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In this study, we present some new results on the existence of fixed points for multivalued generalized wb-contractive mappings in
the frame work of metric type spaces. Consequently, presented results unify and generalize several known metric fixed-point
results. In support of our main results, examples are provided to show that the results are genuine generalization of the known
corresponding results of metric fixed-point theory.

1. Introduction

'e concept of a metric space plays a vital role in the de-
velopment of metric fixed-point theory and nonlinear
functional analysis and also in various scientific branches. In
the literature, this notion of metric space has been extended
in several directions by reducing or modifying the metric
axioms. Czerwik [1, 2] introduced and studied the concept of
b-metric space (metric type space), where the triangle in-
equality replaced with the weaker condition. In fact, the
basic idea of b-metric was given by Bakhtin [3]. It has been
observed that the class of metric type spaces is effectively
larger than the class of metric spaces [1]. In literature, a
number of metric fixed-point results for single-valued and
multivalued mappings have been shown; see, for example,
[4–11] and references therein.

Using a concept of the Hausdorff–Pompieu metric,
Nadler [12] introduced a notion of multivalued contraction
mappings and proved splendid result in metric fixed-point
theory for such mappings, known as Nadler contraction
principle. Due to its importance, matric fixed-point theory
of multivalued contractions has been further developed in
various directions by a number of authors. A real gener-
alization of the Nadler contraction principle is obtained by

Mizoguchi and Takahashi [13]. Without using the idea of the
Hausdorff–Pompieu metric, a number of authors obtained
interesting fixed-point results and improved various results
of metric fixed-point theory including the results of Nadler
and Mizoguchi–Takahashi and others. See, for example,
[14–17] and references therein.

In [18] Kada et al. introduced a concept of generalized
distance, namely, w-distance on metric spaces, and im-
proved some classical results by replacing the involved
metric by a generalized distance. Based on this set up, a
number of authors studied fixed-point results of mappings
with respect to w-distance. Suzuki and Takahashi [19] in-
troduced notions of single-valued and multivalued weakly
contractive mappings and studied the existence of fixed
points for such mappings. Consequently, they generalized
the Banach contraction principle and Nadler contraction
principle. For further fixed-point results with applications,
see, for example, [20–24] and references therein. In [25],
Hussain et al. defined w-distance on metric-type spaces
called wt-distance (here, we call it wb-distance), and they
proved fixed-point and common fixed-point results for
single-valued mappings with respect to wb-distance. A
number of articles with applications on this topic can also be
found in [26–29] and references therein.
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2. Preliminaries

Now, we recall some notations, concepts, and facts which are
useful for our results.

Let (S, d) be a metric space. Let 2S denote a collection of
nonempty subsets of S,Cl(S) denote a collection of nonempty
closed subsets of S, CB(S) denote a collection of nonempty
closed bounded subsets of S, and K(S) denote a collection of
all nonempty compact subsets of S. An element u ∈ S is called
a fixed point of a multivalued mapping J: S⟶ 2S if
u ∈ J(u). We denote Fix(J) � u ∈ S: u ∈ J(u){ }. A sequence
un􏼈 􏼉 in S is called an orbit of J at u0 ∈ S if un ∈ J(un− 1), for all

n≥ 1. A map f: S⟶ R is called J-orbitally lower semi-
continuous at z ∈ S if, for any orbit un􏼈 􏼉 of J at u0 ∈ S with
un⟶ z implies f(z)≤ lim infn⟶∞f(un). For a constant
c ∈ (0, 1), we say a function ξc: [0,∞)⟶ [0, c) is a strong
MT-function if lim supr⟶s+ξc(r)< c, for all s ∈ [0,∞). In
case c � 1, the function ξ1 is denoted by ξ, known as
MT-function. It has been observed that a function ξ is
MT-function if and only if, for any strictly decreasing se-
quence un􏼈 􏼉 in [0,∞), we have 0≤ supnξ(un)< 1. For more
characterizations of MT-function, see [30].

Using the concept of Hausdorff–Pompieumetric, Nadler
[12] proved a multivalued version of the well-known Banach
contraction principle.

Theorem 1 (see [12]). Let (S, d) be a complete metric space
and let J: S⟶ CB(S) be a multivalued contraction map-
ping (that is, for a fixed constant h ∈ (0, 1) and for each
u, v ∈ S, H(J(u), J(v))≤ h d(u, v), where H is the Haus-
dorff–Pompieu metric on CB(S)). 9en, Fix(J)≠∅.

9is result known as Nadler contraction principle, which
has been generalized in various directions. 9e first real
generalization of 9eorem 1 is obtained by Mizoguchi and
Takahashi [13].

Theorem 2 (see [13]). Let (S, d) be a complete metric space
and let J: S⟶ CB(S) be a multivalued mapping. Assume
that there exists MT-function ξ such that, for each u, v ∈ S,

H(J(u), J(v))≤ ξ(d(u, v))d(u, v). (1)

9en, Fix(J)≠∅.
On the contrary, without using the concept of the

Hausdorff–Pompieu metric, Feng and Liu [16] generalized
9eorem 1 as follows.

Theorem 3 (see [16]). Let (S, d) be a complete metric space
and let J: S⟶ Cl(S) be a multivalued mapping. Suppose
that a real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous. 9en, Fix(J)≠∅ provided there exist con-
stants c, h ∈ (0, 1), h< c, such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cd(u, v)≤g(u),

g(v)≤ hd(u, v).
(2)

Later, Klim and Wardowski [17] generalized 'eorem 3
as follows.

Theorem 4 (see [17]). Let (S, d) be a complete metric space
and let J: S⟶ Cl(S) be a multivalued mapping such that a
real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous.9en, Fix(J)≠∅ provided that there exists a
strong MT-function ξc such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cd(u, v)≤g(u),

g(v)≤ ξc(d(u, v))d(u, v).
(3)

Using MT-functions, Klim and Wardowski [17] also
proved fixed-point result for compact valued mappings of
metric spaces as follows.

Theorem 5 (see [17]). Let (S, d) be a complete metric space
and let J: S⟶ K(S) be a multivalued mapping such that a
real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous. 9en, Fix(J)≠∅ provided that there exists
MT-function ξ such that, for any u ∈ S, there is v ∈ J(u)

satisfying

d(u, v) � g(u),

g(v)≤ ξ(d(u, v))d(u, v).
(4)

It is worth mentioning that 'eorem 4 generalizes
'eorem 1 and 'eorem 3 but does not generalize 'eorem
2 because the strong-MT-function ξc in 'eorem 4 is
stronger than the MT-function ξ used in'eorem 2 as c< 1.

However, some more general interesting fixed-point
results in this direction obtained by Ćirić [14, 15] unify and
generalize the corresponding abovementioned results.

In [18], Kada et al. introduced the concept of w-distance
as follows.

Let (S, d) be a metric space. A function
p: S × S⟶ [0,∞) is called w-distance on S if it satisfies the
following, for each u, v, t ∈ S:

(1) p(u, t)≤p(u, v) + p(v, t)

(2) A function p(u, ·): S⟶ [0,∞) is lower
semicontinuous

(3) For any ϵ> 0, there exists δ > 0 such that p(t, u)≤ δ
and p(t, v)≤ δ imply d(u, v)≤ ϵ

Using the concept of w-distances, they improved a
number of known important results of metric fixed-point
theory. Note that, in general, for u, v ∈ S, p(u, v)≠p(v, u)

and not either of the implications p(u, v) � 0⇔u � v nec-
essarily hold. Clearly, the metric d is a w-distance on S. Let
(W, ‖.‖) be a normed space. 'en, the functions p1, p2: W ×

W⟶ [0,∞) defined by p1(u, v) � ‖v‖ and
p2(u, v) � ‖u‖ + ‖v‖, for all u, v ∈W, are w-distances [18].
For more examples and properties of the w-distance, see
[18, 19, 24]. Using the concept of w-distance, Suzuki and
Takahashi [19] introduced single-valued and multivalued
weakly contractive mappings and then improved the Banach
contraction principle and Nadler contraction principle. For
further general fixed-point results in this direction, see
[20, 21, 23, 24] and references therein.
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Czerwik [1, 2] introduced a concept of b-metric space as
follows.

Let S be a nonempty set. Let Δ: S × S⟶ [0,∞) be a
function which satisfies the following, for all u, v, t ∈ S:

(1) Δ(u, v) � 0 if and only if u � v

(2) Δ(u, v) � Δ(v, u)

(3) Δ(u, v)≤ b[Δ(u, t) + Δ(t, v)], for some b≥ 1

'en, Δ is called a b-metric on S and (S,Δ) is known as
b-metric space (also known a metric-type space [8, 25]). In
the sequel, we also call it metric-type space. Obviously, for
b � 1, we obtain a standard metric on S. In fact, the class of
metric-type spaces is effectively larger than the class of
metric spaces. Indeed, let S � R be endowed with a mapping
Δ: S × S⟶ R+ defined by Δ(u, v) � (u − v)2, for each
u, v ∈ S. 'en, (S,Δ) is a metric-type space with b � 2, but it
is not a metric space [3]. For more examples of metric-type
spaces, see [1, 31]. It is worth to point out that, unlike the
case of standard metric, the b-metric Δ is not necessarily
continuous due to the modified triangle inequality. In
general, Δ is not continuous in each variable [5]. However, a
metric-type space can be endowed with a topology induced
by its convergence [5] and almost all the concepts and results
which are valid for metric spaces can be extended to the
framework of metric type spaces. In fact, for metric-type
spaces, the notions of convergence, Cauchy sequence, and
completeness and continuity can be defined similarly as in
metric spaces, see [4, 8, 25]. Let us recall few such useful
notions and facts in the framework of metric-type spaces.

Let (S,Δ) be a metric-type space and let un􏼈 􏼉 be a se-
quence in S. 'en,

(1) un􏼈 􏼉 converges in S if there exists u ∈ S such that
limn⟶∞Δ(un, u) � 0

(2) un􏼈 􏼉 is a Cauchy sequence in S if
limn,m⟶∞Δ(un, um) � 0

(3) (S,Δ) is complete if every Cauchy sequence in S is
convergent in S

(4) A real-valued function f on S is b-lower semi-
continuous at a point u ∈ S if
f(u)≤ lim infn⟶∞ bf(un) whenever un⟶ u

Recently, fixed-point theory for metric-type spaces
studied and developed by many authors, for example, see
[5, 7, 28, 32] and references therein.

Motivated by the work of Kada et al. [18] and Hussain
et al. [25] introduced wt-distance (here, we call it wb-dis-
tance) in the setting of metric-type space as follows.

Let (S,Δ) be a metric-type space with constant b≥ 1.
'en, a function pb: S × S⟶ [0,∞) is called a wb-distance
on S if, for any u, v, t ∈ S, the following hold:

(1) pb(u, t)≤ b[pb(u, v) + pb(v, t)]

(2) pb(u, ·): S⟶ [0,∞) is b-lower semicontinuous
(i.e., if, for any sequence vn􏼈 􏼉 in S, vn⟶ v ∈ S, then
pb(u, v)≤ lim infn⟶∞bpb(u, vn))

(3) For any ϵ> 0, there exists δ > 0 such that pb(t, u)≤ δ
and pb(t, v)≤ δ imply Δ(u, v)≤ ϵ

Remark 1. Note that, for b � 1, each wb-distance is a
w-distance. In general, wb-distance is not symmetric, see
[25]. In fact, the class of wb-distances is much larger than the
class of w-distance, see [28]. Every b-metric is wb-distance
[25], but the converse is not true, see [28].

Example 1 (see [25]). Let S � R and Δ(u, v) � (u − v)2;
then,

(1) 'e function pb: S × S⟶ [0,∞) defined by
pb(u, v) � |u|2 + |v|2 for every u, v ∈ S is a wb-dis-
tance on S

(2) 'e function pb: S × S⟶ [0,∞) defined by
pb(u, v) � |v|2 for every u, v ∈ S is a wb-distance on S

'e following result is an analogue of Lemma 1 of [18],
stated and used in [25, 26].

Lemma 1 (see [25]). Let (S,Δ) be a metric-type space with
constant b≥ 1 and let pb be a wb-distance on S. Let un􏼈 􏼉 and
vn􏼈 􏼉 be sequences in S; let αn􏼈 􏼉 and βn􏼈 􏼉 be sequences in [0,∞)

converging to zero. 9en, the following hold, for each
u, v, t ∈ S.

(i) If pb(un, v)≤ αn and pb(un, t)≤ βn, for any n ∈ N,
then v � t. In particular, if pb(u, v) � 0 and
pb(u, t) � 0, then v � t.

(ii) If pb(un, vn)≤ αn and pb(un, t)≤ βn, for any n ∈ N,
then Δ(vn, t)⟶ 0.

(iii) If pb(un, um)≤ αn, for any n, m ∈ N with m> n, then
un􏼈 􏼉 is a Cauchy sequence.

(iv) If pb(v, un)≤ αn, for any n ∈ N, then un􏼈 􏼉 is a Cauchy
sequence.

Lemma 2 (see [33]). Let A be a closed subset of a metric-type
space (S,Δ) and pb be a wb-distance on S. Suppose that there
exists z ∈ S such that pb(z, z) � 0. 9en, pb(z, A) � 0
⇔z ∈ A, where pb(z, A) � inf pb(z, w):􏼈 w ∈ A}.

Recently, some interesting results appeared in metric
fixed-point theory with respect to wb-distance on metric-
type spaces; for example, see [25–28] and references
therein.

Let A ∈ (0, +∞]. Consider a real-valued function ψ on
[0, A) satisfying the following conditions:

(1) ψ(0) � 0 and ψ(r)> 0, for each r ∈ (0, A).
(2) ψ is nondecreasing on [0, A).
(3) ψ is subadditive, that is,

ψ r1 + r2( 􏼁≤ψ r1( 􏼁 + ψ r2( 􏼁, for all r1, r2 ∈ (0, A). (5)

Examples and properties of such functions can be found
in [34].

We define

Ω[0, A) � ψ: ψ satisfies(1) − (3)􏼈 􏼉. (6)
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'e real-valued function ψ plays an important role in
metric fixed-point theory; for example, see [22, 34, 35] and
references therein. Among others, Latif and Abdou [22]
proved some interesting fixed-point results for multivalued
mapping with respect to w-distance. For example, the fol-
lowing results unify and extend a number of known metric
fixed-point results.

Theorem 6 (see [22]). Let (S, d) be a complete metric space
with a w-distance p. Let J: S⟶ Cl(S) be a multivalued
mapping such that a real-valued function g on S,
g(u) � p(u, J(u)), is lower semicontinuous. Assume that
there exist c ∈ (0, 1) and η ∈ Ω[0, A) such that, for any u ∈ S,
there is v ∈ J(u) satisfying

cη(p(u, v))≤ η(g(u)),

η(g(v))≤ ξc(p(u, v))η(p(u, v)),
(7)

where ξc is a strong MT-function. 9en, there exists w0 ∈ S

such that g(w0) � 0. Moreover, if p(w0, w0) � 0, then
w0 ∈ J(w0).

Theorem 7 (see [22]). Let (S, d) be a complete metric space
with a w-distance p. Let J: S⟶ Cl(S) be a multivalued
mapping such that a real-valued function g on S,
g(u) � p(u, J(u)), is lower semicontinuous. Assume that
there exists η ∈ Ω[0, A) such that, for any u ∈ S, there is
v ∈ J(u) satisfying

η(p(u, v)) � η(g(u)),

η(g(v)) ≤ ξ(p(u, v))η(p(u, v)),
(8)

where ξ is MT-function. 9en, there exists w0 ∈ S such that
g(w0) � 0. Moreover, if p(w0, w0) � 0, then w0 ∈ J(w0).

'e aim of this paper is to present some more general
results on the existence of fixed points related to multivalued
generalizedwb-contractive mappings defined onmetric-type
spaces. In particular, such mappings involve the function
ψ ∘pb, where ψ ∈ Ω[0, A) and the function pb is a wb-dis-
tance on ametric-type space. Consequently, our results unify
and generalize the corresponding several known metric
fixed-point results.

3. Results

Now, we present our first main result on the existence of
fixed points for multivalued mapping with respect to
wb-distance, which improve and generalize a number of
known fixed-point results including 'eorem 6.

'roughout this section, (S,Δ) is a complete metric-type
space and pb is a wb-distance on S.

Theorem 8. Let J: S⟶ Cl(S) be a multivalued mapping.
Assume that there exist a strong MT-function ξc and a
function ψ ∈ Ω[0, A) such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cψ pb(u, v)( 􏼁≤ψ(q(u)),

ψ(q(v)) ≤ ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁,
(9)

where q is a real-valued function on S defined by
q(u) � pb(u, J(u)). 9en,

(1) For any u0 ∈ S, there exist an orbit un􏼈 􏼉 of J at u0 and
z0 ∈ S such that limn⟶∞un � z0.

(2) pb(z0, J(z0)) � 0 if and only if the function q is
J-orbitally b-lower semicontinuous at z0. Moreover, if
pb(z0, z0) � 0, then z0 ∈ Fix(J).

Proof. Let u0 be an arbitrary but fixed element of S. 'en,
there exists u1 ∈ J(u0) such that

cψ pb u0, u1( 􏼁( 􏼁≤ψ q u0( 􏼁( 􏼁, (10)

ψ q u1( 􏼁( 􏼁≤ ξc pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁, (11)

ξc pb u0, u1( 􏼁( 􏼁< c. (12)

'us, we have

ψ q u0( 􏼁( 􏼁 − ψ q u1( 􏼁( 􏼁≥ c − ξc pb u0, u1( 􏼁( 􏼁􏼂 􏼃ψ pb u0, u1( 􏼁( 􏼁> 0.

(13)

Similarly, for u1 ∈ S, there exists u2 ∈ J(u1) such that

cψ pb u1, u2( 􏼁( 􏼁≤ψ q u1( 􏼁( 􏼁,

ψ q u2( 􏼁( 􏼁≤ ξc pb u1, u2( 􏼁( 􏼁ψ pb u1, u2( 􏼁( 􏼁,

ξc pb u1, u2( 􏼁( 􏼁< c,

(14)

ψ q u1( 􏼁( 􏼁 − ψ q u2( 􏼁( 􏼁≥ c − ξc pb u1, u2( 􏼁( 􏼁􏼂 􏼃

ψ pb u1, u2( 􏼁( 􏼁> 0.
(15)

Continuing this process, we obtain an orbit un􏼈 􏼉 of J at
u0 ∈ S such that un+1 ∈ J(un) satisfying

cψ pb un, un+1( 􏼁( 􏼁≤ψ q un( 􏼁( 􏼁, (16)

ψ q un+1( 􏼁( 􏼁≤ ξc pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁, (17)

ξc pb un, un+1( 􏼁( 􏼁< c, (18)

ψ q un( 􏼁( 􏼁 − ψ q un+1( 􏼁( 􏼁≥ c − ξc pb un, un+1( 􏼁( 􏼁􏼂 􏼃

· ψ pb un, un+1( 􏼁( 􏼁> 0,
(19)

which imply that

ψ q un+1( 􏼁( 􏼁<ψ q un( 􏼁( 􏼁, n ∈ N∪ 0{ }. (20)

While from (11), (12), and (14), it follows that

ψ pb u1, u2( 􏼁( 􏼁≤
1
c
ψ q u1( 􏼁( 􏼁≤

1
c
ξc pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁

<ψ pb u0, u1( 􏼁( 􏼁.

(21)
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'us, for each n ∈ N, we obtain

ψ pb un, un+1( 􏼁( 􏼁<ψ pb un− 1, un( 􏼁( 􏼁. (22)

By (20) and (22), we note that the sequences ψ(q(un))􏼈 􏼉

and ψ(pb(un, un+1))􏼈 􏼉 are decreasing. Now, since ψ is
nondecreasing, it follows that q(un)􏼈 􏼉 and pb(un, un+1)􏼈 􏼉 are
decreasing sequences and are bounded from below, thus
convergent. Now, by the definition of the function ξc, there
exists δ ∈ [0, c) such that

lim sup
n⟶∞

ξc pb un, un+1( 􏼁( 􏼁 � δ. (23)

'us, for any c0 ∈ (δ, c) with c0c
− 1 ∈ (0, b− 1), there

exists n0 ∈ N such that

ξc pb un, un+1( 􏼁( 􏼁< c0, for all n> n0, (24)

and thus, for all n> n0, we have

ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb un0+1, un0+2􏼐 􏼑􏼐 􏼑< c
n− n0
0 . (25)

Note that, for all n> n0, we have

ψ q un+1( 􏼁( 􏼁≤ ξc pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁

≤
1
c
ξc pb un, un+1( 􏼁( 􏼁ψ q un( 􏼁( 􏼁

≤
1
c
2ξc pb un, un+1( 􏼁( 􏼁ξc pb un− 1, un( 􏼁( 􏼁ψ q un− 1( 􏼁( 􏼁

⋮

≤
1
c

n ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb u1, u2( 􏼁( 􏼁􏼂 􏼃ψ q u1( 􏼁( 􏼁

�
ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb un0+1, un0+2􏼐 􏼑􏼐 􏼑

c
n− n0

×
ξc pb un0

, un0+1􏼐 􏼑􏼐 􏼑 × · · · × ξc pb u1, u2( 􏼁( 􏼁ψ q u1( 􏼁( 􏼁

c
n0

,

(26)

and thus,

ψ q un+1( 􏼁( 􏼁<
c0

c
􏼒 􏼓

n− n0ξc pb un0
, un0+1􏼐 􏼑􏼐 􏼑 × · · · × ξc pb u1, u2( 􏼁( 􏼁ψ q u1( 􏼁( 􏼁

c
n0

. (27)

Put λ � c0c
− 1 and since λ< 1, we have limn⟶∞λ

n− n0 � 0,
and hence, the decreasing sequence ψ(q(un))􏼈 􏼉 converges to
0. 'us, we have

lim
n⟶∞

q un( 􏼁 � 0. (28)

Now, we show that un􏼈 􏼉 is a Cauchy sequence. From (16),
(17), and (24), we note that, for all n> n0,

ψ pb un, un+1( 􏼁( 􏼁≤
1
c
ψ q un( 􏼁( 􏼁

≤
1
c
ξc pb un− 1, un( 􏼁( 􏼁ψ pb un− 1, un( 􏼁( 􏼁

< λψ pb un− 1, un( 􏼁( 􏼁

< λ2ψ pb un− 2, un− 1( 􏼁( 􏼁

⋮

< λnψ pb u0, u1( 􏼁( 􏼁.

(29)

'us, we have
ψ pb un, un+1( 􏼁( 􏼁≤ λnψ pb u0, u1( 􏼁( 􏼁, n ∈ N∪ 0{ }. (30)
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Now, for any n, m ∈ N, m> n,

ψ pb un, um( 􏼁( 􏼁≤ b ψ pb un, un+1( 􏼁( 􏼁 + ψ pb un+1, um( 􏼁( 􏼁( 􏼁

≤ bψ pb un, un+1( 􏼁( 􏼁 + b b ψ pb un+1, un+2( 􏼁( 􏼁 + ψ pb un+2, um( 􏼁( 􏼁( 􏼁( 􏼁

� bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

2ψ pb un+2, um( 􏼁( 􏼁

≤ bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

2
b ψ pb un+2, un+3( 􏼁( 􏼁 + ψ pb un+3, um( 􏼁( 􏼁( 􏼁( 􏼁

� bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

3 ψ pb un+2, un+3( 􏼁( 􏼁 + ψ pb un+3, um( 􏼁( 􏼁( 􏼁

⋮

≤ bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + . . . + b

m− n− 1 ψ pb um− 2, um− 1( 􏼁( 􏼁 + ψ pb um− 1, um( 􏼁( 􏼁( 􏼁

≤ bλnψ pb u0, u1( 􏼁( 􏼁 + b
2λn+1ψ pb u0, u1( 􏼁( 􏼁 + . . . + b

m− n− 1λm− 2ψ pb u0, u1( 􏼁( 􏼁 + b
m− n− 1λm− 1ψ pb u0, u1( 􏼁( 􏼁

� bλn 1 + bλ +(bλ)
2

+ · · · +(bλ)
m− n− 2

+ b
m− n− 2λm− n− 1

􏼐 􏼑ψ pb u0, u1( 􏼁( 􏼁.

(31)

Since λ< b− 1, thus, for m, n ∈ N with m> n> n0, we
obtain

ψ pb un, um( 􏼁( 􏼁≤
bλn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁. (32)

'us, since (bλn/(1 − bλ))⟶ 0 as n⟶ +∞, we have
limn,m⟶+∞ψ(pb(un, um)) � 0, and thus,

lim
n,m⟶+∞

pb un, um( 􏼁 � 0. (33)

By Lemma 1 (iii), un􏼈 􏼉 is Cauchy sequence in S. Since S is
complete, un􏼈 􏼉 converges to some point z0 ∈ S. Note that the
sequence un􏼈 􏼉 is an orbit of J at u0 ∈ S with un⟶ z0. Now,
suppose that the function q is J-orbitally b-lower semi-
continuous at z0; then, using (28), we have

0≤ q z0( 􏼁≤ lim inf
n⟶∞

bq un( 􏼁 � 0, (34)

and hence, q(z0) � pb(z0, J(z0)) � 0. Conversely, if
pb(z0, J(z0)) � q(z0) � 0, then, clearly, the function q is
J-orbitally b-lower semicontinuity at z0 because
q(z0) � 0≤ lim infn⟶∞bq(un). Furthermore, if
pb(z0, z0) � 0, then, since J(z0) is closed, it follows from
Lemma 2 that z0 ∈ J(z0).

If we consider in'eorem 8, a constant mapping ξc(s) �

τ and s ∈ (0,∞), where τ ∈ (0, c); then, we have the fol-
lowing result. □

Corollary 1. Let J: S⟶ Cl(S) be a multivalued mapping
satisfying that, for any constants c ∈ (0, 1) and for each u ∈ S,
there is v ∈ Lu

c such that

ψ(q(v)) ≤ τψ pb(u, v)( 􏼁, (35)

where Lu
c � v ∈ J(u): cψ(pb(u, v))≤ψ(q(u))􏼈 􏼉 and a real-

valued function q on S defined by q(u) � pb(u, J(u)) is
b-lower semicontinuous. 9en, there exists z0 ∈ S such that
q(z0) � 0. Furthermore, if pb(z0, z0) � 0, then z0 ∈ Fix(J).

Remark 2.

(1) 'eorem 8 generalizes the fixed-point result ('e-
orem 2.2 of [36]). Indeed, if we take ψ(s) � s, for all
s ∈ [0, A) and b � 1 (i.e., wb-distance as a w-dis-
tance) in 'eorem 8, then we get 'eorem 2.2 of
[36]. Consequently, 'eorem 8 also extends 'eo-
rem 4, which contains 'eorem 3.

(2) 'eorem 8 generalizes the fixed-point result ('e-
orem 2.1 of [22]) for wb-distance in the frame work
of metric-type spaces.

(3) 'eorem 8 contains 'eorem 2.1 of [35] as a special
case.

(4) Corollary 1 contains the fixed-point results (Cor-
ollary 2.2 of [22] and 'eorem 3.3 of [37]).

Now, without using b-lower semicontinuity of the
function q, we present a fixed-point result for multivalued
mappings which extends the fixed-point result of 'eorem
2.4 of [36] and reduces to 'eorem 2.4 of [22].

Theorem 9. Suppose that all the hypotheses of 9eorem 8
(except the b-lower semicontinuity of the function q) hold.
Assume that

inf ψ pb(u, z)( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉> 0, (36)

for every z ∈ S with z ∉ J(z). 9en, Fix(J)≠∅.

Proof. Following the proof of 'eorem 8, there exists an
orbit un􏼈 􏼉 of J at u0 ∈ S, which turns as a Cauchy sequence in
a complete space S. 'en, there exists z0 ∈ S such that the
sequence un􏼈 􏼉 converges to z0. 'us, by the b-lower semi-
continuity of the function pb(un, ·), and from the proof of
'eorem 8, it follows that, for all n> n0,

ψ pb un, z0( 􏼁( 􏼁≤ lim inf
m⟶∞

bψ pb un, um( 􏼁( 􏼁≤
b
2λn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁,

(37)

where λ � c0/c< 1. Also, note that
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q un( 􏼁 � pb un, J un( 􏼁( 􏼁≤pb un, un+1( 􏼁, (38)

for all n, and since the function ψ is nondecreasing, we have

ψ q un( 􏼁( 􏼁≤ψ pb un, un+1( 􏼁( 􏼁, (39)

and thus,

ψ q un( 􏼁( 􏼁< λnψ pb u0, u1( 􏼁( 􏼁. (40)

Assume that z0 ∉ J(z0). 'en, we have

0< inf ψ pb u, z0( 􏼁( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉

≤ inf ψ pb un, z0( 􏼁( 􏼁 + ψ q un( 􏼁( 􏼁: n> n0􏼈 􏼉

< inf
b
2λn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁 + λnψ pb u0, u1( 􏼁( 􏼁: n> n0􏼨 􏼩

�
b
2

− bλ + 1
1 − bλ

ψ pb u0, u1( 􏼁( 􏼁􏼨 􏼩inf λn
: n> n0􏼈 􏼉 � 0,

(41)

which is impossible, and hence, z0 ∈ Fix(J).
Using MT-functions (instead of strong MT-functions),

we present a fixed-point result for multivalued wb-con-
traction mappings which extends 'eorem 2.5 of [22] and
thus contains a number of known metric fixed-point
results. □

Theorem 10. Let J: S⟶ Cl(S) be a multivalued mapping.
Assume that there exist an MT-function ξ and a function
ψ ∈ Ω[0, A) such that, for any u ∈ S, there is v ∈ J(u)

satisfying

ψ pb(u, v)( 􏼁 � ψ(q(u)),

ψ(q(v)) ≤ ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁,
(42)

where q is a real-valued function on S defined by
q(u) � pb(u, J(u)). 9en,

(1) For any u0 ∈ S, there exist an orbit un􏼈 􏼉 of J at u0 and
z0 ∈ S such that limn⟶∞un � z0.

(2) pb(z0, J(z0)) � 0 if and only if the function q is
J-orbitally b-lower semicontinuous at z0. Moreover, if
pb(z0, z0) � 0, then z0 ∈ Fix(J).

Proof. Let u0 be an arbitrary but fixed element of S. 'en,
there is u1 ∈ J(u0) such that

ψ pb u0, u1( 􏼁( 􏼁 � ψ q u0( 􏼁( 􏼁,

ψ q u1( 􏼁( 􏼁≤ ξ pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁,

ξ pb u0, u1( 􏼁( 􏼁< 1.

(43)

Following the proof of 'eorem 8, there exists a Cauchy
sequence un􏼈 􏼉 in the complete space S such that un+1 ∈ J(un)

(that is, un􏼈 􏼉 is an orbit of J at u0) satisfying

ψ pb un, un+1( 􏼁( 􏼁 � ψ q un( 􏼁( 􏼁,

ψ q un+1( 􏼁( 􏼁≤ ξ pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁,

ξ pb un, un+1( 􏼁( 􏼁< 1.

(44)

Consequently, there exists z0 ∈ S such that the sequence
un􏼈 􏼉 converges to z0. Now, the rest of the proof follows as of
'eorem 8. □

Remark 3.
(1) For b � 1, 'eorem 10 reduces to 'eorem 2.5 of

[22].
(2) If we take b � 1 and ψ(s) � s, for each s ∈ [0, A) in

'eorem 10, the we obtain 'eorem 2.5 of [38].
(3) It turns out that 'eorem 10 also generalizes 'e-

orem 7 of [14] and 'eorem 2.4 of [35].

Using the same technique as in the proof of 'eorem 9,
we get the following fixed-point result (in the absence of the
b-lower semicontinuity of the function q), which contains
fixed-point result ('eorem 2.7 of [22]) as a special case.

Theorem 11. Suppose that all the hypotheses of 9eorem 10
except the b-lower semicontinuity of the function q hold.
Assume that

inf ψ pb(u, z)( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉> 0, (45)

for every z ∈ S with z ∉ J(z). 9en, Fix(J)≠∅.

4. Example

Now, we present examples which show that ourmain results,
namely, 'eorems 8 and 10 are genuine generalizations of
'eorem 2.1 of [22] and 'eorem 2.5 of [22], respectively.

Example 2. Let S � [0, 1]. Define Δ(u, v) � (u − v)2, for all
u, v ∈ S. 'en, S is a metric-type space with b � 2. Define a
wb-distance function on S by pb(u, v) � v2, for all u, v ∈ S.
Let J: S⟶ Cl(S) be defined by

J(u) �

1
2
u
2

􏼚 􏼛; u ∈ 0,
15
32

􏼔 􏼓∪
15
32

, 1􏼒 􏼕,

0,
17
96

,
1
4

􏼚 􏼛; u �
15
32

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

Let A ∈ [1,∞) and let c � 1/2. Define a function
ψ: [0, A)⟶ R by ψ(s) � s1/2. Clearly, ψ ∈ Ω[0, A). Define
ξc: [0,∞)⟶ [0, c) as follows:

ξc(s) �

3
4
s
1/2

; s ∈ 0,
1
2

􏼔 􏼓,

3
8
; s ∈

1
2
,∞􏼔 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)

Clearly, ξc is a strong MT-function. Also, note that
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q(u) � pb(u, J(u)) �

1
4
u
4
; u ∈ 0,

15
32

􏼔 􏼓∪
15
32

, 1􏼒 􏼕,

0; u �
15
32

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(48)

Now, for each u ∈ [0, 15/32)t∪ n(q15/32, 1], we have
J(u) � (1/2)u2􏼈 􏼉. Take v � (1/2)u2 ∈ J(u); then, we have

pb(u, v) � q(u) �
1
4
u
4
. (49)

'us, for u ∈ [0, 1], u≠ 15/32, we have

cψ pb(u, v)( 􏼁≤ψ(q(u)), (50)

ψ(q(v)) � ψ pb

1
2
u
2
,
1
2

1
2
u
2

􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡 � ψ
1
64

u
8

􏼒 􏼓 �
1
8
u
4

≤
3
16

u
4

� ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(51)

Now, let u � 15/32; then, we have J(u) � 0, 17/96, 1/4{ }.
Clearly, there exists v � 0 ∈ J(u) such that

cψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (52)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁. (53)

Note that, for each u ∈ [0, 1], all the conditions of
'eorem 8 are satisfied, and hence, it follows that
Fix(J)≠∅. Note that Fix(J) � 0{ }.

Clearly, pb is not a metric d, even not a w-distance p on
S, and thus, J does not satisfy the hypotheses of 'eorem 2.1
of [22]. Note that the mapping J also does not satisfy the
hypotheses of 'eorem 2.5 of [22].

Example 3. Let S � 0{ }∪ (1/n): n ∈ N{ }. Denote
Λ � 0{ }∪ (1/2n): n ∈ N{ }. Clearly, Λ⊆S. Let
Δ: S × S⟶ [0,∞) be defined by

Δ(u, v) �

0; if u � v,

2; if u≠ v ∈ 0, 1{ },

|u − v|; if u≠ v ∈ Λ,

4; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

'en, S is a metric-type space with b � 8/3 (see [28]).
Define a wb-distance pb: S × S⟶ [0,∞) by

pb(u, v) �

0; if u � v,

2; if u≠ v ∈ 0, 1{ },

max 3(u − v), 2(v − u){ }; if u≠ v ∈ Λ,

4; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(55)

Let J: S⟶ Cl(S) be defined by

J(u) �

1
11

u􏼚 􏼛; if u ∈ Λ,

0,
1
3

􏼚 􏼛; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

Let A ∈ [1,∞). Define a function ψ: [0, A)⟶ R by
ψ(s) � s1/2. Clearly, ψ ∈ Ω[0, A). Define ξ: [0,∞)⟶ [0, 1)

as follows:

ξ(s) �

1
4

s; if s ∈ Λ,

1
2
; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(57)

Clearly, ξ is MT-function. We need to examine the
following cases:

Case I: suppose u ∈ Λ∖ 0{ }; we have J(u) � (1/11)u{ }

and so

q(u) � pb(u, J(u)) � max 3 u −
1
11

u􏼒 􏼓, 2
1
11

u − u􏼒 􏼓􏼚 􏼛

�
30
11

u.

(58)

Take v � (1/11)u ∈ J(u); then, clearly, v ∈ Λ, and we
have

pb(u, v) � q(u) �
30
11

u. (59)

'us, for u ∈ Λ∖ 0{ }, we have

ψ pb(u, v)( 􏼁 � ψ(q(u)), (60)

ψ(q(v)) � ψ pb

1
11

u,
1

(11)
2 u􏼠 􏼡􏼠 􏼡

� ψ
30

(11)
2 u􏼠 􏼡 �

��
30

√

11
u
1/2

≤
1
2

��
30
11

􏽲

u
1/2

� ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(61)

Case II: suppose u � 0; then, we have
J(u) � (1/11)u{ } � 0{ }. Clearly, there exists
v � 0 ∈ J(u) such that

ψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (62)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � 0 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(63)

Case III: suppose u � 1; then, we have J(u) � 0, 1/3{ }.
Clearly, there exists v � 0 ∈ J(u) such that
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ψ pb(u, v)( 􏼁 �
�
2

√
� ψ(q(u)), (64)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � 0≤
1
�
2

√

� ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(65)

Case IV: suppose u � (1/3); then, we have
J(u) � 0, 1/3{ }. Clearly, there exists v � (1/3) ∈ J(u)

such that

ψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (66)

ψ(q(v)) � ψ pb

1
3
,
1
3

􏼒 􏼓􏼒 􏼓 � 0 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(67)

Case V: suppose u ∈ S∖(Λ∪ 1, (1/3){ }); then, we have
J(u) � 0, (1/3){ }. Clearly, there exists v � (1/3) ∈ J(u)

such that

ψ pb(u, v)( 􏼁 � 2 � ψ(q(u)), (68)

ψ(q(v)) � ψ pb

1
3
,
1
3

􏼒 􏼓􏼒 􏼓 � 0≤ 1 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(69)

Note that, for each u ∈ S, all the conditions of 'eorem
10 are satisfied, and hence, it follows that Fix(J)≠∅. Note
that Fix(J) � 0{ }.

Not that the wb-distance pb is not a metric d, even not a
w-distance p on S, and thus, J do not satisfy the hypotheses
of 'eorem 2.5 of [22].

5. Conclusion

Among others, Feng-Liu [16], Klim and Wardowski [17],
and Ćirić [14] studied the existence of fixed points for
multivalued contractive-type mappings without using the
Hausdorff–Pompieu metric, and consequently, they gener-
alized some classical known fixed-point results including
'eorems 1 and 2. In this study, we established some general
fixed-point results for multivalued generalized contractive
mappings on metric-type spaces (instead of normal metric
spaces) with respect to wb-distances. Presented results
generalize and improve a number of known fixed-point
results, including the corresponding fixed-point results
which are stated in Section 2. In support of our main fixed-
point theorems, examples are also provided. Note that the
family of metric-type spaces is effectively larger than one of
metric spaces, and hence, our theorems are more general,
different from the classical results.
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