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�e major goal of this study is to create an optimal technique for managing COVID-19 spread by transforming the SEIQR model
into a dynamic (multistage) programming problem with continuous and discrete time-varying transmission rates as optimizing
variables. We have developed an optimal control problem for a discrete-time, deterministic susceptible class (S), exposed class (E),
infected class (I), quarantined class (Q), and recovered class (R) epidemic with a �nite time horizon.�e problem involves �nding
the minimum objective function of a controlled process subject to the constraints of limited resources. For ourmodel, we present a
new technique based on dynamic programming problem solutions that can be used to minimize infection rate and maximize
recovery rate. We developed suitable conditions for obtaining monotonic solutions and proposed a dynamic programming model
to obtain optimal transmission rate sequences. We explored the positivity and unique solvability nature of these implicit and
explicit time-discrete models. According to our �ndings, isolating the a�ected humans can limit the danger of COVID-19
spreading in the future.

1. Introduction

Mathematical models are useful for determining how an
infection behaves when it enters a population and deter-
mining whether it will be eradicated or continue under
di�erent settings. COVID-19 is currently causing tremen-
dous concern among researchers, governments, and the
general public due to its rapid spread and a high number of
deaths [1]. �e transmission of this disease is caused by the
tiny particles or droplets called aerosols that carry the virus
into the atmosphere caused by a contaminated person while
sneezing, coughing, or exhaling. Many researchers and
scientists are continuously working to reduce the trans-
mission of this vicious disease throughout the world. In-
fectious diseases are the disciplines that focus on the study of
the dynamics of infectious diseases as well as the relationship
between these diseases and the various factors involved in
their appearance and evolution, in order to implement a
�ght against this spread. Despite its youth, mathematical
modeling is a valuable tool for understanding disease

transmission mechanisms, is playing an increasingly im-
portant role in epidemiology, and has already contributed to
signi�cant successes.�emost in�uential work in the �eld of
mathematics epidemiology was �rst introduced by Kermack
and McKendrick as the SIR model in the year 1927 [2]. Cao
et al.[3] discussed a modi�ed model of the SIR (susceptible,
infected, recovered) epidemic introduced in order to detect
the con�rmed number of infected cases and consecutive
burdens on isolation wards and ICUs. Also, Nesteruk [4]
developed the variables used in the proposed model by
introducing a SIR epidemic model and explaining how to
dominate the spread of the disease. To restore the pandemic
with the involvement of social distancing and lockdown,
Gerberry and Milner presented a data-driven susceptible,
exposed, infected, quarantined, and recovered (SEIQR)
model in [5]. From the publication of Zeb et al. [6], epi-
demiological’s SEIQRmodel with isolation class in 2020 and
their mathematical epidemiology has expanded in numerous
directions, involving biology and computer science by Zima
et al.[7], Zhou et al. [8], and Kermack and McKendrick
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[9, 10]. Some recent studies have focused on this area of
research by He et al. [11], Rahimi et al. [12], Hussain et al.
[13], Youssef et al. [14], Prabakaran et al. [15], and Youssef
et al. [16]. In this current paper, we implement the discrete
type of SEIQR model and discuss the solvability of both
continuous and discrete type SEIQR model. We examined
the behaviour of the time-continuous model. We have de-
veloped two time-discrete models: time-implicit and time-
explicit.We looked at the theory andmethods for solving the
time-implicit model. &en, to control and anticipate the
dynamics of COVID dissemination, we establish appro-
priate transmission rate limits. To do this, we devised a
dynamic programming problem to optimize transmission
rate sequences under arbitrary beginning conditions. We
propose safety guidelines and essential precautionary
measures based on the optimized rate sequences to control
COVID spread. &e article gives the technique for opti-
mizing the transmission rate sequences. &e epidemic
models and their time-discrete variations have been studied
by Allen [17] and Ghosh et al. [18]. Several approaches
towards fractional-order mathematical models of COVID-
19 were studied by the authors Alqhtani et al. [19], Val-
liammal and Ravichandran [20], Nisar et al. [21], Vijaya-
kumar et al. [22], and Alderremy et al. [23]. However, the
aforementioned studies and references mostly contain ex-
plicit approaches with respect to time-discrete epidemic
models.

1.1. Review Literature. In 2020, COVID-19 is a worldwide
emergency. &e first cases occurred in December 2019, and
as of 6 : 34 pm CEST, 28 July 2022, there have been
571,198,904 confirmed cases of COVID-19, including
6,387,863 deaths, reported to WHO. As of 25 July 2022, a
total of 12,248,795,623 vaccine doses have been adminis-
tered. &e rapid spread of COVID-19 has already caused
great public attention and many heated discussions, and the
Chinese mass media have been reporting relevant infor-
mation about the virus and the outbreak.

Ming et al. [24] show that effective public health mea-
sures are required to be implemented in time to avoid the
breakdown of the health system, and the media can certainly
play a crucial role in conveying updated policies and reg-
ulations from authorities to the citizens. &e finding that
SARS-2-S exploits ACE2 for entry, which was also reported
by Kermack and McKendrick [9] while the present manu-
script was in revision, suggests that the virus might target a
similar spectrum of cells as SARS-CoV. However, upon its
outbreak, various research, including but not limited to
Okhuese [25], began to predict the scale that the virus would
hit the world; the ratio of the death to recovery rate has
seemingly been a positive proportion. Allen [17] studied
about time-discrete SI, SIR, and SIS epidemic models, and its
properties. Kermack and McKendrick [10] analyzed an
outbreak such as the one in Hubei is captured by SIR dy-
namics where the population is divided into three com-
partments that differentiate the state of individuals with
respect to the contagion process: infected (I), susceptible (S)
to infection, and removed (R) (i.e., not taking part in the

transmission process). Mathematical modeling has been
influential in providing a deeper understanding on the
transmission mechanisms and burden of the ongoing
COVID-19 pandemic, contributing to the development of
public health policy and understanding. Most mathematical
models of the COVID-19 pandemic can broadly be divided
into either population-based, SIR (Kermack-McKendrick)-
type models, driven by (potentially stochastic) differential
equations proposed by Nesteruk [4] in which individuals
typically interact on a network structure and exchange in-
fection stochastically. &is point emerges also clearly from a
number of recent model-based contributions that have
extended the basic SIR model to account for key insights
from economic theory, namely by allowing for peoples’
(rational) adjustment of work, consumption, and leisure
activities in the face of infection risk. More generally, the
idea is to model explicitly the exposure to the virus (of those
people who are susceptible), as in the susceptible-exposed-
infectious-recovered (SEIR) model which has been analyzed
extensively by He et al. [11] in the context of the COVID-19
pandemic. &e Jacobian method used for the SEIR model
yields a biologically reasonable R0, but for more complex
compartmental models, especially those with more infected
compartments, the method is hard to apply as it relies on the
algebraic Routh Hurwitz conditions for stability of the Ja-
cobian matrix. An alternative method proposed by the
authors Van den Driessche and Watmough [26] gives a way
of determining R0 for an ODE compartmental model by
using the next generation matrix. Batista [27] applies logistic
growth regression model to predict the final size of the
Covid-19 epidemic. Basically, NSFD is an iterative method
in which we get closer to solution through iteration was
given by Mickens [28]. &e authors Vijayakumar et al. [22]
discussed about approximate controllability results for
fractional Sobolev type Volterra-Fredholm integro-differ-
ential systems of order 1< r< 2. Finding the variants that
predict severe disease, we developed a collaboration of four
international computational centers (Iran, Italy, Malaysia,
and Greece). In [29], the authors Bairagi et al. have intro-
duced a mathematical model for controlling the outbreak of
COVID-19 by augmenting isolation and social distancing
features of individuals and also solved the utility maximi-
zation problem by using a nonco-operative game. In 2021,
the multidisciplinary approach was necessary to address the
multidimensional aspects of COVID-19 infection by
established collaborations discussed by the authors Rahimi
et al. [12]. &e study by the authors Prabakaran et al. [15]
looked into the evolving geographic diversity of the SARS-
CoV-2. We then consider how positive factors like social
distancing measures and detrimental factors such as delays
in testing onset affect optimal testing strategies and outbreak
controllability. &roughout, Youssef et al. [14] focus their
analyses on empirically supported parameter values in-
cluding realistic testing rates. While many existing COVID-
19 SIR-like compartmental models explore the effects of
testing with forms of isolation like quarantine or hospital-
ization, the majority of these studies assume simple linear
equations for the rates at which tests are administered and
individuals are isolated. &e authors Hussain et al. [13]
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discussed about the complex systems and network science
approaches, along with technological advances and data
availability, are becoming instrumental for the design of
effective containment strategies. In a nonsense region,
Hilfer’s neutral fractional derivative provided controllability
results using Monch’s method, Banach’s contraction prin-
ciple, fractional calculus, and semigroup property was
studied by the authors Nisar et al. [21]. Some recent updates
regarding the modeling of the coronavirus, the authors
Alderremy et al. [23] constructed a mathematical model
based on the fuzzy fractional derivative and obtained the
results. &e authors Valliammal and Ravichandran [20] are
discussed in detail the fractional integro-differential equa-
tion with different conditions in various spaces. In [30], the
authors Awal et al. proposed a framework that uses Bayesian
optimization to optimize the hyperparameters of the clas-
sifier and adaptive synthetic (ADASYN) algorithm to bal-
ance the COVID and non-COVID classes of the dataset. In
2022, the authors Youssef et al. considered a modified model
to analyze the disease dynamics of the coronavirus infection
by taking the real cases from Saudi Arabia [16]. Alqhtani
et al. [19] analyzed about spatiotemporal dynamical patterns
arising from subdiffusion reaction-diffusion systems of
predator-prey interaction are modeled in the sense of the
Caputo fractional operator. Ghosh et al. [18] have studied
about discrete-time epidemic model for the analysis of
transmission of COVID-19 based upon data of epidemio-
logical parameters.In this article, we have considered the
epidemic model published in [6, 30]. &en, we have ex-
tended the idea of the article [1] to the considered model. As
a result, we recap and extend certain conclusions on the
features of the time-continuous classical SEIQR model, and
we suggest an implicit time-discrete version of this classical
SEIQRmodel, proving that it retains many of the qualities of
the time-continuous version. As a result, the goal of this
research is to propose a nonautonomous SEIQR model, in-
vestigate the properties of its time-continuous formulation,
and design an implicit numerical solution approach that
preserves the time-continuous variant’s primary properties.
&e goal of this article is to propose, analyze, and optimize
COVID-19 using the SEIQR epidemic model. According to
our investigations, COVID-19 outbreaks might be caused by
human-to-human interaction. As a result, isolation of the
infected humans can reduce the COVID-19 spread in the
future. Literature review and comparison of various of these
models are presented in Table 1.

More precisely, our main contributions can be sum-
marized as follows:

(i) First, we suggest a time-continuous SEIQR model
modification with time-varying transmission and
recovery rates.

(ii) Second, we draw the conclusion that the formula-
tion of our time-continuous problem is well-posed.
&is comprises continuous reliance on initial con-
ditions and time-varying rates, global existence in
time, and global uniqueness in time, all of which are
based on an inductive application of Banach’s fixed
point theorem.

(iii) In the case of the time-discrete implicit model, we
provide unique solvability, monotonicity properties,
and an upper error bound between the solution of the
implicit time-discrete problem formulation and the
solution of the time-continuous problem formulation.

(iv) In order to maximize transmission rate sequences
under arbitrary beginning conditions, we have devel-
oped a dynamic programming problem. Based on the
optimal rate sequences, we suggest safety guidelines and
important safety precautions to control COVID spread.

&e paper is arranged as follows: Section 1 is dedicated to
the introduction. In section 2, we present the time-con-
tinuous and time-discrete SEIQR model. In section 3, we
give the monotonicity properties and long-time behaviour.
An error analysis is given in section 4. &e conclusion of our
research work is implemented in the last section 5.

2. Time-Continuous SEIQR Model

&e time-continuous SEIQR model is formulated, and its
behaviours are described using the Lipchitz condition and
Grownwall and Bellman’s inequality in this section.

2.1.Mathematical BackgroundMaterial. Here, we revisit the
Lipschitz continuity of a function on Euclidean spaces, the
local Lipchitz condition, Banach’s fixed point theorem, and
the method of variation of the parameter, which will be used
in the subsequent sections.

Definition 1 (see [46]). Let q1 and q2 be two positive integers
and D ⊂ Rq1 . A function H: D⟶ Rq2 is said to be Lipchitz
continuous on D if there exists a nonnegative constant L≥ 0
such that ‖H(x) − H(y)‖Rq2 ≤L · ‖x − y‖Rq1 holds for
x, y ∈ D.

(i) Let U ⊂ Rq1 be an open set and H: U⟶ Rq2 . &en,
H is called as locally Lipchitz continuous if for every element
y0 ∈ U there exists a neighborhood V of y0 such that the
restrictions of H to V are Lipchitz continuous on V.In a
more general framework, we consider a nonlinear initial
value problem (IVP) z′(t) � H(t, z(t)); z(0) � z0, where
z(t) � (y1(t), y2(t), . . . , yn(t))T is solution vector, and
H(t, z(t)) � (h1(t, z(t)), h2(t, z(t)), . . . , hn(t, z(t)))T is
vectorial function with initial point z0 ∈ Rn. &e following
theorem, which is a direct consequence of Gronwall’s
lemma, can be used to prove global existence in time.

Theorem 1 (see [17]). Let G: Rn⟶ Rn be locally
Lipchitz conditions. If there exist nonnegative real constants B

and k such that ‖G(t, z(t))‖≤ k‖z(t)‖∞ + B holds for all
z(t) ∈ Rn, then the solution of the initial value problem

z′(t) � G(t, z(t)),

z(0) � z0,
􏼨 exists for all time t ∈ R, and moreover,

z(t) satisfies ‖z(t)‖Rn ≤ ‖z0‖R
n · exp(k · |t|) + (B/k)(exp(k·

|t|) − 1),∀t ∈ R.
We give the following: Banach’s fixed point theorem, which

will be used to preserve the global uniqueness in time [47, 47].
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Theorem 2 (see [48]). Let (X, μ) be a complete metric space.
Let T: X⟶ X be a strict contraction, that is, there exists a
constant K ∈ [0, 1) such that μ(T(x), T(y))≤K · μ(x, y)

holds for all x, y ∈ X. =en, the mapping T has a unique fixed
point.

In the following theorem, we present the Grownwall and
Bellman inequality, which will be used in the subsequence
theorems related to the continuous functions.

Theorem 3 (see [49]). Let I: � [a, b], u, f: I⟶ [0,∞) be
two continuous and nonnegative functions and
g: I⟶ (0,∞) be a continuous, positive, and nondecreasing
function. If the inequality

u(t)≤g(t) + 􏽚
t

a
f(s) · u(s)ds, (1)

holds for all t ∈ I, we have

u(t)≤g(t) · exp 􏽚
t

a
f(s) · u(s)ds􏼠 􏼡. (2)

Theorem 4. (Method of variation of parameter) For a first-
order nonhomogeneous linear differential equation, y′(t) +

p(t)y(t) � f(t) has the general solution y(t) � v(t)ePt+

AeP(t), where v′(t) � e− P(t)f(t), P(t) � − 􏽒 p(t)dt and A is
an arbitrary constant.

2.2. Continuous ProblemFormulation. At first, let us assume
the following assumptions [50, 51] for the upcoming
calculations.

(i) Let the population size varies over time be N is
varying over time (i.e., population size� μN(t) for
all t ∈ [0,∞)).

(ii) We divide the population into five homogeneous
subgroups, namely susceptible people (S), exposed
(E), infectious (I), quarantined (Q), and recovered
(R).We can clearly assign every individual to exactly
one subgroup. Hence, we obtain S, E, I, Q, R model
satisfying the condition μN � S(t) + E(t) + I(t) +

Q(t) + R(t) for all t ∈ [0,∞).
(iii) Each time-varying transmission rate x: [0,∞)⟶

[0,∞) is Lipchitz continuous and continuously
differentiable, and there exist constants xmin and
xmax such that 0< xmin ≤x(t)≤xmax for all t≥ 0 and
x ∈ π, β, c, σ, θ, μ􏼈 􏼉.

&e choice of time-dependent transmission rates is
possible because the countermeasures such as lockdowns,
social distancing, or other political actions like curfews and
different medical treatments reduce possible contact be-
tween susceptible and infectious people.Our equations of the
time-continuous SEIQR model read as follows:

dS(t)

dt
� μN − μS(t) − β(N)S(t)[E(t) + I(t)],

dE(t)

dt
� β(N)S(t)[E(t) + I(t)] − πE(t) − (μ + c)E(t)

dI(t)

dt
� πE(t) − σI(t) − μI(t),

dQ(t)

dt
� cE(t) + σI(t) − θQ(t) − μQ(t),

dR(t)

dt
� θQ(t) − μR(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Table 1: Overview of models studied.

Models Compartments Model type Study area

SEIR/SLIR Susceptible (S), exposed/latent (E/L), infectious (I), removed (R) Deterministic

Europe and North
America, New York,
Mexico, Zhejiang,
Guangdong, Japan,

India [31–36]

SEIQR Susceptible (S), exposed (E), hospitalized infected (I), quarantine (Q), recovered or
removed (R) Deterministic India [37]

SIR-X Infected (I), susceptible (S), removed (R), quarantined (X) Deterministic China [38]

SIRD Susceptible (S), infected (I), recovered (R), dead (D) Deterministic China, Italy, and
France [39]

SEIHARD Susceptible (S), exposed (E), symptomatic infectious (I), hospitalized (H),
asymptomatic infectious (A), recovered (R), deaths (D) Deterministic Washington, New

York [40]

SIRU Susceptible (S), asymptomatic infectious (I), reported symptomatic infectious (R),
unreported symptomatic infectious (U) Deterministic China, Hubei, Wuhan

[41]

SEIPAHRF Susceptible (S), exposed (E), symptomatic (I), super-spreaders class (P),
asymptomatic infectious (A), hospitalized (H), recovery (R), fatality (F) Deterministic Wuhan [42]

SEIRU Susceptible (S), asymptomatic noninfectious (E), asymptomatic infectious (I),
reported symptomatic infectious (R), unreported symptomatic infectious (U) Deterministic China [43]

SEIHR Susceptible (S), exposed (E), symptomatic infectious (I), hospitalized (H), recovered
or death (R) Deterministic South Korea [44]

SEIRP Susceptible (S), exposed (E), infectious (I), removed (R), pathogens (P) Deterministic Pakistan [45]
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with initial conditions S(0) � S0 > 0, E(0) � E0 > 0, I(0) �

I0 > 0, Q(0) � Q0 > 0 and R(0) � R0 ≥ 0. &e detailed pa-
rameters and description are given in Table 2

2.3. Nonnegativity and Boundedness of Solutions. Now, we
prove the boundedness of the solution to (3). For this
purpose, we modify ideas given in [51, 52] deriving the
following lemmas, so consider the bounded, time-varying
transmission rates given above.

Lemma 1. Each solution of system (3) is bounded below by
zero.

Proof. Consider, the first relation of (3),

dS(t)

dt
� μN − μS(t) − β(N)S(t)[E(t) + I(t)]. (4)

By taking (dS(t)/dt) � S′(t), equation (4) can be
expressed as a first-order nonhomogeneous linear differ-
ential equation in S(t) as

S′(t) +[μ + β(N)E(t) + β(N)I(t)]S(t) � μN. (5)

Applying &eorem 4, and by applying the same pro-
cedure to the first-order nonhomogenous linear equation
in E(t),

dE(t)

dt
− [β(N)S(t) − π − μ − c]E(t) � β(N)S(t)I(t). (6)

We can easily show that E(t)≥ 0 for all t ∈ [0,∞).
Proceeding like this, we can show that I(t), Q(t), and
R(t)≥ 0 for all t ∈ [0,∞).

Since μN(t) � S(t) + E(t) + I(t) + Q(t) + R(t),
and total population is finite, S(t), E(t), I(t), Q(t), and
R(t) are bounded above, and hence, the proof is
complete. □

Theorem 5. For all solution functions of (3), we have
0≤X≤ μN, where X ∈ S(t), E(t), I(t), Q(t), R(t){ }.

Proof. &e proof follows from μN(t) � S(t) + E(t) + I(t) +

Q(t) + R(t) and Lemma 1. □

2.4. Global Existence in Time. We arrive at a theorem re-
garding global existence in the time of (3) based on&eorem 1.
For abbreviation, we use the supremum norm ‖f(t)‖∞: �

supt∈[a,b]|f(t)| for an arbitrary continuous function

f: [a, b]⟶ R. A similar definition holds for vector-valued
bounded functions. In our case, using the boundedness of
S, E, I, Q, R on [0,∞), obtain the following global existence
theorem.

Theorem 6. =e system of nonlinear first-order ODE (3) has
at least one solution which exists for all t≥ 0.

Proof. By denoting z(t) � (S(t), E(t), I(t), Q(t), R(t)), we
can set

G: [0,∞) × R5⟶ R5 by

(t,z(t))

⟶

A − μS(t) − β(N)S(t)(E(t) + I(t))

β(N)S(t)(E(t) + I(t)) − πE(t) − (μ+ c)E(t)

πE(t) − σI(t) − μI(t)

cE(t) +σI(t) − θQ(t) − μQ(t)

θQ(t) − μR(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

(7)

Clearly, G is Lipchitz continuous, due to the continuity
of each components.

Assuming the supremum norm on our Euclidean space,
and with the help of triangle inequality, we arrive

Table 2: Parameters and description.

Parameters Description
S(t) At time t, the number of susceptible people
E(t) At time t, the number of exposed people
I(t) At time t, the number of infected people
Q(t) At time t, the number of quarantined people
R(t) At time t, the number of recovered people

β &e rate at which susceptible populations migrate to
exposed and infected populations

π &e rate at which an exposed population moves to
an infected population

c
Transmission rate at which exposed people take

outside as isolated

σ Transmission rate at which infected people were
added to isolated individual

θ Transmission rate at which isolated persons
recovered

μ Natural death rate and disease-related death rate
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‖G[t, z(t))‖∞ � sup
t∈[0,∞)

|A − μS(t) − βS(t)[E(t) + I(t)]|, |β(N)S(t)[E(t) + I(t)] − βE(t) − (μ + c)E(t)|,􏼈

πE(t) − σI(t) − μI(t)|, |cE(t) + σI(t) − θQ(t) − μQ(t)|, |θQ(t) − μR(t)|
􏼌􏼌􏼌􏼌 􏼉,

‖G(t, z(t))‖∞ ≤ sup
t∈[0,∞)

|A − μS(t)|, |β(N)S(t)[E(t) + I(t))|, |πE(t)|, |cE(t) + σI(t)|, |θQ(t) − μR(t)|􏼈 􏼉,

≤ sup
t∈[0,∞)

μmaxN + μmaxS(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, βmax(N)S(t)[E(t) + I(t)]
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, πmaxE(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, cmaxE(t) + σmaxI(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,􏽮

θmaxQ(t) − μmaxR(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽯,

≤ sup
t∈[0,∞)

μmax + βmax + πmax + cmax + σmax + θmax( 􏼁 |S(t)|, |E(t)|, |I(t)|, |Q(t)|, |R(t)|{ },

≤ sup
t∈[0,∞)

μmax + βmax + πmax + cmax + σmax + θmax( 􏼁‖z(t)‖∞,

‖G(t, z(t))‖∞ ≤ k‖z(t)‖∞,

(8)

where k � μmax + βmax + πmax + cmax + σmax + θmax.
From the boundedness of our solution functions and the

boundedness of our time-varying transmission rates, all
requirements of &eorem 1 are fulfilled, and our proof is
complete. □

2.5. Global Uniqueness in Time. We present the global
uniqueness theorem for (3) by utilizing the inductive ap-
plication of Banach’s fixed point theorem.

Theorem 7. =e nonlinear ODE system (3) has a unique
solution that exists for all t≥ 0.

Proof. Consider the system of equations given in (3):

(1) Consider the time interval [0, τ] is applicable to
Banach’s fixed point theorem

(2) For x1, x2, y1, y2 ∈ R, by triangle inequality, we have
|x1 · y1 − x2 · y2|≤ |x1‖y1 − y2| + |y2‖x1 − x2|

(3) We assume that S, E, I, Q, R, S, E, I, Q, R: [0,

∞)⟶ [0,∞) are two solutions of (3)

Beginning the proof by letting

sup
t∈[0,τ]

|S(t) − S(t)| � sup S1e
P(t)

− S1e
P(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌whereP(t)

� − 􏽚 P(t)dt,

sup
t∈[0,τ]

|S(t) − S(t)| � sup S1 − S1‖e
P(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

sup
t∈[0,τ]

|S(t) − S(t)|≤ S1 − S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞.

(9)

&en, the second equation in (3) becomes

dE(t)

dt
− [β(N)S(t) − π − μ − c]E(t) � β(N)S(t)I(t). (10)

Since it is a first-order nonhomogenous linear equation in
E(t), we take p1(t) � − [β(N)S(t) − π − μ − c] and f(t) �

β(N)S(t)I(t). As P1(t) � − 􏽒 p1(t)dt and v1(t) � 􏽒 e− P1(t)

β(N)S(t)I(t)dt. Hence, E(t) � v1(t)dteP1(t) + E1e
P(t) and

sup
t∈[0,τ]

|E(t) − E(t)|≤ E1 − E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞. (11)

Similarly, we can easily show the following
inequalities:

sup
t∈[0,τ]

|Q(t) − Q(t)|≤ Q1 − Q1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞,

sup
t∈[0,τ]

|I(t) − I(t)|≤ I1 − I1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞,

sup
t∈[0,τ]

|R(t) − R(t)| ≤ R1 − R1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞.

(12)

Summing implies

‖z(t) − z(t)‖∞ ≤ 􏽘
S,E,I,Q,R

S1 − S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ‖z(t) − z(t)‖∞. (13)

By choosing τ < (1/2)(1/􏽐 |S1 − S1|). As a result, we
conclude that the solution is unique in [0, τ].

2.6. Time-Discrete Implicit SEIQR Model. Assume that our
time interval [0, τ] can be divided by strictly increasing
sequence tj􏽮 􏽯

M

j�1 for M ∈ N with t1 � 0 and tM � T. We
write f(tj) � fj, j ∈ 1, 2, 3, . . . , M{ } for an arbitrary time-
dependent function f.

2.7.DiscussionandFormulations. Here, we are transforming
the continuous system (3) to the fully explicit discrete
scheme (14) as given as follows:
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ΔSj

Δtj

� μN − μj+1Sj(t) − βj+1(N)Sj(t) Ej(t) + Ij(t)􏽨 􏽩,

ΔEj

Δtj

� βj+1(N)Sj(t) Ej + Ij􏽨 􏽩 − πj+1Ej − μj+1 + cj+1􏼐 􏼑Ej,

ΔIj

Δtj

� πj+1Ej − σj+1Ij − μj+1Ij,

ΔQj

Δtj

� cj+1Ej +σj+1Ij − θj+1Qj − μj+1Qj,

ΔRj

Δtj

� θj+1Qj − μj+1Rj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

and a fully implicit scheme (15) as
ΔSj

Δtj

� μj+1N − μj+1Sj+1 − βj+1(N)Sj+1 Ej+1 + Ij+1(t)􏽨 􏽩,

ΔEj

Δtj

� βj+1NSj+1 Ej+1 + Ij+1􏽨 􏽩 − πj+1 +μj+1 + cj+1􏽨 􏽩Ej+1,

ΔIj

Δtj

� πj+1Ej+1 − σj+1Ij+1 − μj+1Ij+1,

ΔQj

Δtj

� cj+1Ej+1 +σj+1Ij+1 − θj+1Qj+1 − μj+1Qj+1,

ΔRj

Δtj

� θj+1Qj+1 − μj+1Rj+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where (ΔXj/Δtj)�(Xj+1 − Xj)/(tj+1 − tj) for j ∈ 1,2,3, ... ,{

M − 1}.
Observe that μj+1N � Sj+1 + Ej+1 + Ij+1 + Qj+1 + Rj+1

for all j ∈ 1, 2, 3, . . . , M − 1{ }.Since the fully explicit scheme
(14) simply reduces to a linear system, our main interest is in
a fully implicit discrete scheme because it preserves the
nonlinear structure of the continuous problem.

2.8. Implicit Time-Discrete Problem Formulation. In this
section and subsequent sections, we derive the recurrence
type of solutions for the implicit scheme (15). For that, we
assume that 0<xmin ≤ xj ≤ xmax, x ∈ μ, β, π, c, σ, θ,􏼈 􏼉 for
j ∈ 1, 2, 3, . . . , M{ } and that 0< tj+1 − tj ≤ 1 for j ∈
1, 2, 3, . . . , M{ } and that S0 > 0, E0 > 0, I0 > 0, Q0 > 0, R0 ≥ 0.
Now, (15) can be expressed as

Sj+1 �
Sj + μj+1N tj+1 − tj􏼐 􏼑

1 + μj+1 + βj+1NEj+1 + βj+1NIj+1􏽨 􏽩 tj+1 − tj􏼐 􏼑
,

Ej+1 �
Ej + βj+1NSj+1Ij+1 tj+1 − tj􏼐 􏼑

1 + πj+1 + μj+1 + cj+1 − βNSj+1􏽨 􏽩 tj+1 − tj􏼐 􏼑
,

Ij+1 �
Ij + πj+1Ej+1 tj+1 − tj􏼐 􏼑

1 + σj+1 + μj+1􏽨 􏽩 tj+1 − tj􏼐 􏼑
,

Qj+1 �
Qj + cj+1Ej+1 + σj+1Ij+1􏽨 􏽩 tj+1 − tj􏼐 􏼑

1 + θj+1 + μj+1􏽨 􏽩 tj+1 − tj􏼐 􏼑
,

Rj+1 �
Rj + θj+1Qj+1 tj+1 − tj􏼐 􏼑

1 + μj+1 tj+1 − tj􏼐 􏼑
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

2.9. Unique Solvability. In this section, we provide the
method for finding the solution of (16). Letting tj+1 − tj �

Δtj in Sj+1, we obtain

Sj+1 �
Sj + μj+1NΔtj

1 + μj+1 + βj+1NEj+1 + βj+1NIj+1􏽨 􏽩Δtj

, (17)

when j � 0, S1 � (S0 + μ1NΔt0)/1 + [μ1 + β1NE1+

β1NI1]Δt0.
when j � 1, S2 � (S1 + μ2NΔt1)/1 + [μ2 + β2NE2+

β2NI2]Δt1.
Now, substituting S1 value in S2, we obtain

S2 �
Nμ2Δt1 1+ μ1 + Nβ1E1 + Nβ1I1( 􏼁Δt0􏼂 􏼃 + Nμ1Δt0 + S0

􏽑
2
m�1 1+ μm + NβmEm + NβmIm( 􏼁Δtm− 1􏼂 􏼃

.

(18)

Similarly, we can find the value of S3 as

S3 �
􏽐

2
z�1 Nμz+1 Δtz( 􏼁 􏽑

z
m�1 1 + μm + NβmEm + NβmIm( 􏼁 Δtm− 1( 􏼁􏼂 􏼃

􏽑
3
m�1 1 + μm + NβmEm + NβmIm( 􏼁 Δtm− 1( 􏼁􏼂 􏼃

+
Nμ1 Δt0( 􏼁 + S0

􏽑
3
m�1 1 + μm + NβmEm + NβmIm( 􏼁Δtm− 1􏼂 􏼃

. (19)

Finally, we obtain the general solution as

Sk �
S0

􏽑
k
m�1 1 + μm + NβmEm + NβmIm( 􏼁Δtm− 1􏼂 􏼃

+
􏽐

k
z�1 Nμz Δtz− 1( 􏼁􏽑

z− 1
m�0 1 + μm + NβmEm + NβmIm( 􏼁Δtm− 1􏼂 􏼃

􏽑
k
m�1 1 + μm + NβmEm + NβmIm( 􏼁Δtm− 1􏼂 􏼃

, (20)

where Ix � Ex � μx � βx � tx � 0 for x≤ 0.
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In a similar way, we can easily find the other
parameters as

Ek �
E0

􏽑
k
m�1 1 + πm + μm + cm − NβmSm( 􏼁Δtm− 1􏼂 􏼃

+
􏽐

k
z�1 NβzSzIzΔtz− 1􏽑

z− 1
m�0 1 + πm + μm + cm − NβmSm( 􏼁Δtm− 1􏼂 􏼃

􏽑
k
m�1 1 + πm + μm + cm − NβmSm( 􏼁Δtm− 1􏼂 􏼃

,

Ik �
I0 + 􏽐

k
z�1 πzEzΔtz− 1􏽑

z− 1
m�0 1 + σm + μm( 􏼁Δtm− 1􏼂 􏼃

􏽑
k
m�1 1 + σm + μm( 􏼁Δtm− 1􏼂 􏼃

,

Qk �
Q0 + 􏽐

k
z�1 czEz + σzIz( 􏼁Δtz− 1􏽑

z− 1
m�0 1 + θm + μm( 􏼁Δtm− 1􏼂 􏼃

􏽑
k
m�1 1 + θm + μm( 􏼁Δtm− 1􏼂 􏼃

,

Rk �
R0 + 􏽐

k
z�1 θzQzΔtz− 1􏽑

z− 1
m�0 1 + μmΔtm− 1􏼂 􏼃

􏽑
k
m�1 1 + μmΔtm− 1􏼂 􏼃

,

(21)

where Sx � Ex � Ix � Qx � Rx � 0 and μx � βx � πx � cx �

σx � θx � tx � 0 for x≤ 0.

Theorem 8. Assume 0< μmin ≤ μj ≤ μmax < 1, 0< βmin ≤ βj ≤
βmax < 1, 0< πmin ≤ πj ≤ πmax < 1, 0< cmin ≤ cj ≤ cmax < 1,
0< σmin ≤ σj ≤ σmax < 1, and 0< θmin ≤ θj ≤ θmax < 1 and
0< tj+1 − tj ≤ 1 holds for all j ∈ 1, 2, . . . , M − 1{ }, and S1 > 0,
E1 > 0, I1 > 0, Q1 > 0 and R1 > 0. =e implicit solution scheme
(16) uniquely solvable for all j ∈ 1, 2, . . . , M − 1{ }, and we
have

Ej+1 �
− B ±

��������
B
2

− 4AC
􏽰

2A
, j ∈ 1, 2, . . . , M − 1{ }, (22)

where A, B, and C are given in upcoming equations in
(27)–(29).

Proof. Substituting Sj+1 in Ej+1 and taking Sj+1 � S,
Ej+1 � E, Ij+1 � I, Qj+1 � Q and Rj+1 � R, we get

E �
Ej + EjXT + I EjNβT + βNT NμT + Sj􏼐 􏼑􏽨 􏽩

1 + XT + ϕT + ϕT
2
X − Nβ NμT + Sj􏽨 􏽩T + I NβT + ϕT

2
Nβ􏽨 􏽩

, (23)

where π + μ + c � ϕ, μ + NβE � X, and Δtj � T.
Again, substituting the I value above, we arrive at

E �
Numerator( 􏽥N)

Denominator( 􏽥D)
, (24)

􏽥N � Ej + EjμT􏼐 􏼑δ + EjNβT + βNT NμT + Sj􏼐 􏼑􏼐 􏼑Ij

+ E NβEjTδ + EjNβT + βNT NμT + Sj􏼐 􏼑􏼐 􏼑πT􏽨 􏽩,

􏽥D � 1 + μT + ϕT + ϕT
2μ − Nβ NμT + Sj􏼐 􏼑T􏼐 􏼑δ

+ Ij NβT + ϕT
2
Nβ􏼐 􏼑

+ E NβT + ϕT
2
Nβ􏼐 􏼑δ + πT NβT + ϕT

2
Nβ􏼐 􏼑􏽨 􏽩,

(25)

where Δtj � T, 1 + (σ + μ)T � δ.
We get the quadratic equation in the form when we solve

equation (24)

AE
2

+ BE + C � 0 · (i.e)AE
2
j+1 + BEj+1 + C � 0, (26)

where

A � Nβ Δtj􏼐 􏼑 +(π + μ + c) Δtj􏼐 􏼑
2
Nβ􏼒 􏼓 1 +(σ + μ) Δtj􏼐 􏼑􏼐 􏼑

+ π Δtj􏼐 􏼑 Nβ Δtj􏼐 􏼑 +(π + μ + c) Δtj􏼐 􏼑
2
Nβ􏼒 􏼓,

(27)

B � 1 + μ Δtj􏼐 􏼑 +(π + μ + c) Δtj􏼐 􏼑 +(π + μ + c)μ Δtj􏼐 􏼑
2

􏼒

− Nβ Nμ Δtj􏼐 􏼑 + Sj􏼐 􏼑 Δtj􏼐 􏼑􏼑 1 +(σ + μ) Δtj􏼐 􏼑􏼐 􏼑

+ Ij Nβ Δtj􏼐 􏼑 +(π + μ + c) Δtj􏼐 􏼑
2
Nβ􏼒 􏼓

− NβEj Δtj􏼐 􏼑 1 +(σ + μ) Δtj􏼐 􏼑􏼐 􏼑

− EjNβ Δtj􏼐 􏼑 + βN Δtj􏼐 􏼑 Nμ Δtj􏼐 􏼑 + Sj􏼐 􏼑􏼐 􏼑π Δtj􏼐 􏼑,

(28)

and

C � Ej + Ejμ Δtj􏼐 􏼑􏼐 􏼑 1 +(σ + μ) Δtj􏼐 􏼑􏼐 􏼑

+ EjNβ Δtj􏼐 􏼑Nβ Δtj􏼐 􏼑 Nμ Δtj􏼐 􏼑 + Sj􏼐 􏼑􏼐 􏼑Ij.
(29)

&eproof is completed by taking the roots of equation (26).
Similarly, by substituting Ij+1 in Qj+1 in the system, the

equation Qj+1 is in the function of Ej+1. &en, replacing Ej+1
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by equation (24), we will get an explicit formula for com-
puting Q.

Since Sj+1 + Ej+1 + Ij+1 + Qj+1 + Rj+1 � μj+1N, we can
easily get an explicit formula for Rj+1 for j ∈ 1, 2, . . . ,{

M − 1}. □

3. Monotonicity Properties and Long-
Time Behaviour

In this section, we develop a suitable atmosphere in which
our implicit scheme obeys the monotonic properties as in
the continuous case. For this, we give the following lemmas
and finally provide a nonlinear programming problem to
optimize the transmission sequences.

Lemma 2. If Sj[βjμ− 1
j (Ej + Ij) + N− 1]≥ 1, then Sj+1 ≤ Sj,

i.e., (Sn)∞n�1 becomes a decreasing sequence.

Proof. Taking y � μj+1NΔtj and x � 1 + [μj+1+

βj+1N(Ej+1 + Ij+1)] in Sj+1 of (16). We arrive the relation

Sj+1 �
y + Sj

1 + x
. (30)

From (30), we obtain (1 + x)Sj+1 � y + Sj and which
implies Sj+1 − Sj � y − xSj+1.

Clearly, y − xSj+1 ≤ 0 if Sj+1[βj+1μ− 1
j+1(Ej+1 + Ij+1)+

N− 1]≥ 1. &us,

Sj+1 − Sj ≤ 0, forj ∈ 1, 2, . . . , m{ }, (31)

and the proof is complete.

Lemma 3. If βjNSj[1 + IjE
− 1
j ]≤ πj + μj + cj, then (En)∞n�1

is a decreasing sequence.

Proof. Taking x � βj+1NSj+1Ij+1Δtj and y � (πj+1 + μj+1+

cj+1 − βj+1NSj+1)Δtj in Ej+1 of (16), we derive

Ej+1 − Ej � x − yEj+1. (32)

Here, x − yEj+1 ≤ 0 follows from βj+1NSj+1[1+

Ij+1E
− 1
j+1]≤ πj+1 +μj+1 + cj+1, and hence, we obtain Ej+1≤Ej

for all j, and the proof is complete. □

Lemma 4. If πj(σj + μj)
− 1 ≤ IjE

− 1
j , then (In)∞n�1 be a de-

creasing sequence.

Proof. Taking Ij+1 � ((Ij + x)/(1 + y)), where x �

πj+1Ej+1Δtj and y � (σj+1 + μj+1)Δtj in (16), then we find

Ij+1 − Ij � x − yIj+1. (33)

Since πj+1(σj+1 + μj+1)
− 1 ≤ Ij+1E

− 1
j+1, we get x − yIj+1 ≤ 0

and Ij+1 ≤ Ij for all j. □

Lemma 5. If (cjEj + σjIj)(θj + μj)
− 1 ≥Qj, then (Qj)

∞
n�1

becomes an increasing sequence.

Proof. Taking Qj+1 � (Qj + x)/(1+ y), where x � (cj+1Ej+1+

σj+1Ij+1)Δtj and y � (θj+1 +μj+1)Δtj in (16), then it is easy to
arrive

Qj+1Qj � x − yQj+1. (34)

From our assumption (cj+1Ej+1 + σj+1Ij+1)(θj+1+ μj+1)
− 1 ≥

Qj+1, we derive

x − yQj+1 ≥ 0, (35)

and the proof is complete. □

Lemma 6. If θjQjμ− 1
j ≥Rj for all j, then Rj+1 ≥Rj for all

j.Expressing Rj+1 � (Rj + x)/(1 + y) in (16), we can easily
find

Rj+1 − Rj � x − yRj+1, (36)

from the given condition, θj+1Qj+1μ− 1
j+1 ≥Rj+1 and straight-

forward calculations, we obtain

x − yRj+1 ≥ 0, (37)

and the proof is complete.

Remark 1. Since Rj is monotonic and bounded above by
total population, then it will converge and limj⟶∞Rj � R∗

exists, and (Ej) and (Sj) are decreasing sequence, and we
easily observe that limj⟶∞Ij � 0.

3.1. Formulation and Discussion. Due to the ongoing nature
of the COVID-19 pandemic, it was impossible to fully
comprehend the short- or long-term implications of this
global disruption. In our study, when there is no quarantine,
a single infected individual can spread the infection to about
two other people; however, when quarantine is imposed,
there is a chance of preventing further transmission of in-
fection. However, some of the exposed individuals may
avoid quarantine due to fear of stigma and death. In other
words, this does not achieve zero infection in the population,
implying that additional interventions are required to
eradicate the virus. If there are no adequate interventions in
place, the virus will remain in the population for a long time,
but it will eventually drop over time. But, still, there will be a
small number of sick people who have the ability to start
another outbreak even after measures like quarantine and
public health education/awareness raise the number of ex-
posed and infected people dramatically but not to zero.
According to this, COVID-19 will not be completely
eradicated even with prompt development of measures.In
order to study the effects of isolation, quarantine, and the
percentage of exposed people who will be quarantined, we
did numerical simulations. Many authors have developed
numerous mathematical models to limit the spread of vi-
ruses. Here, we have developed the optimization technique
to control the spread of the virus. &is approach enables us
to control a viruses future spread and predict how it will
spread in the future.After summarizing all of the prior
principles, the problem is transformed into a dynamic
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programming problem model with constraints imposed by
the previous lemmas by keeping Sk, Ek, Ik, Qk, and Rk are
constants and βk, πk, μk, ck, σk, and θk are variables at each
level of the optimization. Note that the following dynamic
programming problem preserves the monotonic properties.

&e dynamic programming problem is given by
Min(βk + πk + μk) − (ck + σk + θk) and subject to the

constraints:

Sk βk Ek + Ik( 􏼁 + μkN
− 1

􏽨 􏽩 − μk ≥ 0,

πk + μk + ck( 􏼁Ek − βkNSk Ek + Ik( 􏼁≥ 0,

Ik σk + μk( 􏼁 − πkEk ≥ 0,

ckEk + σkIk − Qk θk + μk( 􏼁≥ 0,

θkQk − Rkμk ≥ 0,

Sk + Ek + Ik + Qk + Rk − μkN � 0,

Sk, Ek, Ik, Qk, Rk ≥ 0,

βk, πk, μk, ck, σk, θk ≥ 0.

(38)

Since S0, E0, I0, Q0, and R0 are known initial conditions,
we get a dynamic programming problem for level-0 time if
we keep k � 0 in the above model. We shall obtain an
optimal (feasible) solution (β∗0 , π∗0 , μ∗0 , c∗0 , σ∗0 , θ∗0 ) by
employing the optimization technique in operation research.
&en, these values are assigned as β1 � β∗0 , π1 � π∗0 , μ1 � μ∗0 ,
c1 � c∗0 , σ1 � σ∗0 , θ1 � θ∗0 . We will receive the values for
finding S1, E1, I1, Q1, and R1. We will receive a dynamic
programming problem for level-1 time if we keep k � 1 in
this model. We will achieve the ideal solution as (β∗1 , π∗1 ,

μ∗1 , c∗1 , σ∗1 , θ∗1 ) using the optimization technique.&ese values
are assigned as β2 � β∗1 , π2 � π∗1 , μ2 � μ∗1 , c2 � c∗1 ,

σ2 � σ∗1 , θ2 � θ∗1 . We will receive the values for S2, E2, I2, Q2,
andR2. If we keep going in this direction, we will end up with
transmission rate sequences (βk)∞k�1, (πk)∞k�1, (μk)∞k�1,

(ck)∞k�1, (σk)∞k�1, and (θk)∞k�1 which provide a sufficiently
viable stable solution for the situation, correspond to

S0, E0, I0, Q0, and R0. After a certain stage, each transmission
rate becomes constant. We must follow the appropriate
standard operating procedures and safety precautions in
order to acquire these sequences in practice. &e isolation
class, it appears, plays a significant role in achieving this
possible solution.

4. Error Analysis

Now, we will set an upper limit for error propagation. We
need to construct certain assumptions for our convergence
analysis before proving the required statements. &e fol-
lowing is a list of them:

(i) Let [0, T] be the time interval under consideration
with t1 � 0< t2 < · · · < tM− 1 < tM � T

(ii) Allow the time-continuous and time-discrete
models beginning circumstances to coincide

(iii) Let S, E, I, Q, R: [0, T]⟶ [0,∞) be twice contin-
uously differentiable solution functions

(iv) Allow the time-varying transmission rates μ, β, π, c,

σ, θ: [0 · T]⟶ [0,∞) be continuously differen-
tiable just once

(v) Allow the time-varying transmission and recovery
rates to be bounded by 0 and 1

(vi) Choose Δp <min 1/12{ (μmax + βmax) + (4πmax+

cmax + σmax + θmax)}≤ 1 for all p ∈ N and Δ: �

maxp∈NΔp

We get the following theorem under these conditions, in
which we adopt notions from the error analysis of an ex-
plicit-implicit solution algorithm.

Theorem 9. =e difference between the solutions of the time-
continuous system formulation (3) and the time-discrete
system (16) fulfills if the aforementioned assumptions are met,
then

zp+1 − z tp+1􏼐 􏼑
�����

�����≤Cloc · Δ
1

1 − 6 μmax + βmax( 􏼁 + 2 πmax + θmax + cmax + σmax( 􏼁􏼂 􏼃Δ
􏼠 􏼡

p

− 1􏼨 􏼩. (39)

Proof. Since this is technical proof, we will start with a brief
description of our technique. &e first step is the estimation
of local errors between time-continuous and time-discrete
solutions. After that, we look at error propagation over time.
Finally, we look into the accumulation of these errors. At the
same time, time-discrete solutions are expressed as Sp at
time tp, whereas time-continuous solutions are written as
S(tp).

1) For the purpose of examining local errors, we assume
that

tp, Sp􏼐 􏼑
T

� tp, S tp􏼐 􏼑􏼐 􏼑
T
,

tp, Ep􏼐 􏼑
T

� tp, E tp􏼐 􏼑􏼐 􏼑
T

,

tp, Ip􏼐 􏼑
T

� tp, I tp􏼐 􏼑􏼐 􏼑
T

,

tp, Qp􏼐 􏼑
T

� tp, Q tp􏼐 􏼑􏼐 􏼑
T
,

tp, Rp􏼐 􏼑
T

� tp, R tp􏼐 􏼑􏼐 􏼑
T
,

(40)
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hold for arbitrary p ∈ 1, 2, . . . , M − 1{ } on the time interval
[tp, tp+1]. Here, we consider one time step and denote
corresponding time-discrete solutions by 􏽧Sp+1, 􏽧Ep+1, 􏽧Ip+1,
􏽧Qp+1, and 􏽧Rp+1.

a) For the time-discrete solution Sp at time tp, we take

􏽧Sp+1 �
Sp + μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1)Δtp+1,􏼐
(41)

and in similar way for the time-continuous solutions S(tp),
we have

􏽧Sp+1 � S tp􏼐 􏼑 −
μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑Δtp+1S tp􏼐 􏼑

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1
+

μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1
, (42)

which yields

S tp+1􏼐 􏼑 − 􏽧Sp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � S tp+1􏼐 􏼑 − S tp􏼐 􏼑 +
μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑Δtp+1S tp􏼐 􏼑 − μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (43)

which implies

􏽚
tp+1

tp

S′(τ)dτ +
μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑Δtp+1S tp􏼐 􏼑 − μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (44)

Now, add and subtract Δp+1 · S′(tp). And then, applying
the triangle inequality in the above relation, we get

S tp+1􏼐 􏼑 − 􏽧Sp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽚
tp+1

tp

S′(τ)dτ − Δp+1 · S′ tp􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ Δp+1 · S′ tp􏼐 􏼑 +

μp+1 +βp+1N
􏽧Ep+1 +βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1S tp􏼐 􏼑 − μp+1NΔtp+1

1+ μp+1 +βp+1N
􏽧Ep+1 +βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

IS,1≔ � 􏽚
tp+1

tp

S′(τ) − S′ tp􏼐 􏼑􏼚 􏼛dτ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽚

tp+1

tp

τ − tp􏼐 􏼑
S′(τ) − S′ tp􏼐 􏼑

τ − tp

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(45)

By applying the mean value theorem, there exists
ξS,1 ∈ (tp, tp+1) such that

S″ ξS,1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
S′(τ) − S′ tp􏼐 􏼑

τ − tp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ S″(t)

����
����∞. (46)

&is yields

IS,1 ≤ ‖S″(t)‖∞ · 􏽚
tp+1

tp

τ − tp􏼐 􏼑dτ �
Δ2p+1

2
· ‖S″(t)‖∞. (47)

Also,

IIS,1 ≔ � Δp+1.S′ tp􏼐 􏼑 +
μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑Δtp+1S tp􏼐 􏼑 − μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

IIS,1 � Δtp+1 · S′ tp􏼐 􏼑 +
μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑S tp􏼐 􏼑 − μp+1N

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(48)

Substituting equation (42) in the above and then solving
the above relation, we get IIS,1 ≤Δtp+1 · IIIS,1 + IVS,1, where

IIIS,1 ≔ � N μp − μp+1􏼐 􏼑 − S tp􏼐 􏼑 μp − μp+1􏼐 􏼑 + N βp E tp􏼐 􏼑 + I tp􏼐 􏼑􏼐 􏼑 − βp+1
􏽧Ep+1 + 􏽧Ip+1􏼐 􏼑􏽨 􏽩􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

IVS,1 ≔ � μpN − S tp􏼐 􏼑 μp + βpN E tp􏼐 􏼑􏼐 + I tp􏼐 􏼑􏽨 􏽩􏼐 􏼑 μp+1 + βp+1N
􏽧Ep+1 + 􏽧Ip+1􏼐 􏼑􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(49)

Now, applying the triangle inequality in IIIS,1, we obtain
≤N|μp+1 − μp| + |S(tp)| · VS,1, where
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VS,1≔ � μp − μp+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

+N βp E tp􏼐 􏼑 + I tp􏼐 􏼑􏼐 􏼑 − βp+1
􏽧Ep+1 + 􏽧Ip+1􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌,

letN μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � N tp+1 − tp􏼐 􏼑
μp+1 − μp

tp+1 − tp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

N μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � NΔtp+1
μp+1 − μp

tp+1 − tp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(50)

By the mean value theorem, there exists ξμ,1 ∈ [tp, tp+1]

such that

μ′ ξμ,1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
μp+1 − μp

tp+1 − tp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ‖μ′(t)‖∞. (51)

Hence,

N · μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤N · Δtp+1 · ‖μ′(t)‖∞. (52)

Using the triangle inequality again in VS,1 yields

VS,1 ≤ μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + N βpE tp􏼐 􏼑 − βp+1
􏽧Ep+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ N βpI tp􏼐 􏼑 − βp+1
􏽧Ip+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(53)

From equation (52), we can easily find that

μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Δtp+1 · ‖μ′(t)‖∞. (54)

Now, substituting 􏽧Ep+1 value (53), we arrive

N βpE tp􏼐 􏼑 − βp+1
􏽧Ep+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � NβpE tp􏼐 􏼑 − βp+1
E tp􏼐 􏼑 + βp+1N

􏽧Sp+1
􏽧Ip+1Δtp+1

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤N · IS,2 + N · IIS,2,

(55)

where

IS,2 ≔ � βpE tp􏼐 􏼑 −
βp+1E tp􏼐 􏼑

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

IIS,2 ≔ �
β2p+1N

􏽧Sp+1
􏽧Ip+1Δtp+1

1 + πp+1 + μp+1 + cp+1 − Nβp+1
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(56)

Now, IS,2 ≤ |E(tp)|·

βp +βp πp+1 +μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1 − βp+1

1+ πp+1 +μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

N

1 − βmax
βp+1 − βp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + βp πp+1 +μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

IS,2≤
N ·Δtp+1

1 − βmax
β′(t)

����
����∞ +βmax πmax +μmax + cmax +βmax( 􏼁􏽮 􏽯.

(57)

Similarly, for IIS,2, it is easy to arrive

IIS,2 �
Nβ2p+1

􏽧Sp+1
􏽧Ip+1Δtp+1

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
Nβ2p+1

􏽧Sp+1
􏽧Ip+1Δtp+1

1 − βmax

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

IIS,2 ≤
N · βmax2 · Δtp+1

1 − βmax

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(58)

Applying equation (57) and (58) in (55), we get

N βpE tp􏼐 􏼑 − βp+1
􏽧Ep+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
N

2Δtp+1

1 − βmax
β′(t)

����
����∞􏽮

+βmax πmax +μmax + cmax +βmax( 􏼁

+β2max􏽯.

(59)

Proceeding through the similar steps, we can find
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N βpI tp􏼐 􏼑 − βp+1
􏽧Ip+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
N

2Δtp+1

1 − βmax
β′(t)

����
����∞ + βmax σmax + μmax( 􏼁􏽮 􏽯 +

NΔtp+1

1 − βmax
πmax. (60)

Applying equations (54), (59), and (60) in VS,1, we obtain

VS,1 ≤Δtp+1‖μ′(t)‖∞ +
N

2Δtp+1

1 − βmax
β′(t)

����
����∞ + βmax πmax + μmax + cmax + βmax( 􏼁 + β2max􏽮 􏽯

+
N

2Δtp+1

1 − βmax
β′(t)

����
����∞ + βmax σmax + μmax( 􏼁􏽮 􏽯 +

NΔtp+1

1 − βmax
πmax.

(61)

Using equations (52) and (61), IIIS,1 will be

IIIS,1 ≤ 2NΔtp+1 · ‖μ′(t)‖∞ +
N

3Δtp+1

1 − βmax
β′(t)

����
����∞ +

N
3Δtp+1

1 − βmax
β′(t)

����
����∞ + βmax σmax + μmax( 􏼁􏽮 􏽯

⎧⎨

⎩

+βmax πmax + μmax + cmax + βmax( 􏼁 + β2max􏽯 +
NΔtp+1

1 − βmax
πmax.

(62)

Now, the term IVS,1 satisfies the inequality

IVS,1 ≤ IS,3 + S tp􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · IIS,3, (63)

where

IS,3 ≔ � μpN μp+1 + βp+1N
􏽧Ep+1 + 􏽧Ip+1􏼐 􏼑􏽨 􏽩Δtp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

IIS,3 ≔ � μp + βpN E tp􏼐 􏼑 + I tp􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

· μp+1 + βp+1N
􏽧Ep+1 + t􏽧Ip+1􏼐 􏼑􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌,

(64)

which yields

IS,3 � NΔtp+1 μp μp+1 + βp+1N
􏽧Ep+1 + 􏽧Ip+1􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

≤NΔtp+1 μmax μmax + βmax( 􏼁􏼈 􏼉,
(65)

and

IIS,3 ≤NΔtp+1 μmax + βmax( 􏼁 μmax + βmax( 􏼁􏼈 􏼉,

IIS,3 � NΔtp+1 μmax + βmax( 􏼁
2
.

(66)

From (65) and (66), we get

IVS,1 ≤NΔtp+1 μmax μmax + βmax( 􏼁􏼈 􏼉

+ N
2Δtp+1 μmax + βmax( 􏼁

2
.

(67)

Similarly, from (62) and (66),

IIS,1 ≤ 2N Δtp+1􏼐 􏼑
2

· ‖μ′(t)‖∞ +
N

3 Δtp+1􏼐 􏼑
2

1 − βmax
β′(t)

����
����∞ + βmax πmax + μmax + cmax + βmax( 􏼁 + β2max􏽮 􏽯

+
N

3 Δtp+1􏼐 􏼑
2

1 − βmax
β′(t)

����
����∞ + βmax σmax + μmax( 􏼁􏽮 􏽯 +

N Δtp+1􏼐 􏼑
2

1 − βmax
πmax + N Δtp+1􏼐 􏼑

2
μmax μmax + βmax( 􏼁􏼈 􏼉

+ N
2 Δtp+1􏼐 􏼑

2
μmax + βmax( 􏼁

2
.

(68)

Hence,

S tp+1􏼐 􏼑 − 􏽧Sp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Δp+1􏼐 􏼑

2

2
· ‖S″(t)‖∞ + 2N Δtp+1􏼐 􏼑

2
· ‖μ′(t)‖∞

+
N

3 Δtp+1􏼐 􏼑
2

1 − βmax
β′(t)

����
����∞ + βmax πmax + μmax + cmax + βmax( 􏼁 + β2max􏽮 􏽯

+
N

3 Δtp+1􏼐 􏼑
2

1 − βmax
β′(t)

����
����∞ + βmax σmax + μmax( 􏼁􏽮 􏽯

+
N Δtp+1􏼐 􏼑

2

1 − βmax
πmax + N Δtp+1􏼐 􏼑

2
μmax μmax + βmax( 􏼁􏼈 􏼉 + N

2 Δtp+1􏼐 􏼑
2
μmax + βmax( 􏼁

2
.

(69)
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b) For the time-discrete solution for Ep at time tp, we take

􏽧Ep+1 �
Ep + βp+1N

􏽧Sp+1
􏽧Ip+1Δtp+1

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

, (70)

as well as for time-continuous solutions E(tp), we find

􏽧Ep+1 � E tp􏼐 􏼑 −
πp+1 + μp+1 + cp+1 − βp+1N

􏽧Sp+1􏼐 􏼑Δtp+1E tp􏼐 􏼑

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

+
βp+1

􏽧Sp+1
􏽧Ip+1NΔtp+1

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

. (71)

Now, applying the procedure similar to the case (a), we
can easily find

E tp+1􏼐 􏼑 − 􏽧Ep+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽚
tp+1

tp

E′(τ)dτ − Δtp+1E′ tp􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ Δtp+1E′ tp􏼐 􏼑 +
πp+1 +μp+1 + cp+1 − βp+1N

􏽧Sp+1􏼐 􏼑Δtp+1E tp􏼐 􏼑

1+ πp+1 +μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

−
βp+1

􏽧Sp+1
􏽧Ip+1NΔtp+1

1+ πp+1 +μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(72)

which becomes

E tp+1􏼐 􏼑 − 􏽧Ep+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Δtp+1􏼐 􏼑

2

2
‖E″(t)‖∞ + Δtp+1 · IE,1,

(73)

where

IE,1 ≔ � E′ tp􏼐 􏼑 +
πp+1 + μp+1 + cp+1 − βp+1N

􏽧Sp+1􏼐 􏼑E tp􏼐 􏼑 − βp+1
􏽧Sp+1

􏽧Ip+1N

1 + πp+1 + μp+1 + cp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (74)

which can be written as

E′ tp􏼐 􏼑 1 + ϕp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1􏽨 􏽩

1 + ϕp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

+
ϕp+1 − βp+1N

􏽧Sp+1􏼐 􏼑E tp􏼐 􏼑 − βp+1
􏽧Sp+1

􏽧Ip+1N

1 + ϕp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (75)

and πp+1 + μp+1 + cp+1 � ϕp+1.&us,

IE,1 ≤
1

1 − βmax
· βpNS tp􏼐 􏼑I tp􏼐 􏼑 − βp+1N

􏽧Sp+1
􏽧Ip+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ E tp􏼐 􏼑 βpNS tp􏼐 􏼑 − βp+1N
􏽧Sp+1􏼐 􏼑 + πp+1 − πp􏼐 􏼑 + μp+1 − μp􏼐 􏼑 + cp+1 − cp􏼐 􏼑􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ βpNS tp􏼐 􏼑I tp􏼐 􏼑 + E tp􏼐 􏼑 βpNS tp􏼐 􏼑 − ϕp+1􏼐 􏼑􏽨 􏽩 ϕp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(76)

where
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IIE,2 ≔ � βpNS tp􏼐 􏼑I tp􏼐 􏼑 − βp+1N
􏽧Sp+1

􏽧Ip+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

IIIE,2 ≔ � E tp􏼐 􏼑 βpNS tp􏼐 􏼑 − βp+1N
􏽧Sp+1􏼐 􏼑 + πp+1 − πp􏼐 􏼑 + μp+1 − μp􏼐 􏼑 + cp+1 − cp􏼐 􏼑􏽮 􏽯,

IVE,2 ≔ � βpNS tp􏼐 􏼑I tp􏼐 􏼑 + E tp􏼐 􏼑 βpNS tp􏼐 􏼑 − ϕp+1􏼐 􏼑􏽨 􏽩 ϕp+1 − βp+1N
􏽧Sp+1􏼐 􏼑Δp+1,

IIE,2 � N βpS tp􏼐 􏼑I tp􏼐 􏼑 − βp+1
􏽧Ip+1

S tp􏼐 􏼑 + μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ep+1􏼐 􏼑Δtp+1

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤N βpS tp􏼐 􏼑I tp􏼐 􏼑 −
βp+1

􏽧Ip+1S tp􏼐 􏼑

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ep+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ N

βp+1
􏽧Ip+1μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ep+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(77)

where

VE,2 ≔ � βpS tp􏼐 􏼑I tp􏼐 􏼑 −
βp+1

􏽧Ip+1S tp􏼐 􏼑

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ep+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

VIE,2 ≔ �
βp+1

􏽧Ip+1μp+1NΔtp+1

1 + μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ep+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(78)

Similarly, substituting the 􏽧Ip+1 value in VE,2 and then
solving the VE,2, we get

VE,2(a) �
1

1 − βmax
βpI tp􏼐 􏼑 − βp+1I tp􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+
1

1 − βmax
βpI tp􏼐 􏼑 σp+1 + μp+1􏼐 􏼑Δtp+1 + μp+1 + βp+1N

􏽧Ep+1 + βp+1N
􏽧Ip+1􏼐 􏼑􏽨

􏼌􏼌􏼌􏼌􏼌

+ σp+1 + μp+1􏼐 􏼑 μp+1 + βp+1N
􏽧Ep+1 + βp+1N

􏽧Ip+1􏼐 􏼑Δ2tp+1􏽩
􏼌􏼌􏼌􏼌􏼌,

VE,2(a) ≤
NΔtp+1

1 − βmax
β′(t)

����
����∞ +

NΔtp+1

1 − βmax
βmax σmax + 2 μmax + βmax( 􏼁 + μmax+2βmax

􏼐 􏼑 σmax + μmax( 􏼁Δtp+1􏼐 􏼑􏽮 􏽯.

(79)

We can also easily find a

VE,2(b) ≤
πmaxΔtp+1

1 − βmax
. (80)

Finally,

VE,2 ≤
N

2Δtp+1

1 − βmax
β′(t)

����
����∞ +

NΔtp+1

1 − βmax
πmax

+
N

2Δtp+1

1 − βmax
βmax σmax + 2 μmax + βmax( 􏼁(􏼈

+ μmax+2βmax
􏼐 􏼑 σmax + μmax( 􏼁Δtp+1􏼑􏽯.

(81)

We can also easily arrive

VIE,2 ≤
NΔtp+1

1 − βmax
βmaxμmax, (82)

and

IIE,2 ≤
N

3Δtp+1

1 − βmax
β′(t)

����
����∞

+
N

3Δtp+1

1 − βmax
βmax σmax + 2 μmax + βmax( 􏼁(􏼈

+ μmax+2βmax
􏼐 􏼑 σmax + μmax( 􏼁Δtp+1􏼑􏽯

+
N

2Δtp+1

1 − βmax
βmaxμmax + πmax􏼈 􏼉.

(83)

Using the same procedure given above, we get

IIIE,2 ≤
N

3Δtp+1

1 − βmax
β′(t)

����
����∞ + βmax μmax + 2βmax( 􏼁􏽮 􏽯

+
N

2Δtp+1

1 − βmax
μmax + ‖π′(t)‖∞ +‖c′(t)‖∞􏼚 􏼛Δtp+1,

(84)
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and

IVE,2 ≤N
3Δtp+1 βmax πmax + μmax + cmax + βmax( 􏼁􏼈 􏼉

+ NΔtp+1 βmax + πmax + μmax + cmax( 􏼁
2
.

(85)

Substituting equations (83)–(85) in IE,1, we arrive

IE,1≤
N

3Δtp+1

1 − βmax
2 β′(t)
����

����∞􏽮 􏽯

+
N

3Δtp+1βmax

1 − βmax
σmax +2 μmax +βmax( 􏼁( 􏼁 + μmax +2βmax( 􏼁 + πmax +μmax + cmax +βmax( 􏼁 + μmax +2βmax( 􏼁 σmax +μmax( 􏼁Δtp+1􏽮 􏽯

+
N

2Δtp+1

1 − βmax
βmaxμmax +πmax +μmax􏼈 +

NΔtp+1

1 − βmax
βmax +πmax +μmax + cmax( 􏼁

2
+Δtp+1 ‖π′(t)‖∞ +‖c′(t)‖∞􏼚 􏼛.

(86)

Substituting equation (86) in (73), we obtain the case.
c) For the time-discrete solution Ip at time tp, let

􏽧Ip+1 �
Ip + πp+1

􏽧Ep+1Δtp+1

1 + σp+1 + μp+1􏼐 􏼑Δtp+1
, (87)

and for the time-continuous solutions I(tp), let

􏽧Ip+1 � I tp􏼐 􏼑 −
σp+1 + μp+1􏼐 􏼑Δtp+1I tp􏼐 􏼑

1 + σp+1 + μp+1􏼐 􏼑Δtp+1

+
πp+1

􏽧Ep+1Δtp+1

1 + σp+1 + μp+1􏼐 􏼑Δtp+1
.

(88)

Using the triangle inequality and mean value theorem,
we can easily find

I tp+1􏼐 􏼑 − 􏽧Ip+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Δtp+1􏼐 􏼑

2

2
‖I″(t)‖∞ + Δtp+1I′ tp􏼐 􏼑 +

σp+1 + μp+1􏼐 􏼑Δtp+1I tp􏼐 􏼑 − πp+1
􏽧Ep+1Δtp+1

1 + σp+1 + μp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (89)

where

II,1 ≔ � Δtp+1I′ tp􏼐 􏼑 +
σp+1 + μp+1􏼐 􏼑Δtp+1I tp􏼐 􏼑 − πp+1

􏽧Ep+1Δtp+1

1 + σp+1 + μp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (90)

Applying I′(tp) value in (89), we obtain

II,1 � Δtp+1 πpE tp􏼐 􏼑 − σp + μp􏼐 􏼑I tp􏼐 􏼑 +
σp+1 + μp+1􏼐 􏼑Δtp+1I tp􏼐 􏼑 − πp+1

􏽧Ep+1Δtp+1

1 + σp+1 + μp+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (91)

Solving the above equations, we get

II,1 ≤Δtp+1 πpE tp􏼐 􏼑 − πp+1
􏽧Ep+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + I tp􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 σp+1 − σp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛 + πpE tp􏼐 􏼑 − I tp􏼐 􏼑 σp + μp􏼐 􏼑􏼐 􏼑 σp+1 + μp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

(92)

which yields

II,1 ≤
N Δtp+1􏼐 􏼑

2

1 − βmax
‖π′(t)‖∞ + πmax πmax + μmax + cmax + 2βmax( 􏼁􏼚 􏼛

+ N Δtp+1􏼐 􏼑
2

‖σ′(t)‖∞ +‖μ′(t)‖∞ + πmax + σmax + μmax( 􏼁 σmax + μmax( 􏼁􏼚 􏼛.

(93)
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&e case (c) is verified by substituting equation (93)
in (89).

d) Let the time-discrete solution for Qp at time tp is

􏽧Qp+1 �
Qp + cp+1

􏽧Ep+1 + σp+1
􏽧Ip+1􏼐 􏼑Δtp+1

1 + θp+1 + μp+1􏼐 􏼑Δtp+1
, (94)

and the time-continuous solutions Q(tp), we take

􏽧Qp+1 � Q tp􏼐 􏼑 −
θp+1 + μp+1􏼐 􏼑Δtp+1Q tp􏼐 􏼑

1 + θp+1 + μp+1􏼐 􏼑Δtp+1
+

cp+1
􏽧Ep+1 + σp+1

􏽧Ip+1􏼐 􏼑Δtp+1

1 + θp+1 + μp+1􏼐 􏼑Δtp+1
, (95)

which implies

Q tp+1􏼐 􏼑 − 􏽧Qp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Δtp+1􏼐 􏼑

2

2
‖Q″(t)‖∞ + |Q′ tp􏼐 􏼑Δp+1 +

θp+1 + μp+1􏼐 􏼑Q tp􏼐 􏼑Δtp+1 − cp+1
􏽧Ep+1 + σp+1

􏽧Ip+1􏼐 􏼑Δtp+1

1 + θp+1 + μp+1􏼐 􏼑Δtp+1
|, (96)

where

IQ,1 ≔ � Q′ tp􏼐 􏼑Δp+1 +
θp+1 + μp+1􏼐 􏼑Q tp􏼐 􏼑Δtp+1 − cp+1

􏽧Ep+1 + σp+1
􏽧Ip+1􏼐 􏼑Δtp+1

1 + θp+1 + μp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤Δtp+1 cpE tp􏼐 􏼑 − cp+1
􏽧Ep+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + σpI tp􏼐 􏼑 − σp+1
􏽧Ip+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Q tp􏼐 􏼑‖θp+1 − θp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Q tp􏼐 􏼑‖μp+1 − μp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚

+ cpE tp􏼐 􏼑 + σpI tp􏼐 􏼑 − Q tp􏼐 􏼑 θp + μp􏼐 􏼑􏼐 􏼑 θp+1 + μp+1􏼐 􏼑Δtp+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼛.

(97)

Simplifying the above equation, we arrive

II,1 ≤
N Δtp+1􏼐 􏼑

2

1 − βmax
‖c′(t)‖∞ +‖σ′(t)‖∞􏼚 􏼛 + N Δtp+1􏼐 􏼑

2
‖Q′(t)‖∞ +‖μ′(t)‖∞􏼚 􏼛

+
N Δtp+1􏼐 􏼑

2

1 − βmax
cmax πmax + μmax + cmax + 2βmax( 􏼁 + σmax σmax + μmax( 􏼁􏼈 􏼉

+ N Δtp+1􏼐 􏼑
2

cmax θmax + μmax( 􏼁 + σmax θmax + μmax( 􏼁 + θmax + μmax( 􏼁
2

􏽮 􏽯 +
Δtp+1􏼐 􏼑

2

1 − βmax
σmaxπmax.

(98)

Substituting equation (98) in (96), we get the quarantine
case.

e) Let the time-discrete solution for Rp at time tp is

􏽧Rp+1 �
Rp + θp+1

􏽧Qp+1Δtp+1

1 + μp+1Δtp+1
, (99)

and the time-continuous solutions R(tp), let

􏽧Rp+1 � R tp􏼐 􏼑 −
μp+1Δtp+1R tp􏼐 􏼑

1 + μp+1Δtp+1
+
θp+1

􏽧Qp+1Δtp+1

1 + μp+1Δtp+1
, (100)

which gives

R tp+1 − 􏽧Rp+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Δtp+1􏼐 􏼑

2

2
‖R″(t)‖∞ + IR,1,

(101)

where

IR,1 ≔ � |Δtp+1R′ tp􏼐 􏼑 +
μp+1Δtp+1R tp􏼐 􏼑 − θp+1

􏽧Qp+1Δtp+1

1 + μp+1Δtp+1
|.

(102)

&e IR,1 expression can be simplified as follows:

IR,1 ≤
N Δtp+1􏼐 􏼑

2

1 − βmax
‖θ′(t)‖∞ + θmax + μmax􏼚 􏼛

+
Δtp+1􏼐 􏼑

2

1 − βmax
θmax cmax + σmax( 􏼁􏼈 􏼉

+ N ‖μ′(t)‖∞ + θmaxμmax + μmax2􏼚 􏼛,

(103)

which yields recovered instances by substituting equa-
tion (103) into (101).
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(69) can be rewritten in the following form:

S tp+1􏼐 􏼑 − 􏽧Sp+1

�����

�����≤Δ
2
tp+1Cloc,S. (104)

Similarly, we can get the other cases as

E tp+1􏼐 􏼑 − 􏽧Ep+1

�����

�����≤Δ
2
tp+1Cloc,E,

I tp+1􏼐 􏼑 − 􏽧Ip+1

�����

�����≤Δ
2
tp+1Cloc,I,

Q tp+1􏼐 􏼑 − 􏽧Qp+1

�����

�����≤Δ
2
tp+1Cloc,Q,

R tp+1􏼐 􏼑 − 􏽧Rp+1

�����

�����≤Δ
2
tp+1Cloc,R.

(105)

□

Definition 2. Define Cloc: � max Cloc,S; Cloc,E; Cloc,I;􏽮

Cloc,Q; Cloc,R} which holds

z
tp+1( 􏼁

− 􏽧zp+1

������

������≤Δ
2
p+1Cloc, (106)

for local errors on time interval [tp, tp+1].
2) In reality, (tp, Sp)T, (tp, Ep)T, (tp, Ip)T, (tp, Qp)T, and

(tp, Rp)T do not exactly lie on the graph of the time-con-
tinuous solution. &us, we should examine how procedural
errors such as Sp − S(tp), Ep − E(tp), Ip − I(tp), Qp− Q(tp),
and Rp − R(tp) propagate to the (p + 1)th time step. &at is,

zp+1 − z tp+1􏼐 􏼑 � zp − z tp􏼐 􏼑􏼐 􏼑

+ Δtp+1 G tp+1, zp+1􏼐 􏼑 − G tp+1, z tp+1􏼐 􏼑􏼐􏽮 􏽯,

(107)

which implies

zp+1 − z tp+1􏼐 􏼑
�����

�����∞
≤ zp − z tp􏼐 􏼑

�����

�����∞
+ Δtp+1 G tp+1, zp+1􏼐 􏼑 − G tp+1, z tp+1􏼐 􏼑􏼐

�����

�����∞
. (108)

Here,

G tp+1, zp+1􏼐 􏼑 − G tp+1, z tp+1􏼐 􏼑􏼐
�����

�����∞

�

A − μp+1 S tp+1􏼐 􏼑 − Sp+1􏼐 􏼑 − βp+1N S tp+1􏼐 􏼑 E tp+1􏼐 􏼑 + tp+1􏼐 􏼑􏼐 􏼑 − Sp+1 Ep+1 + Ip+1􏼐 􏼑􏽨 􏽩

βp+1N S tp+1􏼐 􏼑 Ep+1 + Ip+1􏼐 􏼑 − Sp+1 Ep+1 + Ip+1􏼐 􏼑 − πp+1 + μp+1 + cp+1􏼐 􏼑 E tp+1 − Ip+1􏼐 􏼑􏼐 􏼑􏽨 􏽩

πp+1 E tp+1􏼐 􏼑 − Ep+1􏼐 􏼑 − σp+1 + μp+1􏼐 􏼑 I tp+1􏼐 􏼑 − Ip+1􏼐 􏼑

cp+1 E tp+1􏼐 􏼑 − Ep+1􏼐 􏼑 + σp+1 I tp+1􏼐 􏼑 − Ip+1􏼐 􏼑

− θp+1 + μp+1􏼐 􏼑 Q tp+1􏼐 􏼑 − Qp+1􏼐 􏼑

θp+1 Q tp+1􏼐 􏼑 − Qp+1􏼐 􏼑 − μp+1 R tp+1􏼐 􏼑 − Rp+1􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�����������������������������������

�����������������������������������∞

,
(109)

which is less than equal to

A + μp+1 Sp+1 − S tp+1􏼐 􏼑
�����

�����∞
+ βp+1N 2‖Sp+1− S tp+1􏼐 􏼑‖∞ + Ep+1 − E tp+1􏼐 􏼑

�����

�����∞
+ Ip+1 − I tp+1􏼐 􏼑

�����

�����∞
􏼚 􏼛

βp+1N 2 Sp+1 − S tp+1􏼐 􏼑
�����

�����∞
+ Ep+1 − E tp+1􏼐 􏼑

�����

�����∞
+ ‖Ip+1− I tp+1􏼐 􏼑‖∞􏼚 􏼛 + πp+1 + μp+1 + cp+1􏼐 􏼑 Ep+1 − E tp+1􏼐 􏼑

�����

�����∞

πp+1 Ep+1 − E tp+1􏼐 􏼑
�����

�����∞
+ σp+1 + μp+1􏼐 􏼑 Ip+1 − I tp+1􏼐 􏼑

�����

�����∞

cp+1 Ep+1 − E tp+1􏼐 􏼑
�����

�����∞
+ σp+1 Ip+1 − I tp+1􏼐 􏼑

�����

�����∞
− θp+1 + μp+1􏼐 􏼑 Qp+1 − Q tp+1􏼐 􏼑

�����

�����∞

θp+1 Qp+1 − Q tp+1􏼐 􏼑
�����

�����∞
− μp+1 Rp+1 − R tp+1􏼐 􏼑

�����

�����∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

����������������������������������

����������������������������������
∞

≤ 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁 · zp+1 − z tp+1􏼐 􏼑
�����

�����∞
.

(110)

&us,

zp+1 − z tp+1􏼐 􏼑
�����

�����∞
≤ zp − z tp􏼐 􏼑

�����

�����∞
+ 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁 · zp+1 − z tp+1􏼐 􏼑

�����

�����∞
. (111)

Hence, we conclude ‖zp+1 − z(tp+1)‖∞

≤
zp − z tp􏼐 􏼑

�����

�����∞
1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ

, (112)

with

Δ≕ � maxp∈ 1,2,3,...,M− 1{ }Δtp+1

<
1

12 μmax + βmax( 􏼁 + 4 πmax + cmax + θmax( 􏼁
.

(113)
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3) &e upper bound between the time-discrete solution
and the time-continuous solution is verified below.

For p � 0 in (112), it becomes ‖z1 − z(t1)‖∞ � 0.
For p � 1, we get ‖z2 − z(t2)‖∞≤ ‖z2 − 􏽥z2‖∞+

‖ 􏽥z2 − z(t2)‖∞. By applying equations (106) and (112), we get
‖z2 − z(t2)‖∞

≤
z1 − z t1( 􏼁

����
����∞

1 − 6 μmax +βmax( 􏼁 +2 πmax + cmax +θmax( 􏼁􏼂 􏼃Δ
+ Cloc ·Δ2,

(114)

which becomes

z2 − z t2( 􏼁
����

����∞≤Cloc · Δ2. (115)

For p � 2, we get

z3 − z t3( 􏼁
����

����∞≤ z3 − 􏽥z3
����

����∞+ 􏽥z3 − z t3( 􏼁
����

����∞

≤
z2 − z t2( 􏼁

����
����∞

1 − 6 μmax +βmax( 􏼁 +2 πmax + cmax +θmax( 􏼁􏼂 􏼃Δ
+ Cloc ·Δ2

≤
z2 − z t2( 􏼁

����
����∞

1 − 6 μmax +βmax( 􏼁 +2 πmax + cmax +θmax( 􏼁􏼂 􏼃Δ
+ Cloc ·Δ2

≤􏽘
1

j�0

Cloc ·Δ2

1 − 6 μmax +βmax( 􏼁 +2 πmax + cmax +θmax( 􏼁􏼂 􏼃Δ( 􏼁
j
.

(116)

For p � 3, we obtain

z4 − z t4( 􏼁
����

����∞≤ z4 − 􏽥z4
����

����∞ + 􏽥z4 − z t4( 􏼁
����

����∞≤
z3 − z t3( 􏼁

����
����∞

1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ
+ Cloc · Δ2, (117)

which yields ‖z4 − z(t4)‖∞

≤ 􏽘

2

j�0

Cloc · Δ2

1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ( 􏼁
j
.

(118)

Proceeding like this, we can write ‖zp+1 − z(tp+1)‖∞

≤ 􏽘

p− 1

j�0

Cloc · Δ2

1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ( 􏼁
j
,

(119)

for p ∈ 1, 2, 3, . . . , M − 2{ }. From (119), we get ‖zp+2−

z(tp+2)‖∞

≤ 􏽘

p

j�0

Cloc · Δ2

1 − 6 μmax + βmax( 􏼁 + 2πmax + cmax + θmax( 􏼁􏼂 􏼃Δ( 􏼁
j
,

(120)

by induction method.
Now, applying the geometric series in (119), we obtain

‖zp+1 − z(tp+1)‖∞.

≤Cloc · Δ2 􏽘

p− 1

j�0

1
1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ

􏼠 􏼡

j

,

� Cloc · Δ2
1/1 − 6 μmax + βmax( 􏼁 + 2 πmax + cmax + θmax( 􏼁􏼂 􏼃Δ( 􏼁

p
− 1

1/1 − 6 μmax + βmax( 􏼁 + 2Z πmax + cmax + θmax( 􏼁􏼂 􏼃Δ( 􏼁 − 1
.

(121)

Assuming Δ< 1/(12(μmax + βmax) + 4(πmax + cmax+

θmax)), we conclude (Δ/(1 − [6(μmax+ βmax) + 2(πmax+

cmax + θmax)]Δ) − 1)≤ 1.
Hence, we get (39).

5. Conclusion

&e present paper is devoted to the analysis and optimi-
zation of the SEIQR epidemic model containing an isolation
class. We derived both continuous and discrete schemes of
the SEIQR model as well as the global existence of solutions
and nonnegativity bounded properties for both schemes.
Along with this, we have illustrated the solving technique for
the discrete scheme and proposed a new optimization

technique with the help of a dynamic programming prob-
lem. In addition, we have analyzed the error between
continuous and discrete schemes in the last section. Finally,
we conclude that the isolation class plays a vital role in
controlling the COVID-19 pandemic situation. More in-
terestingly, the results also reveal that COVID-19 can exhibit
oscillatory behaviour in the future. On the other hand, social
distancing methods, quarantine efficiency, and isolation can
be used to keep it under control. Future research could look
into the effects of current coronavirus mutations like Delta
and Omicron on the COVID-19 pandemic’s dynamics. We
also suggested an alternative dynamic model of the SEIQR
class, which can theoretically be generalized to generate
continuous and discrete-time models such as SEIR, SEIRS,
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SIRS, SEI, SEIS, SI, SIS, SEIQRS, SIDARTHE, and others in
future work.
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