.

Proof. Let the conditions be satisfied and lM(λ) is not
uniformly convex, then there exists ϵ0 > 0 and
xn􏼈 􏼉, yn􏼈 􏼉 ⊂ lM(λ) such that μ(xn)≤ b, μ(yn)≤ b, μ(xn −

yn)≥ ϵ0 we get μ(xn + yn/2)> b − 1/n, for some b> 0. To
prove that limn⟶∞ μ(xn) � b, let limn⟶∞ μ(xn) � b1 < b

and limn⟶∞ μ(yn) � b. Since M is satisfying Δ2-condition,
we have limn⟶∞ ϱ(xn/b1) � 1 and limn⟶∞ ϱ(xn/b) � 1.
Hence,

lim
n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤

b1

2b
lim

n⟶∞
ϱ

xn

b1
􏼠 􏼡

+
1
2

lim
n⟶∞
ϱ

yn

b
􏼒 􏼓􏼓< 1.

(61)

-is is equivalent to limn⟶∞μ(xn + yn/2)< b. -is
contradicts limn⟶∞ μ(xn + yn/2)> b, so
limn⟶∞ ϱ(xn) � b. Similarly, we can prove that
limn⟶∞ ϱ(yn)b. Also since

1< lim
n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤ lim

n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤ lim

n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤

1
2

lim
n⟶∞
ϱ

xn

b
􏼒 􏼓 + lim

n⟶∞
ϱ

yn

b
􏼒 􏼓􏼒 􏼓 � 1. (62)

-en limn⟶∞ ϱ(xn + yn/2b) � 1. -is implies
limn⟶∞ μ(xn + yn/2) � b. But limn⟶∞ μ(xn − yn)≥ ϵ0 > 0,
this gives a contradiction. □

Theorem 18. *e space lM(λ) is uniformly convex, if M is a
uniformly convex Orlicz function satisfying Δ2-condition.

Proof. Assume the settings are satisfied, limn⟶∞ μ(xn) � b,
limn⟶∞ μ(yn) � b, and limn⟶∞ μ(xn + yn/2) � b, we will
prove that limn⟶∞ μ(xn − yn) � 0. For any ϵ ∈ (0, 1/2), let
us choose u0 > 0 such that M(2u0)< ϵ. Since M is uniformly
convex, then there exists δ ∈ (0, 1) such that
|u − v|≥ ϵmax |u|, |v|{ }≥ ϵu0 imply
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M
u + v

2
􏼒 􏼓≤

1 − δ
2

(M(u) + M(v)). (63)

For each n ∈ Z+, put

Gn � i ∈Z+
:

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< u0􏼨 􏼩,

En � i ∈Z+
:

xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ϵmax

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩< ϵu0􏼨 􏼩,

Fn � i ∈Z+
:

xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ ϵmax

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩≥ ϵu0􏼨 􏼩.

(64)

-en we deduce

􏽘
i∈Gn

M
xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡≤M 2u0( 􏼁, (65)

and thus

􏽘
i∈En

M
xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡≤ 2ϵ 􏽘

i∈Z+

M
xn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≤ ϵ 􏽘
i∈Z+

M
xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 + 􏽘

i∈Z+

M
yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡⎛⎝ ⎞⎠≤ 2ϵ.

(66)

Hence, we get

0←
μ xn( 􏼁 + μ yn( 􏼁

2
− μ

xn + yn

2
􏼒 􏼓

�
􏽐i∈Z+ M xn(i)/b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Z+ M yn(i)/b( 􏼁

2

− 􏽘
i∈Z+

M
xn(i) + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≥
􏽐i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Fn
M yn(i)/b( 􏼁

2

− 􏽘
i∈Fn

M
xn(i) + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≥
􏽐i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Fn
M yn(i)/b( 􏼁

2

−
1 − δ
2

􏽘
i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽘
i∈Fn

M yn(i)/b( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

�
δ
2

􏽘
i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽘
i∈Fn

M yn(i)/b( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦.

(67)

Since u0 and ϵ are arbitrary, then
limn⟶∞ ϱ(xn − yn/2b) � 0. As M verifies Δ2-condition.
-erefore, limn⟶∞ μ(xn − yn) � 0. From -eorem 17, the
proof follows.

Here, we discuss the property (R) and the μ-normal
structure property of the space (lM(λ))μ. □

Definition 13. *e space (Y)μ holds the property (R), if for all
decreasing sequence Φx􏼈 􏼉x∈Z+ of μ-closed and μ-convex

nonempty subsets of (Y)μ so that supx∈Z+ dμ(β,Φx)<∞, for
some β ∈ (Y)μ; hence, we have ∩ x∈Z+Φx ≠∅.

Definition 14. *e space (Y)μ holds the μ-normal structure
property if for all nonempty μ-bounded, μ-convex, and
μ-closed subset Φ of (Y)μ not decreased to one point, there
exists β ∈ Φ with

supη∈Φ μ(β − η)< υμ(Φ) ≔ sup μ(β − η): β, η ∈ Φ􏼈 􏼉<∞. (68)

Theorem 19. If M is a uniformly convex Orlicz function
satisfying Δ2-condition, then

(1) AssumeΦ is a nonempty μ-closed and μ-convex subset
of (lM(λ))μ. For β ∈ (lM(λ))μ with

dμ(β,Φ) � inf μ(β − η): η ∈ Φ􏼈 􏼉<∞. (69)

*erefore, we have one ϕ ∈ Φ with
dμ(β,Φ) � μ(β − ϕ).

(2) (lM(λ))μ satisfies the property (R).

Proof. For (1), assume β ∉ Φ as Φ is μ-closed. So, one has
D ≔ dμ(β,Φ)> 0. -erefore, there is ηt ∈ Φ so that
limt⟶∞ μ(β − ηt) � D. To prove that ηt􏼈 􏼉 is a μ-Cauchy. For
any two subsequences ηta

􏽮 􏽯 and ηtb
􏽮 􏽯 ⊂ ηt􏼈 􏼉, we have

μ(ηta
+ ηtb

/2 − β)≥D, as lima⟶∞ μ(β − ηta
) � D and

limb⟶∞ μ(β − ηtb
) � D. Moreover,

μ
ηta

+ ηtb

2
− β􏼒 􏼓 � μ

ηta
− β
2

+
ηtb

− β
2

􏼠 􏼡<
1
2

(D + D) � D.

(70)
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-erefore, we have lima,b⟶∞ μ(ηta
+ ηtb

/2 − β) � D.
Since the space (lM(λ))μ is uniformly convex, we get

lim
a,b⟶∞

μ ηta
− β − ηtb

− β􏼐 􏼑􏼐 􏼑 � lim
a,b⟶∞

μ ηta
− ηtb

􏼐 􏼑 � 0.

(71)

-us, ηt􏼈 􏼉 is a μ-Cauchy in Φ. Since Φ is closed and the
space (lM(λ))μ is complete, then there exists ϕ ∈ Φ with
μ(β − ϕ) � dμ(β,Φ). Since the space (lM(λ))μ is uniformly
convex, then it is (SC), which implies the uniqueness of ϕ. To
show (2), for some t0 ∈ Z

+, suppose β ∉ Φt0
. Since (dμ

(β,Φt))t∈Z+ ∈ l∞ is increasing. Set limt⟶∞dμ(β,Φt) � D,
when D> 0. Otherwise, β ∈ Φt, for each t ∈ Z+. From (1), we
have a unique ηt ∈ Φt with dμ(β,Φt) � μ(β − ηt), for all
t ∈ Z+. A consistent proof will show that ηt/2􏼈 􏼉μ-converges to
some η ∈ (lM(λ))μ. Since Φt􏼈 􏼉 are μ-convex, decreasing and
μ-closed, we get 2η ∈ ∩ t∈Z+Φt. □

Theorem 20. If M is a uniformly convex Orlicz function
satisfying Δ2-condition, then (lM(λ))μ has the μ-normal
structure property.

Proof. Let the conditions are satisfied.-eorem 18 gives that
(lM(λ))μ is uniformly convex. Assume Φ is a μ-bounded,
μ-convex, and μ-closed subset of (lM(λ))μ not decreased to
one point. Hence, υμ(Φ)> 0. Set D � υμ(Φ). Let β, η ∈ Φ
with β≠ η. Hence, μ(β − η/2)> 0. For every ϕ ∈ Φ, one has
μ(β − ϕ)≤D and μ(η − ϕ)≤D. As Φ is μ-convex, then
β + η/2 ∈ Φ. Hence,

μ
β + η
2

− ϕ􏼠 􏼡 � μ
(β − ϕ) +(η − ϕ)

2
􏼠 􏼡<D, (72)

for every ϕ ∈ Φ. So

supϕ∈Φ μ
β + η
2

− ϕ􏼠 􏼡<D � υμ(Φ). (73)
□

Lemma 3. Let the space (lM(λ))μ verify the (R) property and
the μ-quasi-normal property. Assume Φ is a nonempty
μ-bounded, μ-convex, and μ-closed subset of (lM(λ))μ.
Suppose H: Φ⟶Φ is a Kannan μ-nonexpansive mapping.
For x> 0. If Wx � β ∈ Φ: μ(β − H(β))≤x􏼈 􏼉≠∅. Set

Φx � ∩ Bμ(t, v): H Wx( 􏼁 ⊂Bμ(t, v)􏽮 􏽯∩Φ. (74)

-en Φx is a nonempty, μ-convex, μ-closed subset of Φ
with H(Φx) ⊂ Φx ⊂Wx and υμ(Φx)≤x.

Proof. As H(Wx) ⊂ Φx, this gives Φx ≠∅. Since the μ-balls
are μ-convex, and μ-closed, then Φx is a μ-closed and
μ-convex subset of Φ. To prove that Φx ⊂Wx. Assume
β ∈ Φx. If μ(β − H(β)) � 0, we have β ∈Wx. Otherwise,
suppose μ(β − H(β))> 0. Set

t � sup μ(H(ζ) − H(β)): ζ ∈Wx􏼈 􏼉. (75)

From the definition of t, then H(Wx) ⊂Bμ(H(β), t).
Hence, Φx ⊂Bμ(H(β), t), which implies μ(β − H(β))≤ t.

Assume d> 0. Hence, there is ζ ∈Wx so that
t − d≤ μ(H(ζ) − H(β)). -en

μ(β − H(β)) − d≤ t − d≤ μ(H(ζ) − H(β))

≤
1
2

(μ(β − H(β)) + μ(ζ − H(ζ)))

≤
1
2

(μ(β − H(β)) + x).

(76)

Since d is arbitrarily positive, we have μ(β − H(β))≤x,
then we have β ∈Wx. For H(Wx) ⊂ Φx, we get
H(Φx) ⊂ H(Wx) ⊂ Φx, this indicates Φx is H-invariant.
Consequent to prove that υμ(Φx)≤ x. As

μ(H(β) − H(η))≤
1
2

(μ(β − H(β)) + μ(η − H(η))), (77)

For every β, η ∈Wx. Let β ∈Wx. So
H(Wx) ⊂Bμ(H(β), x). From the definition of Φx, one has
Φx ⊂Bμ(H(β), x). Hence, H(β) ∈ ∩ η∈Φx

Bμ(η, x). -ere-
fore, we have μ(η − ζ)≤ x, for every η, ζ ∈ Φx, which implies
υμ(Φx)≤ x. -is finishes the proof.

In this part, we give enough settings on (lM(λ))μ so that
the Kannan μ− nonexpansive mapping defined on it con-
tains a fixed point. □

Theorem 21. Let (lM(λ))μ hold the μ-quasinormal property
and the (R) property. Assume Φ is a nonempty, μ-convex,
μ-closed, and μ-bounded subset of (lM(λ))μ. If H: Φ⟶Φ
is a Kannan μ-nonexpansive mapping, then H has a fixed
point.

Proof. Let xt � x0 + 1/t, for all t≥ 1, where
x0 � inf μ(β − H(β)): β ∈ Φ􏼈 􏼉. We have for each t≥ 1 that
Wxt

� β ∈ Φ: μ(β − H(β))≤ xt􏼈 􏼉≠∅. Suppose Φxt

explained as in Lemma 3. Clearly, Φxt
􏽮 􏽯 is a decreasing

sequence of nonempty μ-bounded, μ-closed, and μ-convex
subsets ofΦ. -e property (R) gives thatΦ∞ � ∩ t≥1Φxt

≠∅.
Let β ∈ Φ∞, we have μ(β − H(β))≤xt, for every t≥ 1. If
t⟶∞, one has μ(β − H(β))≤x0, which implies
μ(β − H(β)) � x0. Hence, Wx0

≠∅. So x0 � 0. Otherwise,
x0 > 0 which investigates that H has no fixed point. Assume
Φx0

as defined in Lemma 3. Since H has no fixed point and
Φx0

is H-invariant, hence Φx0
holds more than one point,

which gives, υμ(Φx0
)> 0. By the μ-quasinormal property,

one has β ∈ Φx0
with

μ(β − η)< υμ Φx0
􏼐 􏼑≤ x0, (78)

for every η ∈ Φx0
. By Lemma 3, we have Φx0

⊂Wx0
. By

definition of Φx0
, then H(β) ∈Wx0

⊂ Φx0
. Obviously, one

has

μ(β − H(β))< υμ Φx0
􏼐 􏼑≤ x0, (79)

which contradicts the definition of x0. So x0 � 0 this implies
that any point in Wx0

is a fixed point of H, i.e., H has a fixed
point in Φ.

According to-eorem 19,-eorem 20, and-eorem 21,
we obtain the next corollary: □
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Corollary 2. If M is a uniformly convex Orlicz function
satisfying Δ2-condition. Assume Φ is a nonempty, μ-convex,
μ-closed, and μ-bounded subset of (lM(λ))μ. Suppose
H: Φ⟶Φ is a Kannan μ-nonexpansive operator. *en H

holds a fixed point.

Example 7. Let H: Φ⟶Φ with H(β)

�
β/4, μ(β) ∈ [0, 1),

β/5, μ(β) ∈ [1,∞),
􏼨

where Φ � β ∈ (lM(λ))μ: β0 � β1 � 0􏽮 􏽯, where
ϱ(β) � 􏽐

∞
x�0 λx|βx|2, for every β ∈ (lM(λ))μ. As Example 5,

the operator H is Kannan μ-contraction mapping. So it is
Kannan μ-nonexpansive operator. Clearly,Φ is a nonempty,
μ-convex, μ-closed and μ-bounded subset of (lM(λ))μ. By
Corollary 2, the operator H has a fixed point in Φ.

6. KannanΥ− ContractionMapping on S(lM(λ))μ

For any two Banach spaces X and Y, we examine in this
section the existence of a fixed point of Kannan Υ− con-
traction mapping on S(lM(λ))μ

, where Υ(Q) � M− 1

(􏽐
∞
y�0 λyM(|sy(Q)|)), for all Q ∈ S(lM(λ))μ

(X,Y).

Theorem 22. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then (S(lM(λ))μ

,Υ) is a
prequasi Banach operator ideal, where
Υ(Q) � μ((sy(Q))∞

y�0).

Proof. As -eorem 5, the space (lM(λ))μ is a premodular
(sss). -erefore, from -eorem 3, one has
Υ(Q) � μ((sy(Q))∞

y�0) is a prequasi norm on S(lM(λ))μ
.

Suppose Qr ∈ S(lM(λ))μ
(X,Y) is a Cauchy sequence. As

B(X,Y)⊇S(lM(λ))μ
(X,Y), one obtains

Υ Qr − Qt( 􏼁 � μ sy Qr − Qt( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓

≥ μ s0 Qr − Qt( 􏼁, 0, 0, 0, . . . ,( 􏼁 � M
− 1 λ0 Qr − Qt

����
����􏼐 􏼑.

(80)

Hence (Qr)r∈Z+ is a Cauchy sequence inB(X,Y). Since
B(X,Y) is a Banach space, so there is Q ∈B(X,Y) with
limr⟶∞‖Qr − Q‖ � 0. Since (sy(Qr))

∞
y�0 ∈ (lM(λ))μ, for

every r ∈ Z+. We have

Υ(Q) � μ sy(Q)􏼐 􏼑
∞
y�0􏼒 􏼓 � μ sy Q − Qr + Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓≤ μ s[y/2] Q − Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓 + μ s[y/2] Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑

≤ μ Qr − Q
����

����􏼐 􏼑
∞
y�0􏼒 􏼓 + 2μ sy Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑< ϵ.

(81)

-erefore, (sy(Q))∞
y�0 ∈ (lM(λ))μ, this implies

Q ∈ S(lM(λ))μ
(X,Y). □

Theorem 23. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then (S(lM(λ))μ

,Υ) is
a prequasi closed operator ideal, where
Υ(Q) � μ((sy(Q))∞

y�0).

Proof. As -eorem 5, the space (lM(λ))μ is a premodular
(sss). -erefore, from -eorem 3, one has
Υ(Q) � μ((sy(Q))∞

y�0) is a prequasi norm on S(lM(λ))μ
.

Assume Qr ∈ S(lM(λ))μ
(X,Y), for every r ∈Z+ and

limr⟶∞Υ(Qr − Q) � 0. Hence, there is ς> 0 and since
B(X,Y)⊇S(lM(λ))μ

(X,Y), we get

Υ Qr − Q( 􏼁 � μ sy Qr − Q( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓≥ μ s0 Qr − Q( 􏼁, 0, 0, 0, . . .( 􏼁

� M
− 1 λ0 Qr − Q

����
����􏼐 􏼑.

(82)

Hence (Qr)r∈Z+ is convergent in B(X,Y). i.e.,
limr⟶∞‖Qr − Q‖ � 0 and while (sy(Qr))

∞
y�0 ∈ (lM(λ))μ,

for all r ∈ Z+ and (lM(λ))μ is a premodular (sss). Hence, we
have

Υ(Q) � μ sy(Q)􏼐 􏼑
∞
y�0􏼒 􏼓 � μ sy Q − Qr + Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓

≤ μ s[y/2] Q − Qr( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓 + μ s[y/2] Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑

≤ μ Qr − Q
����

����􏼐 􏼑
∞
y�0􏼒 􏼓 + 2μ sy Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑< ϵ,

(83)

we have (sy(Q))∞
y�0 ∈ (lM(λ))μ, then Q ∈ S(lM(λ))

μ(X,Y). □

Definition 15. A prequasi norm Υ on the ideal S(lM(λ))μ
,

where Υ(Q) � μ((sy(Q))∞
y�0), satisfies the Fatou property if

for any sequence Qy􏽮 􏽯
y∈Z+⊆S(lM(λ))Υ

(X,Y) with
limy⟶∞Υ(Qy − Q) � 0 and any V ∈ S(lM(λ))μ

(X,Y), then
Υ(V − Q)≤ supy inf

j≥y
μ(V − Qj).

Theorem 25. *e prequasinorm Υ(Q) � M− 1

(􏽐
∞
y�0 λyM(sy(Q))), for all Q ∈ S(lM(λ))μ

(X,Y) does not
satisfy the Fatou property, if M is a convex Orlicz function
satisfying Δ2-condition and ln(M(ex)) is convex.

Proof. Assume the settings are satisfied and
Qt􏼈 􏼉t∈Z+⊆S(lM(λ))μ

(X,Y) with limt⟶∞Υ(Qt − Q) � 0.
Since the space S(lM(λ))μ

is a prequasi closed ideal, then,
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Q ∈ S(lM(λ))μ
(X,Y). Hence, for any V ∈ S(lM(λ))μ

(X,Y), we
have

Υ(V − Q) � M
− 1

􏽘

∞

y�0
λyM sy(V − Q)􏼐 􏼑⎛⎝ ⎞⎠≤M

− 1
􏽘

∞

y�0
λyM s[y/2] V − Qj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠ + M

− 1
􏽘

∞

y�0
λyM s[[y/2]] Qj − Q􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

≤ 2 supt inf
j≥t

M
− 1

􏽘

∞

y�0
λyM sy V − Qj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠.

(84)

Hence, Υ does not satisfy the Fatou property. □

Definition 16. An operator P: S(lM(λ))μ
(X,Y)

⟶ S(lM(λ))μ
(X,Y) is called a Kannan Υ-Lipschitzian, if

there exists ]≥ 0, so that for every Q, T ∈ S(lM(λ))μ
(X,Y), we

have

Υ(PQ − PT)≤ ](Υ(PQ − Q) + Υ(PT − T)). (85)

(1) If ] ∈ [0, 1/2), the operator P is said to be Kannan
Υ-contraction.

(2) If ] � 1/2, the operator P is said to be Kannan
Υ-nonexpansive.

Definition 17. An operator P: S(lM(λ))μ
(X,Y)⟶

S(lM(λ))μ
(X,Y) is said to be Υ-sequentially continuous at V,

if and only if, when limt⟶∞Υ(Qt − V) � 0, then
limt⟶∞Υ(PQt − PV) � 0.

Theorem 26. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is conve, and

P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))μ

(X,Y). *e point
T ∈ S(lM(λ))Υ

(X,Y) is the unique fixed point of P, when the
following conditions are satisfied:

(i) P is Kannan Υ-contraction mapping,
(ii) P is Υ-sequentially continuous at a point

T ∈ S(lM(λ))μ
(X,Y),

(iii) *ere exists V ∈ S(lM(λ))μ
(X,Y) so that the sequence

of iterates PtV􏼈 􏼉 has a subsequence Ptj V􏼈 􏼉 con-
verging to T.

Proof. Let the conditions be verified. If T is not a fixed point
of P, then PT≠T. From the conditions (ii) and (iii), we have

lim
tj⟶∞
Υ P

tj V − T􏼐 􏼑 � 0,

lim
tj⟶∞
Υ P

tj+1
V − PT􏼐 􏼑 � 0.

(86)

Since P is Kannan Υ-contraction mapping, one can see

0<Υ(PT − T) � Υ PT − P
tj+1

V􏼐 􏼑 + P
tj V − T􏼐 􏼑 + P

tj+1
V − P

tj V􏼐 􏼑􏼐 􏼑

≤ 2Υ P
tj+1

V − PT􏼐 􏼑 + 4Υ P
tj V − T􏼐 􏼑 + 4]

]
1 − ]

􏼒 􏼓
tj− 1
Υ(PV − V).

(87)

Since tj⟶∞, we have a contradiction. Hence, T is a
fixed point of P. To prove the uniqueness of the fixed point
T. Let we have two different fixed points
T, U ∈ S(lM(λ))μ

(X,Y) of P. -erefore, one has

Υ(T − U)≤Υ(PT − PU)

≤ ](Υ(PT − T) + Υ(PU − U)) � 0.
(88)

Hence, T � U. □

Example 8. Assume P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))Υ

(X,Y),
where Υ(Q) � 􏽐

∞
y�0 λy

�����
sy(Q)

􏽱
, for every Q ∈ S(lM(λ))μ

(X,Y)

and

P(Q) �

Q

26
, Υ(Q) ∈ [0, 1),

Q

37
, Υ(Q) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(89)

As for every Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2)

∈ [0, 1), one has

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

26
−

Q2

26
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 + Υ

25Q2

26
􏼒 􏼓􏼒 􏼓

�
2
5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(90)
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For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2) ∈ [1,∞),

we get

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

37
−

Q2

37
􏼒 􏼓≤

1
3
Υ

36Q1

37
􏼒 􏼓 + Υ

36Q2

37
􏼒 􏼓􏼒 􏼓 �

1
3
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁. (91)

For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1) ∈ [0, 1) and

Υ(Q2) ∈ [1,∞), one can see

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

26
−

Q2

37
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 +

1
3
Υ

36Q2

37
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 + Υ

36Q2

37
􏼒 􏼓􏼒 􏼓

�
2
5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(92)

So, the operator Q is Kannan Υ-contraction and Pt(Q) �

Q/26t
, Υ(Q) ∈ [0, 1),

Q/37t
, Υ(Q) ∈ [1,∞).

􏼨

Clearly, P is Υ-sequentially continuous at the zero op-
erator Θ ∈ S(lM(λ))μ

and PtQ􏼈 􏼉 has a subsequence Ptj Q􏼈 􏼉

converging to Θ. From -eorem 27, the zero operator
Θ ∈ S(lM(λ))μ

is the unique fixed point of P. Suppose with
limt⟶∞Υ(Q(t) − Q(0)) � 0 − b ±

�������
b2 − 4ac

√
/2a, where

Q(0) ∈ S(lM(λ))μ
with Υ(Q(0)) � 1. From the continuously of

the prequasi norm Υ, one has

lim
t⟶∞
Υ PQ

(t)
− PQ

(0)
􏼐 􏼑 � lim

t⟶∞
Υ

Q
(t)

26
−

Q
(0)

37
􏼠 􏼡

� Υ
11Q

(0)

962
􏼠 􏼡> 0.

(93)

So P is not Υ-sequentially continuous at Q(0). -is
implies the operator P is not continuous at Q(0).

Example 9. Suppose P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))Υ

(X,Y),

where Υ(Q) �
��������������
􏽐
∞
y�0 λy(sy(Q))2

􏽱
, for every

Q ∈ S(lM(λ))Υ
(X,Y) and

P(Q) �

Q

5
, Υ(Q) ∈ [0, 1),

Q

6
, Υ(Q) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(94)

As for each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2) ∈

[0, 1), one can see

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

5
−

Q2

5
􏼒 􏼓≤

�
2

√

4
Υ

4Q1

5
􏼒 􏼓 + Υ

4Q2

5
􏼒 􏼓􏼒 􏼓

�

�
2

√

4
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(95)

For every Q1, Q2 ∈ S(lM(λ))μ
withΥ(Q1),Υ(Q2) ∈ [1,∞),

this implies

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

6
−

Q2

6
􏼒 􏼓≤

�
2

√

5
Υ

5Q1

6
􏼒 􏼓 + Υ

5Q2

6
􏼒 􏼓􏼒 􏼓

�

�
2

√

5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(96)

For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1) ∈ [0, 1) and

Υ(Q2) ∈ [1,∞), one obtains

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

5
−

Q2

6
􏼒 􏼓≤

�
2

√

4
Υ

4Q1

5
􏼒 􏼓 +

�
2

√

5
Υ

5Q2

6
􏼒 􏼓

≤
�
2

√

4
Υ

4Q1

5
􏼒 􏼓 + Υ

5Q2

6
􏼒 􏼓􏼒 􏼓

�

�
2

√

4
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(97)

So, the operator Q is Kannan Υ-contraction and.

Pt(Q) �
Q/5t

, Υ(Q) ∈ [0, 1),

Q/6t
, Υ(Q) ∈ [1,∞).

􏼨

Evidently, P is Υ-sequentially continuous at the zero
operator Θ ∈ S(lM(λ))μ

and PtQ􏼈 􏼉 has a subsequence Ptj Q􏼈 􏼉

converging to Θ. From -eorem 27, the zero operator
Θ ∈ S(lM(λ))μ

is the unique fixed point of P. Suppose
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Q(t)􏼈 􏼉⊆ S(lM(λ))μ
with limt⟶∞Υ(Q(t) − Q(0)) � 0, where

Q(0) ∈ S(lM(λ))μ
with Υ(Q(0)) � 1. From the continuously of

the prequasi norm Υ, one has

lim
t⟶∞
Υ PQ

(t)
− PQ

(0)
􏼐 􏼑 � lim

t⟶∞
Υ

Q
(t)

5
−

Q
(0)

6
􏼠 􏼡

� Υ
Q

(0)

30
􏼠 􏼡> 0.

(98)

So P is not Υ-sequentially continuous at Q(0). Hence, the
operator P is not continuous at Q(0).

7. Applications on Summable Equations

We investigate here a solution to (101), which studied by
many authors (see [27–29]), in (lM(λ))μ.

βx � rx + 􏽘
∞

y�0
D(x, y)h y, βy􏼐 􏼑. (99)

Suppose H: (lM(λ))μ⟶ (lM(λ))μ constructed by

H βx( 􏼁x∈Z+ � rx + 􏽘
∞

y�0
D(x, y)h y, βy􏼐 􏼑⎛⎝ ⎞⎠

x∈Z+

. (100)

Theorem 27. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, D: Z+2⟶ R,
h: Z+ × R⟶ R, r: Z+⟶ R, and for all x ∈Z+, there
exists ] ∈ [0, 1/2), with

M 􏽘
y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤M(]) M rx − βx + 􏽘
∞

y�0
D(x, y)f y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + M rx − ηx + 􏽘
∞

y�0
D(x, y)f y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(101)

then equation (101) hold a solution in (lM(λ))μ, where
μ(β) � M− 1(􏽐

∞
x�0 M(|βx|)), for every β ∈ lM(λ).

Proof. Suppose the setups are verified. We have

μ(Hβ − Hη) � M
− 1

􏽘
x∈Z+

λxM Hβx − Hηx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ � M

− 1
􏽘

x∈Z+

λxM 􏽘
m∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ ]M
− 1

􏽘
x∈Z+

λxM rx − βx + 􏽘
∞

m�0
D(x, y)h y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ ]M
− 1

􏽘
x∈Z+

λxM rx − ηx + 􏽘
∞

m�0
D(x, y)h y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� ](μ(Hβ − β) + μ(Hη − η)).

(102)

In view of -eorem 11, there exists a unique solution of
equation (101) in (lM(λ))μ. □

Example 10. For the space (lM(λ))μ, where
μ(β) �

���������

􏽐x∈Z+ |βx|4
4

􏽱

, for all β ∈ lM(λ). Assume the sum-
mable equations are defined as

βx � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny, (103)

where v> 2 and let H: (lM(λ))μ⟶ (lM(λ))μ is defined by

H βx( 􏼁x∈Z+ � e
− (3x+6)

+ 􏽘
∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny⎛⎝ ⎞⎠

x∈Z+

. (104)
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We have

􏽘

∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

(siny − siny)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4

≤
1
81

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x ηx

x2 + y2 + 1
􏼠 􏼡

v

siny

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(105)

By -eorem 27, the summable equations (105) have one
solution in (lM(λ))μ.

Theorem 30. If M is a concave Orlicz function,
D: Z+2⟶ R, h: Z+ × R⟶ R, r: Z+⟶ R, and for
every x ∈Z+, there exists ] ∈ [0, 1/2), with

M 􏽘
y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤ ] M rx − βx + 􏽘
∞

y�0
D(x, y)f y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + M rx − ηx + 􏽘
∞

y�0
D(x, y)f y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(106)

then equation (101) contains one solution in (lM(λ))μ, where
μ(β) � 􏽐

∞
x�0 M(|βx|), for each β ∈ lM(λ).

Proof. Suppose the setups are verified. One has

μ(Hβ − Hη) � 􏽘

x∈Z+

λxM Hβx − Hηx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼑 � 􏽘

x∈Z+

λxM 􏽘

y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤ ] 􏽘
x∈Z+

λxM rx − βx + 􏽘

∞

y�0
D(x, y)h y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + 􏽘
x∈Z+

λxM rx − ηx + 􏽘

∞

y�0
D(x, y)h y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ](μ(Hβ − β) + μ(Hη − η)).

(107)

In view of -eorem 12, there exists a unique solution of
equation (101) in (lM(λ))μ. □

Example 11. For the space (lM(λ))μ, where
μ(β) � 􏽐x∈Z+

���
|βx|3

􏽰
, for every β ∈ lM(λ). Assume the sum-

mable equations

βx � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

, (108)

where v> 2 and let H: (lM(λ))μ⟶ (lM(λ))μ is defined by

H βx( 􏼁x∈Z+ � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

⎛⎝ ⎞⎠

x∈Z+

.

(109)

It is easy to see that

􏽘

∞

y�0
(− 1)

x e βx| |

x2 + y2 + 1
􏼠 􏼡

v

(− 1)
y

− (− 1)
y

( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3

≤
1
3

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(110)

Journal of Mathematics 17



By -eorem 30, the summable equation (105) has an
unique solution in (lM(λ))μ.

Example 12. Given the sequence space (lM(λ))μ, where
μ(β) �

���������

􏽐x∈Z+ |βx|2
􏽱

, for all β ∈ lM(λ). Consider the sum-
mable equations (110), with x≥ 2 and v> 2 and let
H: Φ⟶Φ, where Φ � β ∈ (lM(λ))μ: β0 � β1 � 0􏽮 􏽯, de-
fined by

H βx( 􏼁x≥ 2 � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

⎛⎝ ⎞⎠

x≥ 2

.

(111)

Obviously, Φ is a nonempty, μ-convex, μ-closed, and
μ-bounded subset of (lM(λ))μ. It is easy to see that

􏽘

∞

y�0
(− 1)

x e βx| |

x2 + y2 + 1
􏼠 􏼡

v

(− 1)
y

− (− 1)
y

( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤
1
9

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x+y e ηx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(112)

By -eorem 27 and Corollary 2, the summable equation
(110) have a solution in Φ.

8. Conclusion

We explored the presence of a fixed point for both Kannan
contraction and nonexpansive mappings working on
various premodular, which is a generalization of modular,
defined by weighted Orlicz sequence space and its pre-
quasi operator ideal. Numerous numerical experiments
and practical applications are used to substantiate our
findings.
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Inequality, Uniwersytet Śla̧ski, Polish Scientific Publishers,
Warszawa–Kraków–Katowice, 1985.
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