Research Article

Some Novel Approaches for Analyzing the Unforced and Forced Duffing–Van der Pol Oscillators

Alvaro H. Salas,1 Wedad Albalawi,2 S. A. El-Tantawy2,3,4 and L. S. El-Sherif4,5,6

1Department of Mathematics and Statistics, Universidad Nacional de Colombia, FIZMAKO Research Group, Bogota, Colombia
2Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
3Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt
4Research Center for Physics (RCP), Department of Physics, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Bahah, Saudi Arabia
5Department of Physics, College of Arts and Science in Wadi Al-Dawaser, Prince Sattam Bin Addulaziz University, Wadi-Dawaser 11991, Saudi Arabia
6Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt

Correspondence should be addressed to S. A. El-Tantawy; tantawy@sci.psu.edu.eg

Received 15 January 2022; Revised 27 May 2022; Accepted 21 June 2022; Published 31 July 2022

Academic Editor: Melike Kaplan

Copyright © 2022 Alvaro H. Salas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the current investigation, both unforced and forced Duffing–Van der Pol oscillator (DVdPV) oscillators with a strong nonlinearity and external periodic excitations are analyzed and investigated analytically and numerically using some new and improved approaches. The new approach is constructed based on Krylov–Bogoliubov–Metroirlsky method (KBMM). One of the most important features of this approach is that we do not need to solve a system of differential equations, but only solve a system of algebraic equations. Moreover, the ease and faster of applying this method gives high-accurate results and this approach is better than many approaches in the literature. This approach is applied for analyzing (un)forced DVdP oscillators. Also, some improvements are made to He’s frequency-amplitude formulation in order to solve unforced DVdP oscillator to obtain high-accurate results. Furthermore, the He’s homotopy perturbation method (He’s HPM) is employed for analyzing unforced DVdP oscillator. The comparison between all mentioned approaches is carried out. The application of our approach is not limited to (un) forced DVdPV oscillators only but can be applied to analyze many higher-order nonlinearity oscillators for any odd power and it gives more accurate results than other approaches. Both used methods and obtained approximations will help many researchers in general and plasma physicists in particular in the interpretation of their results.

1. Introduction

The study of the dynamics of nonlinear oscillators is one of the topics of great importance for many researchers due to its many important applications in various areas of physics, applied mathematics, and practical engineering [1–17]. Differential equations are one of the best and most successful models in modeling many nonlinear dynamical systems. For instance, Duffing-type equation is one of the most famous and successful equations that has been used for modeling and interpreting many nonlinear oscillations in many different dynamical systems such as electrical circuit, optical stability, the buckled beam, and different oscillations in a plasma [16–19]. In plasma physics, there are many evolution equations that can be reduced to Duffing-type equation, Helmholtz-type equation, Duffing–Helmholtz equation, and Mathieu equation in order to investigate the various oscillations that occur within complicated plasma systems [20–23]. There is another type of equation of motion that was used for modeling the nonlinear oscillations in biology, electronics, engineering, plasma physics, and chemistry which is called Van der Pol–Duffing (VdPD) (sometimes called Duffing–Van der Pol (DVdP)) equation and its family [24, 25]. For example, a forced modified VdPD (mVdPD)
The rest of this paper is introduced in the following fashion: In Section 2, the new suggested approach is introduced. The analytical approximations to the unforced DVdP oscillator is reported in Section 3 using the new mentioned approach, the He’s HPM, and improved He’s frequency-amplitude formulation. Moreover, in Section 4, the new mentioned approach is devoted for getting an analytical approximation to the forced DVdP oscillator. The obtained results are summarized in Section 5.

2. New Approach Based on KBM for Solving Strongly Nonlinear Oscillators

Let us consider the following general form to the second-order i.v.p.:

\[
\begin{align*}
\ddot{x} + \epsilon(1-x^2)x + \omega_0^2 x + \beta x^3 &= f(\Omega t), \\
x(0) &= x_0, \\
x'(0) &= \dot{x}_0,
\end{align*}
\]

(1)

where the expression \(F(x,0) \) is an odd polynomial of \(x \).

To introduce a \(p \)-parameter solution to i.v.p. (2), we rewrite this problem in the following new form:

\[
\begin{align*}
R_p(x) &\equiv \ddot{x} + \omega_0^2 x + pF(x,\dot{x}) = 0, \\
x(0) &= x_0, \\
x'(0) &= \dot{x}_0,
\end{align*}
\]

(3)

where \(x_p \equiv x_p(t) \) indicates the solution to i.v.p. (3), we can call a \(p \)-parameter solution. Then, the solution to the original i.v.p. (2) can be obtained for \(p = 1 \).

Assuming the solution to i.v.p. (3) is given by the following ansatz form:

\[
x_p = a \cos(\psi) + \sum_{k=1}^{N} \sum_{j=1}^{k} a_j \sin^j(\psi),
\]

(4)

where the functions \(a \equiv a(t) \) and \(\psi \equiv \psi(t) \) are assumed to vary with time according to the following ordinary differential equations (odes):

\[
\dot{a} = \frac{da}{dt} \equiv a' t = \sum_{k=1}^{N} \sum_{j=1}^{k} B_{k,j} a^{j-1},
\]

(5)

\[
\dot{\psi} = \frac{d\psi}{dt} \equiv \psi' t = \omega_0 + p \sum_{k=2}^{N} \sum_{j=0}^{k} C_{k,j} a^j.
\]

(6)

We plug the ansatz (4) with the relations (5) and (6) into \(R_p(x) \) given in equation (3) and equating the coefficients of \(p^k \) \((n = 1, 2, 3, \ldots)\) \(a^{2j+1} \) \((t)\), \(\cos((2i+1)\psi(t)) \), and \(\sin((2i+1)\psi(t)) \) \((i, j = 1, 2, 3, \ldots, N)\) to zero, then we can get a system of algebraic equations. By solving this system, we can determine the unknown coefficients \(r_{2i+1,j,k} \), \(s_{2i+1,j,k} \), \(B_{k,1} \), and \(C_{k,j} \).
Remark 1. We can obtain another method by replacing \((6) \) with

\[
\psi = \sqrt{\omega_0^2 + pC_{1,0}a^2 + \sum_{k=2}^{N} p^k \sum_{j=0}^{k} C_{k,j}a^{2j}}.
\]

In the below section, we will use this method for analyzing both the unforced DVdP oscillator, i.e., i.v.p. \((1)\) for \(f = 0 \) and the forced DVdP oscillator \((1)\).

3. Analytical Approximations to the Unforced Duffing–Van Der Pol Oscillator

Here, we can analyze the unforced DVdP oscillator, i.e., i.v.p. \((1)\) for \(f = 0 \) using three different approaches, namely:

(i) Our new approach mentioned in the above section
(ii) The He’s HPM
(iii) Improved He’s frequency-amplitude formulation (He’s FAF)

3.1. Our New Approach. By using \(N = 2 \) in solution \((4)\), then the solution to the following unforced problem \((3)\)

\[
\ddot{x} + \omega^2_0 x + p \left[-\epsilon (1 - x^2) \dot{x} + \beta x^3 \right] = 0,
\]

\((8)\)
can be introduced in following form:

\[
x_p = a \cos(\psi) + \sum_{k=1}^{3} a^{2k+1} p^k \sum_{j=1}^{k} C_{k,j} a^{2j},
\]

\((9)\)

Accordingly, we get

\[
x_p = a \cos(\psi) + p^3 A_1(t) + p^2 \left(a^3 A_2(t) + a^5 A_3(t) \right),
\]

\((10)\)

with

\[
A_1(t) = \left(r_{3,1,1} \cos(3\psi) + s_{3,1,1} \sin(3\psi) \right),
\]

\[
A_2(t) = \left(r_{3,1,2} \cos(3\psi) + s_{3,1,2} \sin(3\psi) \right),
\]

\[
A_3(t) = \left(r_{3,2,2} \cos(3\psi) + r_{5,2,2} \cos(5\psi) + s_{5,2,2} \sin(3\psi) + s_{5,2,2} \sin(5\psi) \right),
\]

\((11)\)

On the other hand

\[
R_p = D_1 p + D_2 p^2 + O(p^3),
\]

\((13)\)

with

\[
D_1 = S_1 a \sin(\psi) + a^3 \left(S_2 \sin(\psi) + S_3 \cos(\psi) + S_4 \cos(3\psi) + S_5 \sin(3\psi) \right),
\]

\[
D_2 = a^5 \left(S_6 \sin(\psi) + S_7 \cos(\psi) + S_8 \cos(3\psi) + S_9 \sin(3\psi) + S_{10} \sin(5\psi) + S_{11} \cos(5\psi) \right)
\]

\[
+ a^3 \left(S_{12} \sin(\psi) + S_{13} \cos(\psi) + S_{14} \sin(3\psi) + S_{15} \cos(3\psi) \right) + a S_{16} \cos(\psi),
\]

\((14)\)

where the values of coefficients \(S_i (i = 1, 2, \ldots, 16) \) are defined in Appendix (i).

Equating the coefficients of \(p \) and \(p^2 \) to zero in

\[
R_p = \ddot{x} + \omega_0^2 x + p \left[-\epsilon (1 - x^2) \dot{x} + \beta x^3 \right],
\]

\((15)\)

also, equating to zero the coefficients of \(a^{2j+1} \), \(\cos((2j + 1)\psi) \), and \(\sin((2j + 1)\psi) \), where \((i, j = 1, 2, 3, \ldots, N)\), i.e., \(S_i = 0 \), we get an algebraic system. The solution of this system yields
\begin{align*}
B_{1,1} &= \frac{\epsilon}{2}, \\
B_{1,2} &= -\frac{\epsilon}{8}, \\
B_{2,2} &= -\frac{3\beta \epsilon}{16\omega_0}, \\
B_{2,3} &= \frac{\beta \epsilon}{32\omega_0}, \\
C_{1,0} &= \frac{3\beta}{8\omega_0}, \\
C_{2,0} &= -\frac{\epsilon^2}{8\omega_0}, \\
C_{2,1} &= \frac{\epsilon^2}{8\omega_0}, \\
C_{2,2} &= -\frac{15\beta^2 + 7\epsilon^2 \omega_0^2}{256\omega_0^3}, \\
r_{3,1,1} &= \frac{\beta}{32\omega_0}, \\
r_{3,1,2} &= -\frac{\epsilon^2}{128\omega_0^2}, \\
r_{3,2,2} &= -\frac{21\beta^2 + \epsilon^2 \omega_0^2}{1024\omega_0^4}, \\
r_{5,2,2} &= -\frac{3\beta^2 - 5\epsilon^2 \omega_0^2}{3072\omega_0^5}, \\
s_{3,1,1} &= -\frac{\epsilon}{32\omega_0}, \\
s_{3,1,2} &= \frac{3\beta \epsilon}{128\omega_0^3}, \\
s_{3,2,2} &= \frac{3\beta \epsilon}{256\omega_0^4}, \\
s_{5,2,2} &= \frac{\beta \epsilon}{384\omega_0^5}.
\end{align*}

From the above values in equation (11), we have

\begin{align*}
A_1(t) &= \frac{1}{32\omega_0^2}(\beta \cos(3\psi) - \epsilon \omega_0 \sin(3\psi)), \\
A_2(t) &= -\frac{\epsilon}{128\omega_0} (3\beta \sin(3\psi) + \epsilon \omega_0 \cos(3\psi)), \\
A_3(t) &= -\frac{1}{3072\omega_0^3} [3(21\beta^2 + \epsilon^2 \omega_0^2) \cos(3\psi) \\
&+ (5\epsilon^2 \omega_0^2 - 3\beta^2) \cos(5\psi) \\
&+ 4\beta \epsilon \omega_0 (2 \sin(5\psi) - 9 \sin(3\psi))].
\end{align*}

Accordingly, the odes for determining the functions \((a, \psi)\) read

\begin{align*}
\dot{a} &= p \left[\frac{1}{2} \epsilon a(t) - \frac{1}{8} \epsilon a(t)^3 \right] \\
&+ p^2 \left(\frac{3\beta \epsilon}{16\omega_0^2} a(t)^3 + \frac{\beta \epsilon}{32\omega_0^3} a(t)^5 \right), \\
\dot{\psi} &= \omega_0 + p \frac{3\beta}{8\omega_0} a(t)^2 \\
&+ p^2 \left(\frac{\epsilon^2}{8\omega_0^2} + \frac{\epsilon^2}{8\omega_0^2} a(t)^2 - \frac{15\beta^2 + 7\epsilon^2 \omega_0^2}{256\omega_0^3} a(t)^4 \right).
\end{align*}

(16)

For \(p = 1\), the value of \(\dot{a}\) given in equation (18) reduces to

\begin{align*}
\dot{a}|_{p=1} &= \left(\frac{1}{2} \epsilon a - \frac{1}{8} \epsilon a^3 \right) + \left(\frac{3\beta \epsilon}{16\omega_0^2} a^3 + \frac{\beta \epsilon}{32\omega_0^3} a^5 \right).
\end{align*}

(19)

The amplitude for the limit cycle is obtained from the condition \(\dot{a}|_{p=1} = 0:\)

\begin{align*}
\left(\frac{1}{2} \epsilon a - \frac{1}{8} \epsilon a^3 \right) + \left(\frac{3\beta \epsilon}{16\omega_0^2} a^3 + \frac{\beta \epsilon}{32\omega_0^3} a^5 \right) &= 0.
\end{align*}

(20)

Solving equation (20) gives

\begin{align*}
A &= \sqrt{\omega_0^2 \left(2 - \sqrt{\left(\frac{3\beta}{9\beta - 4\omega_0^2} \right) \omega_0^4 + 2} \right) + 2}. \\
\end{align*}

(21)

Observe that

\begin{align*}
\lim_{\beta \to 0} A = 2,
\end{align*}

(22)

this is called the cycle amplitude for the VdP oscillator.

We can use the following Chebyshev approximation in order to facilitate the solution to the ode system (18):
\textbf{3.2. He's Homotopy Perturbation Method.} Moreover, the approximate solution to the DVDp i.v.p. (1) using He's HPM is obtained. Briefly, He's HPM can be used for a series of nonlinear oscillators differential equations which many classical perturbation methods failed to solve them or to give some accurate solutions. This method suggests the solution in the following ansatz:

\begin{equation}
\psi = \sum_{i=1}^{4} W_i + c_1, \tag{26}
\end{equation}

where the values of \(W_i \) (\(i = 1, 2, 3, 4 \)) are defined in Appendix (ii). The constants \(c_0 \) and \(c_1 \) are determined from the initial conditions (ICs) \(x(0) = x_0 \) and \(x'(0) = \dot{x}_0 \).

In all above expressions, for \(p = 1 \), the approximation to the following i.v.p. can be obtained:

\begin{equation}
\begin{cases}
\dot{x} - \varepsilon \left(1 - x^2\right) \dot{x} + \omega_0^2 x + \beta x^3 = 0, \\
x(0) = x_0 \text{ and } x'(0) = \dot{x}_0,
\end{cases} \tag{27}
\end{equation}

Substitute equations (28) and (29) into i.v.p. (1), and by collecting the coefficients of same powers of \(p \), we finally obtain some reduced equations. We have

\begin{equation}
\begin{align*}
\Re F &= (x_0'(\tau) + x_0''(\tau))\omega_0 \\
&+ \left(\beta x_0'(\tau) + \omega_0^2 x_1(\tau) + \frac{1}{2}(-2\varepsilon\omega_0 + \tau\omega_1)x_0'(\tau) \right) \\
&+ \varepsilon\omega_0 x_0'(\tau)x_0''(\tau) + \omega_1 x_0''(\tau) + \omega_0^2 x_0''(\tau) \\
&+ \frac{1}{2}\tau\omega_1 x_0''(\tau) - F \cos\left(\frac{\omega_0}{\omega_0}\right) + O\left(p^2\right),
\end{align*} \tag{30}
\end{equation}

where \(\tau = t\omega \).

Equating to zero the coefficients of \(p^i \) and solving the resulting odes gives

\begin{align*}
x_0'(\tau) &= A \cos(\tau), \\
x_1'(\tau) &= \frac{A^3}{32\omega_0} (\beta \cos(3\tau) - \varepsilon\omega_0 \sin(3\tau)) \\
&+ \frac{A^3 \varepsilon\omega_0 + 16c_2 \omega_0^2 + (8A\omega_1 - 6A^3\beta)\tau}{16\omega_0^3} \sin(\tau) \\
&+ \frac{8A\omega_1 + 16c_1 \omega_0^2 - 5A^3 \beta + (8A\varepsilon\omega_0 - 2A^3 \varepsilon\omega_0)\tau}{16\omega_0^3} \cos(\tau) \\
&+ \frac{F}{\omega_0 - \Omega^2} \cos\left(\frac{\Omega \tau}{\omega_0}\right),
\end{align*} \tag{31}

where \(A \) represents the amplitude of the oscillator.

Secularity terms in the last expression are not allowed so that the coefficients of \(\cos(t) \) and \(\sin(t) \) must be equal to zero which lead to

\begin{align}
-5A^3 \beta + 8A\omega_1 + 16c_2 \omega_0^2 &= 0, \\
-2A(A^2 - 4)\varepsilon\omega_0 &= 0, \\
\omega_0(16c_1 \omega_0^2 - A^2 \varepsilon) &= 0, \\
8A\omega_1 - 6A^3\beta &= 0. \tag{32}
\end{align}

Solving the last system gives

\begin{equation}
\begin{cases}
A = 2, \\
c_1 = -\frac{\beta}{2\omega_0^2}, \\
c_2 = \frac{\varepsilon}{2\omega_0}, \\
\omega_1 = 3\beta.
\end{cases} \tag{33}
\end{equation}

Then, the following solution to \(O(p^2) \) and for \(p = 1 \) is obtained:
\[
x_{LP} = 2 \cos(\omega t) + \frac{1}{4\omega_0} (\beta \cos(3\omega t) - \epsilon \omega_0 \sin(3\omega t)) + \frac{F}{\omega_0^2 - \Omega^2} \cos \left(\frac{\Omega t}{\omega_0} \right),
\]

where \(\omega = \sqrt{(3\beta + \omega_0^2)}\) and \(\omega_0^2 \neq \Omega^2\). This solution is obtained under the initial conditions (ICs)

\[
\begin{align*}
x_0 &= 2 + \frac{\beta}{4\omega_0^2} + \frac{F}{\omega_0^2 - \Omega^2}, \\
\dot{x}_0 &= -\frac{3\epsilon \sqrt{\Theta}}{4\omega_0}.
\end{align*}
\]

Solution (34) recovers the unforced case for \(F = 0\).

3.3. Improved He’s Frequency-Amplitude Formulation

To demonstrate the general idea of He’s frequency-amplitude formulation [31–35], let us consider the following oscillator:

\[
\ddot{x} + f(x) = 0,
\]

where \(f(x)\) indicates the nonlinear restoring force. The following conditions are hold: \(f(0) = 0\) and \(f(x)/x > 0\).

He considered Duffing oscillator

\[
\begin{align*}
\ddot{x} + x + \epsilon x^3 &= 0, \\
x(0) &= A, \\
\dot{x}(0) &= 0,
\end{align*}
\]

where \(A\) represents the amplitude of the oscillator. Based on He’s principle, we have

\[
\begin{align*}
\dot{f}(x) &= x + \epsilon x^3, \\
\dot{\psi}^2 &= \omega^2 = \frac{\dot{f}(x)}{\dot{x}(x = \sqrt{\psi}(t/2))A} = 1 + 3 \left(\frac{A}{2} \right)^2,
\end{align*}
\]

where \(\omega\) denotes the frequency of oscillator.

Now, by considering the following DVdP oscillator

\[
\ddot{x} - \epsilon \left(1 - x^2 \right) \dot{x} + \omega_0^2 x + \beta x^3 = 0,
\]

in this case, the function \(f(x)\) reads

\[
f(x) = \omega_0^2 x + \beta x^3,
\]

which leads to

\[
\dot{\psi}^2 = \omega^2 = \frac{\dot{f}(x)}{\dot{x}(x = \sqrt{\psi}(t/2))A} = \omega_0^2 + \frac{3}{4} \beta A^2.
\]

Since the amplitude now depends on time, we will reason heuristically to determine it

\[
\begin{align*}
A &= a(t), \\
\dot{a} &= \frac{\epsilon \kappa}{2} a - \frac{\epsilon}{8} a^3,
\end{align*}
\]

with

\[
\kappa = \frac{\omega_0^2 \left(2 - \sqrt{\left(\beta (9\beta - 4\omega_0^2) / \omega_0^4 \right) + 4} \right) + 3\beta}{4\beta}.
\]

Note that \(\kappa \to 1\) as \(\beta \to 0\).

Then, the improved He’s solution becomes

\[
x(t) = a(t) \cos(\omega(t)),
\]

with

\[
a(t) = \frac{2 \sqrt{c(\epsilon t/2)}}{\sqrt{4\kappa / c_0^2} + c^{ext} - 1},
\]

\[
\omega(t) = c_1 + \int_0^t \sqrt{\omega_0^2 + \frac{3}{4} \beta A^2(r)} dr = W(t) - W(0) + c_1,
\]

where

\[
W(t) = \frac{1}{\epsilon \kappa} \left[2 \sqrt{3\beta \kappa + \omega_0^2 \tanh^{-1} \left(\sqrt{\left(\frac{3\beta \kappa e^{ext}/(4\kappa / c_0^2) + c^{ext} - 1 + \omega_0^2}{3\beta \kappa + \omega_0^2} \right) - 2\omega_0 \coth^{-1} \left(\frac{\omega_0}{\sqrt{3\beta \kappa e^{ext}/(4\kappa / c_0^2) + c^{ext} - 1 + \omega_0^2}} \right) \right] \right].
\]

The constants \(c_0\) and \(c_1\) are determined from the ICs \(x(0) = x_0\) and \(x'(0) = \dot{x}_0\). The amplitude for the limit cycle reads

\[
r_\beta = \lim_{t \to \infty} a(t) = \frac{\omega_0}{\omega_0^2 - 4\beta \omega_0^2 + 4\omega_0^4 + 3\beta + 2\omega_0^2} \to 2\beta \omega_0 \to 0.
\]

As a numerical example, we can use the same model and data that were given in Ref. [36], which lead to the following unforced DVdP i.v.p. (27):

\[
\begin{align*}
\ddot{x} - 0.1 \left(1 - x^2 \right) \dot{x} + x + 0.01x^3 &= 0, \\
x(0) &= 2, \\
x'(0) &= 0.
\end{align*}
\]

Solution (10) and RK numerical approximation to i.v.p. (48) are graphically mapped as shown in Figure 1. Moreover, the approximation (34) using He’s HMP and the approximation (44) using the improved He’s FAF are compared with the obtained analytical approximation (10) and RK numerical approximation as illustrated in Figure 1. In addition, the maximum distance error in the whole time domain \((0 \leq t \leq 50)\) with respect to RK numerical approximation is estimated.
It is clear that the analytical approximation (10) and RK numerical approximation are very compatible with each other. Also, they are more accurate than He’s FAF and He’s HPM approximations.

4. Analytical Approximation to the Forced Duffing–Van Der Pol Oscillator

Let us consider the following forced DVdP i.v.p.:

\[
\begin{align*}
R_K & = \max_{0 \leq t \leq 50} |R_K - x_{\text{Approx}}| = 0.0108535, \\
L_R & = \max_{0 \leq t \leq 50} |R_K - x_{\text{He’s HPM}}| = 0.125709, \\
L_R & = \max_{0 \leq t \leq 50} |R_K - x_{\text{He’s FAF}}| = 0.164318.
\end{align*}
\]

(49)

Assume that the solution to i.v.p. (50) is given by the following ansatz:

\[
\begin{cases}
\dot{y} - \epsilon (1 - x^2) \dot{x} + \omega_0^2 x + \beta x^3 - F \cos(\Omega t) = 0, \\
x(0) = x_0, \\
x'(0) = x_0.
\end{cases}
\]

(50)

\[\begin{aligned}
R_K & = \max_{0 \leq t \leq 50} |R_K - x_{\text{Approx}}| = 0.0108535, \\
L_R & = \max_{0 \leq t \leq 50} |R_K - x_{\text{He’s HPM}}| = 0.125709, \\
L_R & = \max_{0 \leq t \leq 50} |R_K - x_{\text{He’s FAF}}| = 0.164318.
\end{aligned}\]

Figure 1: The approximate solutions to the unforced i.v.p. (48) using the analytical approximation (10) and RK numerical approximation as well as He’s FAF, He’s HPM, and PLT approximations are plotted in the \((x, t)\)-plane.

4. Analytical Approximation to the Forced Duffing–Van Der Pol Oscillator

Let us consider the following forced DVdP i.v.p.:
(\epsilon, \beta, \omega, F, \Omega) = (0.1, 0.01, 1, 1, 5.2)

\begin{align*}
\text{RK4} & = R \cos (\Omega t) + S \sin (\Omega t) + h.o.t., \\
R &= \frac{3\beta d_3^3}{4} + \frac{3}{4} \beta d_1^2 d_0 + \frac{1}{4} d_1 d_0^2 \epsilon \Omega + \frac{1}{4} d_1^2 \epsilon \Omega - d_1 \epsilon \Omega + d_0 \omega_0^2 - d_0 \Omega^2 - F + y(t)^2 (3\beta d_0 + d_1 \epsilon \Omega) + 2d_1 \epsilon y'(t) y(t), \\
S &= \frac{3}{4} \beta d_1 d_0^2 + \frac{3}{4} \beta d_1^3 - \frac{1}{4} d_1^2 d_0 \epsilon \Omega - \frac{1}{4} d_1 d_0^2 \epsilon \Omega + d_0 \omega_0^2 - d_1 \Omega^2 - y(t)^2 (3\beta d_1 + d_0 \epsilon \Omega) + 2d_1 \epsilon y'(t) y(t),
\end{align*}

Figure 2: The two approximations (51) and (34) according to ICs (35) for the forced i.v.p. (50) are displayed in the plane.

Putting solution (51) into (50), we have

\begin{align*}
\mathbb{R}_F &= R \cos (\Omega t) + S \sin (\Omega t) + h.o.t.,
\end{align*}

with

\begin{align*}
R &= \frac{3\beta d_3^3}{4} + \frac{3}{4} \beta d_1^2 d_0 + \frac{1}{4} d_1^2 d_0 \epsilon \Omega - d_1 \epsilon \Omega + d_0 \omega_0^2 - d_0 \Omega^2 - F + y(t)^2 (3\beta d_0 + d_1 \epsilon \Omega) + 2d_1 \epsilon y'(t) y(t), \\
S &= \frac{3}{4} \beta d_1 d_0^2 + \frac{3}{4} \beta d_1^3 - \frac{1}{4} d_1^2 d_0 \epsilon \Omega - \frac{1}{4} d_1 d_0^2 \epsilon \Omega + d_0 \omega_0^2 - d_1 \Omega^2 - y(t)^2 (3\beta d_1 + d_0 \epsilon \Omega) + 2d_1 \epsilon y'(t) y(t),
\end{align*}

where h.o.t. represents higher-order terms. By neglecting \(y(t) \) and \(y'(t) \) from system (54) at \((R, S) = (0, 0)\), then the constants \(d_0 \) and \(d_1 \) can be determined from the system

\begin{align*}
\frac{3\beta d_3^3}{4} + \frac{3}{4} \beta d_1^2 d_0 + \frac{1}{4} d_1^2 d_0 \epsilon \Omega - d_1 \epsilon \Omega + d_0 \omega_0^2 - d_0 \Omega^2 - F &= 0, \\
\frac{3}{4} \beta d_1 d_0^2 + \frac{3}{4} \beta d_1^3 - \frac{1}{4} d_1^2 d_0 \epsilon \Omega - \frac{1}{4} d_1^2 d_0 \epsilon \Omega + d_0 \omega_0^2 - d_1 \Omega^2 &= 0.
\end{align*}

From this system, we get

\begin{align*}
Y_0 + Y_1 d_0 + Y_2 d_0^2 + Y_3 d_0^3 &= 0, \\
Z_0 + Z_1 d_1 + Z_2 d_1^2 + Z_3 d_1^3 &= 0,
\end{align*}

where the values of \(Y_i, i = 0, 1, 2, 3 \) and \(Z_i, i = 0, 1, 2, 3 \) are defined in Appendix (iii). We choose the least in magnitude real roots to cubics (56) and (57).

As a numerical example, the two approximations (51) and (34) according to ICs (35) for i.v.p. (50) are displayed in Figure 2 for \((\epsilon, \omega, \beta, F, \Omega) = (0.1, 1, 0.01, 1, 5.2)\). Also, the maximum distance error for the two approximations is estimated as follows:

\begin{align*}
L_R &= \max_{0\leq t \leq 50} |RK - x_{\text{Approx}}| = 0.0227101, \\
L_R &= \max_{0\leq t \leq 50} |RK - x_{\text{He's HPM}}| = 0.106029.
\end{align*}

On the other side, for arbitrary ICs, the analytical approximation (51) versus the RK numerical approximation is maximum distance error for the two approximations is

\begin{align*}
L_R &= \max_{0\leq t \leq 50} |RK - x_{\text{Approx}}| = 0.0227101, \\
L_R &= \max_{0\leq t \leq 50} |RK - x_{\text{He's HPM}}| = 0.106029.
\end{align*}
parameters and ICs mentioned in Figure 3 is estimated as follows:

\[
\begin{align*}
L_{\varepsilon=0.1} &= \max_{0 \leq t \leq 40} |RK - x_{\text{Approx}}| = 0.00178818, \\
L_{\varepsilon=-0.1} &= \max_{0 \leq t \leq 40} |RK - x_{\text{Approx}}| = 0.00005143.
\end{align*}
\] (59)

We can conclude that in all cases, both two analytical approximations (10) and (51) for the unforced and forced DVDP oscillators are more accurate and convergence as compared to He’s FAF and He’s HPM.

5. Conclusion

Both higher-order nonlinearity unforced Duffing–Van der Pol (DVDP) oscillator and forced DVDP oscillator having linear and cubic nonlinear terms have been analyzed using some effectiveness and more accurate approaches. The new approach was constructed based on the Krylov–Bogoliubov–Metrovelsky method (KBMM). The new approach was discussed in detail for the two issues. In our analysis, we only stopped at the first approximation because it is sufficient in all cases. Also, this new approach can be used for analyzing many strongly nonlinear oscillators. Moreover, the new approach does not demand to solve any ordinary differential equations (odes) because we only simply equate the coefficients of the trigonometric functions \(a(t)\) and \(p\) to zero in order to get a simple system of algebraic equations. Then, this system becomes very easy to solve it to determine the undetermined coefficients. Also, this new method is also characterized by being direct and fast. Moreover, it is characterized by high-accuracy if it is compared with other methods in the literature. Also, we improved He’s frequency-amplitude formulation technique in order to solve unforced DVDP oscillator to obtain high-accurate results. Furthermore, the unforced DVDP oscillator was analyzed via He’s homotopy perturbation method. The maximum distance error in the whole time domain with respect to Runge–Kutta numerical approach has been estimated. It was found that our new approach is better than all method approaches. Moreover, the new approach can be devoted for analyzing many strong nonlinearity oscillators with any odd power. Also, the new approach can be applied for arbitrary initial conditions.

Future work: the ansatz that has been used in this paper is called the KBM first-Variant. This approach cannot recover He’s amplitude formula. On the other side, we will use another new ansatz which maybe called the KBM second-Variant, in this case, He’s amplitude formula can be recovered.
Appendix

(i) The coefficients $S_1 - S_{16}$ of solution (13)

\[
S_1 = \frac{1}{4} (4\varepsilon \omega_0 - 8\omega_0 B_{1,1}),
\]
\[
S_2 = \frac{1}{4} (-\varepsilon \omega_0 - 8\omega_0 B_{1,2}),
\]
\[
S_3 = \frac{1}{4} (3\beta - 8\omega_0 C_{1,0}),
\]
\[
S_4 = \frac{1}{4} (\beta - 32\omega_0^2 r_{3,1,1}),
\]
\[
S_5 = \frac{1}{4} (-\varepsilon \omega_0 - 32\omega_0^2 s_{3,1,1}),
\]
\[
S_6 = (-4B_{1,2}C_{1,0} - 2\omega_0 B_{2,2} - \frac{1}{4}\varepsilon C_{1,0} - \frac{1}{4}\varepsilon \omega_0 r_{3,1,1} + \frac{3}{4}\beta s_{3,1,1}),
\]
\[
S_7 = \left(3\varepsilon B_{1,2} + 3B_{1,2}^2 - 2\omega_0 C_{2,2} - C_{1,0}^2 + \frac{3}{4}\beta r_{3,1,1} + \frac{1}{4}\varepsilon \omega_0 s_{3,1,1}\right),
\]
\[
S_8 = (18\omega_0 B_{1,2} r_{3,1,1} - \frac{1}{4}\varepsilon C_{1,0} - 18\omega_0 C_{1,0} s_{3,1,1} - \frac{3}{2}\varepsilon \omega_0 r_{3,1,1} + \frac{3}{2}\beta s_{3,1,1} - 8\omega_0^2 s_{5,2,2}),
\]
\[
S_9 = \left(1\varepsilon B_{1,2} + 18\omega_0 B_{1,2} s_{3,1,1} - 18\omega_0 C_{1,0} r_{3,1,1} + \frac{3}{2}\beta r_{3,1,1} - 8\omega_0^2 r_{3,2,2} + \frac{3}{2}\varepsilon \omega_0 s_{3,1,1}\right),
\]
\[
S_{10} = \left(5\frac{\varepsilon \omega_0 r_{3,1,1} + 3\beta s_{3,1,1} - 24\omega_0^2 s_{5,2,2}}{4}\varepsilon \omega_0 s_{3,1,1}\right),
\]
\[
S_{11} = \left(\frac{3}{4}\beta r_{3,1,1} - 24\omega_0^2 r_{5,2,2} + \frac{5}{4}\varepsilon \omega_0 s_{3,1,1}\right),
\]
\[
S_{12} = (-4B_{1,1} C_{1,0} - 2\omega_0 B_{2,2} + \varepsilon C_{1,0}),
\]
\[
S_{13} = \left(3\varepsilon B_{1,1} - \varepsilon B_{1,2} + 4B_{1,2} B_{1,1} - 2\omega_0 C_{2,1}\right),
\]
\[
S_{14} = (-18\omega_0 B_{1,1} r_{3,1,1} + 3\varepsilon \omega_0 r_{3,1,1} - 8\omega_0^2 s_{3,1,2}),
\]
\[
S_{15} = \left(1\varepsilon B_{1,1} + 18\omega_0 B_{1,1} s_{3,1,1} - 8\omega_0^2 r_{3,1,2} - 3\varepsilon \omega_0 s_{3,1,1}\right),
\]
\[
S_{16} = (-\varepsilon B_{1,1} + B_{1,1}^2 - 2\omega_0 C_{2,0}),
\]

(ii) The values of W_i ($i = 1, 2, 3, 4$) for equation (26)
\[W_1 = \left(\omega_0 - \frac{\epsilon^2}{8\omega_0} \right) t, \]
\[W_2 = \frac{-1}{512 \mu^2 \omega_0 \left(c_0^2 \mu (c_0^2 \mu^2 \epsilon^{2\omega_0} + \kappa) \right)^2} \left(c_0^2 \mu^2 \epsilon^{2\omega_0} - 1 \right) \left((15\beta^2 + 7\epsilon^2 \omega_0) \right), \]
\[W_3 = \frac{-c_0^2 \mu^2 (c_0^2 \mu^2 \epsilon^{2\omega_0} - 1 - \kappa) \left(\omega_0^2 \left(7\epsilon^2 \kappa - 32\mu (3\beta + \epsilon^2) \right) \log \left(\frac{c_0^2 \mu (c_0^2 \mu^2 \epsilon^{2\omega_0} - 1)}{\kappa} + 1 \right) - 7\epsilon^2 \kappa \right)}{512 \mu^2 \omega_0 \left(c_0^2 \mu (c_0^2 \mu^2 \epsilon^{2\omega_0} - 1 + \kappa) \right)}, \]
\[W_4 = -\kappa \left((15\beta^2 \kappa + \omega_0^2 \left(7\epsilon^2 \kappa - 32\mu (3\beta + \epsilon^2) \right) \log \left(c_0^2 \mu (c_0^2 \mu^2 \epsilon^{2\omega_0} - 1) / \kappa \right) + 1 \right) \]

(iii) The values of \(Y_i \) (\(i = 0, 1, 2, 3 \)) and \(Z_i \) (\(i = 0, 1, 2, 3 \)) for equations (56) and (57)

\[
Y_0 = 4F \left(\begin{array}{c} 27F^2 \beta^3 - 36\beta^2 \epsilon^2 \Omega^4 + 24 \beta \epsilon^2 \Omega^6 - 4 \epsilon^2 \Omega^8 + 36 \beta^2 \epsilon^2 \Omega^2 \omega_0^2 - 48 \beta \epsilon^2 \Omega^4 \omega_0^2 \\ + 12 \epsilon^2 \Omega^2 \omega_0^2 + 24 \beta \epsilon^2 \Omega^2 \omega_0^2 - 12 \epsilon^2 \Omega^4 \omega_0^2 + 4 \epsilon^2 \Omega^2 \omega_0^6 \\ + \end{array} \right),
\]
\[
Y_1 = 4 \left(\begin{array}{c} 27F^2 \beta^2 \Omega^2 + 36 \beta^2 \epsilon^2 \Omega^4 - 9 \beta \epsilon^2 \Omega^6 - 36 \beta \epsilon^2 \Omega^2 \omega_0^2 - 24 \beta \epsilon^2 \Omega^4 \omega_0^2 \\ + 24 \beta \epsilon^2 \Omega^6 - 4 \epsilon^2 \Omega^8 + 4 \epsilon^2 \Omega^10 - 27 \epsilon^2 \Omega^2 \omega_0^2 + 9 \epsilon^2 \Omega^4 \omega_0^2 + 72 \beta \epsilon^2 \Omega^4 \omega_0^2 - 24 \beta \epsilon^2 \Omega^6 \omega_0^2 \\ - 72 \beta \epsilon^2 \Omega^6 \omega_0^2 + 8 \epsilon^2 \Omega^8 \omega_0^2 + 16 \epsilon^2 \Omega^8 \omega_0^2 - 36 \beta \epsilon^2 \Omega^2 \omega_0^4 + 72 \beta \epsilon^2 \Omega^4 \omega_0^4 - 4 \epsilon^2 \Omega^4 \omega_0^4 \\ - 24 \beta \epsilon^2 \Omega^8 \omega_0^4 - 24 \beta \epsilon^2 \Omega^6 \omega_0^4 + 16 \epsilon^2 \Omega^4 \omega_0^6 - 4 \epsilon^2 \Omega^8 \omega_0^8 \\ - \end{array} \right),
\]
\[
Y_2 = -8F \beta^2 \Omega^2 \left(3 \beta - \Omega^2 + \omega_0^2 \right) (9 \beta^3 - 6 \beta \Omega^2 - \epsilon^2 \Omega^2 + 6 \beta \omega_0^2),
\]
\[
Z_0 = -4 \beta \epsilon^2 \Omega^2 \left(F - 6 \beta + 2 \Omega^2 - 2 \omega_0^2 \right) \left(F + 6 \beta - 2 \Omega^2 + 2 \omega_0^2 \right).
\]
\[
Z_1 = 4 \epsilon^2 \Omega^2 \left(-72 \beta \epsilon^2 \Omega^2 \omega_0^2 + 24 \beta \epsilon^2 \Omega^2 \omega_0^2 + 72 \Omega^4 \omega_0^2 - 8 \epsilon \Omega^4 \omega_0^2 + 16 \Omega^4 \omega_0^2 + 36 \beta \epsilon^2 \Omega^4 \omega_0^2 - 72 \beta \epsilon^2 \Omega^4 \omega_0^2 + 4 \epsilon^2 \Omega^8 \omega_0^8 \\ + 24 \beta \omega_0^4 + 24 \beta \omega_0^6 - 16 \omega^2 \omega_0^6 + 4 \omega^8 \\ - \end{array} \right),
\]
\[
Z_2 = 8F \epsilon \Omega^3 \left(3 \beta - \Omega^2 + \omega_0^2 \right) (9 \beta^3 \Omega^2 + 6 \beta \epsilon^2 \Omega^2 - \epsilon^2 \Omega^2 - 9 \beta^2 \omega_0^2 + \epsilon^2 \Omega^2 \omega_0^2),
\]
\[
Z_3 = F^2 \left(9 \beta^2 + \epsilon^2 \Omega^2 \right)^2.
\]
Project number (PNURSP2022R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

