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In this paper, we introduce two new subgradient extragradient algorithms to find the solution of a bilevel equilibrium problem in
which the pseudomonotone and Lipschitz-type continuous bifunctions are involved in a real Hilbert space. The first method needs
the prior knowledge of the Lipschitz constants of the bifunctions while the second method uses a self-adaptive process to deal with
the unknown knowledge of the Lipschitz constant of the bifunctions. The weak convergence of the proposed algorithms is proved
under some simple conditions on the input parameters. Our algorithms are very different from the existing related results in the
literature. Finally, some numerical experiments are presented to illustrate the performance of the proposed algorithms and to

compare them with other related methods.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. Let g: Hx H — R be a bifunction
with g (x, x) = 0 for all x € C. The equilibrium problem (EP
for short) is associated with g and C to find z € C such that

g(z,y)=20, VyeC. (1)

The solution set of (1) is denoted by EP (g, C).

If g(x,y) ={G(x),y—x) forall x, y € H, where G is a
mapping from H into itself, then the problem (1) becomes
the following variational inequality problem (VIP for short):

findx" € Csuchthat (G(x"),y —x") >0, VyeC. (2)

The solution set of (2) is denoted by VI (G, C).

The EP (1) has a simple form and is very general in the
sense that it includes, as special cases, the variational in-
equality problem, fixed point problem, complementarity
problem, optimization problem as well as the Nash equi-
librium problem; see,for example [1,2]. Many methods have
been proposed for approximating a solution of the EP (1).
Mastroeni [3] used the auxiliary problem principle which
was first introduced for solving the optimization problems to

solve EP (1) and presented the iteration algorithm in the
form

1
Xy € C, Xy = argmin{)tg (%, ¥) + 5")/ - xn"z: y € C},
(3)

where the stepsize A > 0. For obtaining the convergence of
this algorithm, the bifunction g is required to be strongly
monotone and Lipschitz-type continuous. To avoid the
hypothesis of the strong monotonicity, Quoc et al. [4] first
proposed the extragradient method (or the proximal-like
methods) in which two strongly convex problems are solved
at each iteration. The extragradient method is as follows:
x, € C and

1
V= argmin{/lg (x, ¥) + E"y - xn"z: y € C},
(4)
1
X,y = argmin{/lg(yn,y) +5||y - x,,"z: y € C}.

In 2018, Hieu [5] presented a new extragradient method
for solving the EP (1.1) as follows: x,, y, € C and
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1
X1 = argmin{lnf(ywy) +5ly- x|y e C},

1
Vo1 = argmin{lnﬂf Ow2)+5ly - X1y eC } n=0,
(5)

where {A,,} ¢ (0, 00) is a nonincreasing sequence and f is a
strongly pseudomonotone and Lipschitz-type continuous
mapping.

In 2011, Censor et al. [6] proposed a new method, which
is called the subgradient extragradient method, for solving
the VIP (2). In 2016, Hieu [7] extended this method to the EP
(1.1). In 2019, inspired by [5,7], Liu and Kong [8] introduced
the following subgradient extragradient method for solving
the EP (1): x,, ¥, € C and

1

X, = argmin{/\f(yo,y) +£||y - x0||2: ye€ C},
1

¥ = argmin{/\f(yo,y) +5||y - xlnzz y € C},

1
Xye1 = argmin{lf o y) +5ly - x| ye Hn},

. 1
| V1 = argmln{lf(yo,y) + 5||y - xn+1||2: ye€ C}, nx1,
(6)

where H, ={z e H:{x,-\w,_; - y,,z2—y,><0} and
W, €0,f(¥,.1>y,), and f is a pseudomonotone and
Lipschitz-type continuous mapping.

The advantage of equations (5) and (6) is that only one
value of f at y, is computed at each iteration. On the recent
methods for solving the EP (1), we refer the readers to
[9-15].

In this paper, our interest is the bilevel equilibrium
problem (BEP for short) which consists of the following:

findx € EP(g,C) suchthat f (X, y)>0, Vy e EP(g,C),
(7)

where f: Hx H — R with f(x,x) = 0 for all x € H. The
BEPs are the special cases of mathematical programs with
equilibrium constraints and also are the generalization of
variational inequality over equilibrium constraints, hierar-
chical minimization problems, and complementarity
problems. The methods for solving BEPs have been studied
extensively by many authors. Moudafi [16] introduced a
proximal method and proved the weak convergence to a
solution of the BEP (7). Dinh and Muu [17] proposed a
penalty and gap function method for solving the BEP (7).
Quy [18] introduced an algorithm by combining the
proximal method with the Halpern method for solving
bilevel monotone equilibrium and fixed point problem.
Yuying et al. [19] presented an extragradient method as
follows:
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( . 1 2
Yu= argmln{lng () +5ly = v e C},

4 1
z,= argmin{/lng (Y ) + z”y - xnl'zz y € C},

L Xn+1 = HnXp + (1 - nn)zn - oUW, W, € azf (Zn’zn)’

(8)

where {a,} ¢ (0,1), {A,}c[LA] with A>0, and
{n,} < [0,1-a,]. Anh and An [20] proposed the following
subgradient extragradient method for solving the BEP (7):

( 1
y, = argmin{/\ng (%, ¥) + E”y - xn”z: y € C},

{z,= argmin{)tng (Y y) +%||z - xn"z: ze€ Hn}, 9)

| X1 = argmin{ﬁnf (z,py) + %"t _ Zn||22 s e C},

where H,={ve H:<{x,-Aw,—y,v—y,><0) with
w, €0,9(x,,y,), {A,} and {B,} are two nonnegative
sequences.

Observe that in the works mentioned above, the
bifunction g is monotone or pseudomonotone while f is
strongly monotone, and then, the algorithms have a strong
convergence. In this paper, inspired by [8,20], we propose
two new subgradient extragradient methods for solving the
BEP (7) where both the bifunction f and g are pseudo-
monotone. The first method needs the prior knowledge of
the Lipschitz constants of the bifunctions while the second
method uses a self-adaptive process to deal with the un-
known knowledge of the Lipschitz constant of the bifunc-
tions. The weak convergence of the proposed algorithms is
proved under some sufficient assumptions. Finally, some
numerical experiments are presented to illustrate the per-
formance of the proposed algorithms and to compare them
with other related methods.

2. Preliminaries

Let H be a real Hilbert space, R be the set of all real numbers,
and N be the set of all positive integers. We list some well-
known definitions and properties which will be used in our
following analysis.

Definition 1. A mapping F: H — H is said to be
(i) monotone if

(F(x)-F(y),x—y)=0, Vx,yeH,; (10)

(ii) pseudomonotone if
(F(y),x-y>20=(F(x),x - y)20, Vx,ye€H;

(11)
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(iii) L-Lipschitz continuous if there exists a constant
L>0 such that

IF(x) - FI<lx-yl, Vx,yeH. (12)

Definition 2. A bifunction f: H x H — R is said to be

(i) pseudomonotone on C if

f(x,)20=f(y,x)<0, Vx,yeC. (13)

(ii) Lipschitz-type continuous on C if there exists the
constants ¢; >0 and ¢, >0 such that

f2<fon+ f(nz) +olx—yIP+clly -zl
Vx, y,z € C.
(14)

Remark 1. If F is L-Lipschitz continuous on H, then for each
x,yeH, f(x,y)=<(F(x),y—x) is Lipschitz-type con-
tinuous with the constants ¢; = ¢, = (L/2); see [21] for
details.

Let C be a nonempty closed and convex subset of H. For
each x € H, there exists a unique point in C, denoted by P x,
such that

Pcx = argmin{ly — x||: y € C}, (15)

P is said to be the metric projection from H onto C. The
following lemma characterizes the property of P.

Lemma 1. Let P.: H —> C be the metric projection. Then,

(i) z = Pox if and only if

{(x-2z,y-2)<0, VyeC. (16)
(ii) for all y € C and x € H,
Iy = Pex| +|pex = <l -y%. (17)

Remark 2. For any given X € H and v € H with v#0, let
T ={x € H: {v,x —X) <0}. Then, for all y € H, the pro-
jection IT;(y) is defined by

H ) =y- maX{O,M}V. (18)
T

2
vl

The formula (18) gives us an explicit manner to compute
the projection of any point onto a half-space; see [22] for
details.

Definition 3.
(1) The normal cone N of C at x € C is defined by
N¢(x) ={w e H: {w,y —x)<0,Vy € C}L. (19)

(2) The subdifferentiable of a convex function
g: C — R at x € H is defined by

dg(x) ={w e H: g(y) — g(x)><w, y — x),Vy € C}.
(20)

Lemma 2 (see [23]). Let g: C — R be a convex sub-
differentiable and lower semicontinuous function on C. Then,
x* is a solution to the following convex problem:

min{g (x): x € C}, (21)

ifand only if 0 €0g(x*) + N (x*), where 0g (x*) denotes the
subdifferential of g and N (x*) is the normal cone of C at x*.

For a proper, convex, and lower semicontinuous func-
tion: h: C — (—00,+00] and A > 0, the proximal mapping
of h with A is defined by

1
progy, (x) = argmin{)th (y) + E||x - y||2: y € C},x eC.
(22)

Lemma 3 (see [24, 25]). For all x,y € C and A>0, the
following inequality holds:

A(h(y) = h(progy, (x))) = {x — progy, (x), y — progy, (x)).
(23)

Remark 3. From Lemma 3, we note that if x = prog;, (x),
then

x € argmin{h(y): y € C} :{x €eC: hix) = iélh(y)}.
ye

(24)

Lemma 4 (see [26]). Let {a,} and {c,} be two sequences of
nonnegative real numbers satisfying the condition

. <a,+c, YneN (25)

n+1

If Y ,c, <00, then lim,__,_a, exists.

3. Main Results

In this section, let N denotes the set of all positive integers,
N, =NU{0}, H be a real Hilbert space, and C be a non-
empty closed convex subset of H. The notation “—” denotes
the weak converge. Let f,g: Hx H — R be two bifunc-
tions satisfying the following conditions:

(A1) f and g are pseudomonotone on H

(A2) for each y € H, limsup, . f(x,,y)<f(x,y)
and limsup,_,g(x,,y)<g(x,y) for every se-
quence x,—x

(A3) f(x,-) and g(x,-) are convex, lower semi-
continuous, and subdifferentiable of H for each
xe€H



(A4) g and f are Lipschitz-type continuous on H with
the constants ¢, ¢, and d;, d,, respectively; that is,
for all x, y,z € H,

9(x,2)<g(x y)+g(1,2) +clx—yI° +c,ly - zI%,

fED<fy)+f(na)+dlx-ylI* +dyly -zl
(26)

In this section, the solution set of the BEP (7) is denoted
by Q; that is, Q={x € E(g,C): f(X,y)>0,Vy € E P(g,0)},
and assume that Q#J.

Now, we introduce the first algorithm for finding a point
x € Q.

Remark 4. By using the notation “prog” in Section 2,
Uyt Xe1> and Y, may be rewritten as

U, = Progg, (.. .y (X4),

tn = progﬂg (u”;) (xn)’
(27)
{ Xn+1 = PTOBA 1 (3,.) (xn)’

Yur1 = prog/\f (yn,-) ('xn+1)‘

Note that since f (x,-) and g(x,-) are convex and lower
semicontinuous on H for each x € H, for any given >0,
u € H, and the closed convex subset D ¢ H, from [27],
Proposition 12.15, and Definition 12.23, it follows that both

1
argmin{ﬁg(u, y)+ Ellx - y||2: y € D},
(28)

1
argmin{[jf(u, ) + Ellx —t*te D},

are a singleton. Hence, u,,t,, x,,,,, and y, ., in Algorithm 1
are obtained uniquely at each step.

Remark 5. From (A1)-(A4), it follows that (i) EP (g, C) and
EP(f,C) are closed and convex; see [4]; (ii) g (x,x) = 0 and
f(x,x) =0 for all x € C; see [28].

The following remark shows that the stop criterion in
Step 3 is meaning.

Remark 6. Suppose that x,., =y, =x,=u, for some
n € N. By u,, = x,,, the definition of ,, and Lemma 3, we get

ﬁ(g (un’ y) - g(xn’ un)) = ﬂ(g (xn’ )/) - g(xn’ xn)) 20,
Vy €C,
(29)

which with >0 Remark 5 implies that x, € EP(g,C).
Similarly, by x,., = y, = x,,, the definition of x, ;, and
Lemma 3, we can prove that x,, € EP(f, H,). By the proof of
Lemma 4, we see EP(g,C)c H, for all neN. So
f(x,,y)=0 for all y € EP(g,C). It follows that x,, € Q.

Lemma 5. Assume that [ € (0, min{(1/2¢,), (1/2c,)}).
Then, C c Cy, EP(g,C) c T, c H,,; for each n € N,,.

Journal of Mathematics

Proof. We first show that C c C; for each n € N,. By
Lemma 1 and the definition of u;, we have

1
0.€3,{Bg () + 3%, =y f ) + Ne ). (30)

Thus, for w, € 0,g(x,,u,), there exists w, € N (u,)
such that

pw, +u, —x, +w, =0. (31)
So,

<xn —Up Y~ un> = ﬂ<wn’y - un> +<wn’y - un>’

32
Vy eC. (32

Since w,, € N (u,,), we have (w,,, y —u,y <0forall y €
C. Hence, {w,, y —u,)><{x, —u,, y—u,) for all y eC,
which implies that {x, - fw, —u,, y —u,» <0 forall y € C.
This shows that C ¢ C,, for each N,.

Next, we show that EP(g,C) c T, for each n € N;. By
Lemma 3 and the definition of ¢, in Remark 4, we have

ﬁ(g (un’ )/) - g(un’ tn)) = <xn =1, Y= tn>’

(33)
VyeC,, VneN,.

Note, we have proved that C c C, for each n € N,. So
substituting any x' € EP(g,C) ¢ C into (33), we obtain

B(g(u,x') = gu,t,))={x, —t,,x' —t,), VneN,. (34)

Since u,, € C and g is pseudomonotone on H, we have
g(u,,x")<0. Then, (34) implies that

(xy = tpt, —x'y 2 Bg(u,t,), Vn e N,. (35)
Now applying (A4) to g, we have

g(”n’ tn) 29 (xn’ tn) -9 (xn’ un)

2 2
- c1||un —xn" - c2||tn - un" , VneN,.

(36)
Combining (35) and (36), we get

(X, —typt,—x')

2ﬁ<g(xn’ tn) -9 (xwun) - Cl"“n - xn"2 - C2||tn - un"2>’

Vn e N,.
(37)

On the other hand, by the definition of w,, € 0,9 (x,,, u,),
we have

ﬁ(g (xn’ y) - g(xn’ un)) = <ﬁwn’ Y- un>’

(38)
Vy € H, Vn € N,.

Since t, € C,,, we have



Journal of Mathematics 5

Initialization: Choose x,, ¥, y_; € C and the parameters $>0 and 1>0. Put n = 0.

= i ,¥) +12lx, - yI*: y € Cl,

Step 1. For given x,,, solve the strongly convex problems: Un argm.m{/,%g(xn ») llx )’l| y }

t, = argmln{[ﬁ’g(un,t) +12|x, - ylI*: t € Cn},
where C,, = {v € H: {x, - fw,, — u,,,v —u,) <0} withw, € 0,9 (x,,u,).
Xy = argmin{/lf(yn,y) +1/2|x,, - y||2: y € Hn},
Y1 = argmin{Af (y,, ) + 1/20x,, - yI: y € T,.},
where H, = {z € H: {x, - Mv,, — y,,z — y,,) <0} withv, € 0, f (y,._1, ¥,), T,, = {z € H: llz - t, [ <z - x,}.
Step 3. If x,,,, = y, = x,, = u,, then the algorithm stops, x,, € Q; otherwise, set n=n+ 1 and return to Step 1.

Step 2. Solve the strongly convex problems: {

ALGORITHM 1: (Extragradient-like method without prior constants).

(x, =t t, —u,) <Plw,t, —u,), (39) In particular, from 1 —2f¢, >0 and 1 - 2f¢, >0, it fol-
lows that
which with (38) implies that

2
ﬁ(g (xn’ tn) - g(xn’ un)) 2 <xn —Up tn - un>’ Vn e N()‘ ’

12 ’
[t == <% - +']

Vn e N, (44)

(40)  which implies that x" € T,,. Since x' € EP (g, C) is arbitrary,
it follows that EP(g,C) c T, for each n € N,,.

From (37) and (40) and Finally, we prove that T, ¢ H,,,, for each n € N,,. By the

n+l
2t —x,x —t,) = ”xn _ x'“2 _"tn _ xn”2 _"tn _ x'"2) definition of y,,, in Remark 4 and Lemma 3, we have
(41) 0 €20, f (V> Ye1) + Vet = X1 + Ny, (Vr1)> V11 € N,
it follows that (45)
O T e that O D e sty €8 L)
2
2 2 = Uy by = Uy) = 2ﬂc1||xn a u"" (42) M+ Vot — Xy tw, =0, VneN,. (46)

It follows that
Hence, Kt = Ve Y = Yna1? = AV ¥ = V1)
I R e g )
VyeT,, VneN,
= 24X, — U t, —u,) + 2ﬁ<c1||xn - un“z FE e T
Since w,, € N1 (¥,,1), we have (w,,, y = y,,,;> <0 for all

+ c2||u,, - tn"Z) Ve Tn' Hence, /1<Vn’y - yn+1> B <xn+1 VY yn+1> for
all y € T, and n € N;, which with the definition of H,_,

=|x, - x’"Z ||t - “n"2 ||, - xn"2 (43)  implies that T, ¢ H,,, for each n € N,. This completes the
proof. O

+28( e, = ol ol - 1)

B 2 2 Lemma 6. Assume that f € (0, min{(1/2c,), (1/2c,)}) and

=[x =" = (1 = 28e) ) | A€ (0, (1/2d, +4d,)). Let {x,} be the sequence generated by

+(1- 2/352)"% — tnnz’ vn e N, Alg{iorithm 1. For all x* € Q, the limit of{llx* - xnllz} exists,
an

Af o) 2 A = st = 30 = allvcs = 2l = allya = 20 (48)

+{X, = Xpp1> ¥ — Xpi17> Vy € EP(g,C), Vn e N.

(X, =AMy = Y X1 — V0 <0, VneN, (49)
Proof.  Since {le* —xnllz}, from the definition of H,, it § no e "
follows that that is,



A<Vn’ Xp+1 ~ yn> 2 <xn = Y Xpe1 T yn>7 Vn e N. (50)

By v,€0,f(y,1,y,) and the definition of sub-
differential, we have

FOn:9) = F Dnt>90) 2oy = yu)» ¥y €H,VneN.
(51)
Replacing y in (51) with x,,,,, we get
f(yn—l’xwrl)_f(yn—l’yn)2<vn’xn+l _yn>’ VI’IE N
(52)

Combining (50) and (52), we have
/\(f (yn—l’ xn+1) - f(yn—l’ yn)) 2 <xn Yo Xn+1 yn>’
Vn € N.
(53)

By Lemma 3 and the definition of x,,,,, we have

A(f(yn’y) _f(yn’xnﬂ))z <xn ~ Xpi1> Y _xn+1>’

(54)
Vy e H,, VneN.
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Substituting y = x* € Q into (54), we obtain

A(f(yn’x*) - f(yn’xnﬂ)) 2 <'xn - xn+1’x* - xn+1>’
Vn e N.
(55)
Note that (Al) implies that f(y,,x*) <0, which with
(55) leads to
Af (yn’ xn+1) < <xn X X1 T x*>’ Vn e N. (56)
On the other hand, by the Lipschitz-type continuity of f,
we have

f(yn’an) 2f(ynfl’xrwrl) - f(yn—l’yn) - dl“yn - )’n71||2
- (12”anr1 - yn"z, Vn e N.
(57)

By (56) and (57), we obtain

* 2
(X = X1 Xy — X ) 2)‘<f()/n—1>xn+1) ~f Wnero Ya) — dl")’n - )’n—1"

- d2||xn+1 - yn"2>’

which with (53) implies that

(58)

<xn ~ Xp+ > Xyl T .X*> 2 <xn Yo Xps1 T yn> _/1<d1nyn - )’n71||2 + d2l|xn+1 - yn||2>

1
= (I =5l #w = 7 =Pasr =5l ) =2( il = s [+ ol = ). e,

(59)
Since by (59) we get
<xn X X1 T x*>
1 |2 2 |2 (60)
=2 (=21 =l = 2 s - 5T
“xn+l - x* ? < “xn - X* 2" ? _"yn - xnllz _"xn+1 - ynllz + 2/1611")/” - yn—l'lz + 2Ad2”xn+l - ynuz
S“xn_x* 2"2 _||yn_xn||2 _"xn+1 _ynuz +2/\d1(||yn_'xn” +||xn_yn—l||)2 +2Ad2”xn+l _yn"2 ( )
61
<Jta = PO ==l =t = 2l + 03, (= 2 50 = 3 [ ) + 22l = 2
=|x, - x* 12-(1- 4d,)||y, - x,,"2 = (1= 2Md,)||x01 —ynnz +4Md, ||x,, - yn_IHZ, Vn e N.
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Fix N € N. For all m € N with m > N, by (61) we have
% 2 * 2 = 2
X - xm+1“ s|x - xN" - (1 - (4Adl + 2Ad2)) Z ”xnﬂ - yn"
y n=N (62)
- (1-4Ac)) Z ||yn - xn”2 + 4)Lc1||xN - yN_1||2.
n=N
Hence,
(1-4Ad, - 21d,) Z (B yn"2 +(1-4Md,) Z |y, - xn“2 <|lx" - xN”2 <00, VYm>N, (63)
n=N n=N
- < - - - 0,
which with 4Ad, + 21d, <1 leads to b=yl =l o=l e =l —
- asn — 00,
Z "xn+1 - yn”Z <00, (67)
nzloo (64) and
2
2|l <o s = 5ll [ = all #13 = 5] — 0, 251 — 0.
68
It follows that (6%
. 5 Note that (61) implies
nh—r>noo "xn - y”” =0, %|12 ® |2 2
, (65) ||x,,4rl -x || < ||xn -x |+ 4/1dl||yn_1 - xn” , VneN.
im |x,,; -y =0 (69)

n—~oo
By (65) and the triangle inequality of norm, we obtain

"xn - 'xn+1" < "xn - yn” +||yn - xn+1|| — 0, asn — oo,
(66)

/\f(yn’y)Z)Lf(yn’an) +<xn _xn+1’y_xn+1>

From (62) and (69) and Lemma 3, it follows that the limit
of {len - x*||2} exists.
Finally, by (54), (56), and (52), we get

ZA[f(ynfl’anrl) - f(yrhl’yn) - dl")/nfl - )’n”2 - d2||yn - xn+1|l2] +<xn “Xp Y xn+1> (70)

2A|:<xn = Vo Xnt1 _yn> _d1||yn—l _yn"2 - d2||yn _xn+1||2] +<xn _xn+l’y_xn+l>> Vy € Hn’ VneN.

Note that Lemma 4 has

EP(g,C)cT,cH

n+l

Af(yn’y)ZA <xn_yn’xn+l _yn> _d1||yn—1 _yn"z_dZ“yn_er—l"Z]

+<xn XY~ xn+1>’

shown  that
for each n € N,. So by (70), we have

(71)
Vy € EP(g,C), Vn e N.



This completes the proof. O

Theorem 1. If the parameters 3 and A satisfy the conditions:

. 1 1 1
Be (0, mm{2_c1’2_c2}) and ) € (O,M), (72)

then the sequence {x,} generated by Algorithm 1 converges
weakly to the point x = lim Pox,,.

n—~oo

Proof. Since y,., € T, for each n € N, by (66) we have

“tn - yn+1|| < ||ylerl - xn” — 0, asn — oo. (73)
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Furthermore, by (68) and (73), we get

||tn - xn“ < ||tn - yn+1|| +||yn+1 - xn" — 0, asn — 0.

(74)

From Lemma 5, it follows that {x,,} is bounded. This fact
with (74) implies that {t,} is also bounded.

Take x' € EP(g,0C) and put
M = sup,e (I, = ' + I, = x'l). By (43) and (74), we
have

(128 + (1= 2Be) |, < e~ e~

which with 1 —2f¢; >0 and 1 - 2f¢, >0 implies

"xn - “n“z — 0 (76)
||u,, - t,,“2 — 0, asn — oo.

Llnk - Xnk

ﬁg(unk’ y) Zﬁ<<xnk — Uy tnk Uy )0

Letting k — oo in (77), by (74), (76), and (A2), we get

Bg(x,ty) > likm sup g(unk, y) >0,Vy € C, (78)

which with >0 implies that X € EP(g,C).

Af(ynk’y)zl[<xnk_ynk’xnkJrl_ynk> _dl

-c,

<fe = tall (e = '+ = M) 7

SM"xn—tn” — 0, asn — 00,

Since {x,} is bounded, there exists a subsequence {xnk}
of {x,} weakly converging to X € H. By (73), we can con-
clude that ju, } also weakly converges to X. Since C is closed
and {u,} c C'for all n e N, it follows that X € C. We show
that X € EP(g,C). In fact, by (33), (36), and (40), we get

— unk

2) +{x, —t,,y—t,), VyeC VkeN (77)

Next, we prove that X € Q. To end this, we need to show
that

f(x,¥)=0,Vy € EP(g,0C). (79)

In fact, by (73), we have

d

2 2
V-1 V|| — %2 ynk_xnkJrl" ]

(80)

+{X,, = Xy 11 Y — Xy 110> Yy € EP(g,C), Vk € N,.

Letting k — o0 in (80), by (65)-(67) and (A2), we have
Af (%, y) > limsup f(ynk,y)zo, Vy € EP(g,C), (81)
k—00

which with A>0 implies that f(X,y)>0 for all
y € EP(g,C). So, x € Q.

Now, we prove that the whole sequence {x,} converges
weakly to the point X. Indeed, assume that there exists a
different subsequence { } of {x,} converging weakly to x'
w1th X #x'. By arguing 51m11arly as above, it follows that

T € Q. Note that in the proof of Lemma 5, we have shown

that the limits of {||lx, — x"|} and {|lx, - X[l} exist. So by
Opial’s theorem [29], we have

lim ||x —x"

n—-=o00

|

k—00 k—00

= lim ||x,, -x

1 62

lim ||x —x"

n—~oo

i—00

It is a contradiction. Hence, x = x'. Therefore, the whole
sequence {xn} converges weakly to the point X.
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Finally, we prove X = lim,,_, Pqx,. Let w, = Pnx,, for
all n>1. It is easy to see that {w,} is bounded from the
boundedness of {x,}. We show that {w,} is a Cauchy se-

quence. By Lemma 1 and the definition of w,,,, we have

||wn+1 - xn+1||2 < "wn - xn+1n2’ Vn € NO‘ (83)
Since w,, € Q, replacing x* in (69) with w,, we get
Hwn - an"z < ”xn - wn"2 + 4/\d1||y,,_1 - xn”z, Vn e N.
(84)
From (83) and (84), it follows that
||wn+1 - x,m"2 < ||xn - wn“2 + 4Ad1||yn_1 - xn“z, Vn e N.
(85)

From (64), (85), and Lemma 3, it follows that the limit of
{Ilwn —xnllz} exists. For all m,n e N with m>n, since
w, € Q, by (69), we deduce

2 2 2
e = wall" < e = wall "+ 4232 = 001

m—1
<<y mwl A Y [y -

k=n

(86)

Fromw,, = Pyx,, and w, € Q, by Lemma 1 and (86), we
have

2 2 2
[, = wal” < e = " = =

m—1
<[, — w,|* + 4Ad, Y 1y - P 67

k=n
%V
—||wm—xm| , VYm>n.
Since lim,__|lx, — w,|* exists, letting m,n — oo in

(87), by (64), we get lim,,, . [w, - wmll2 = 0. Conse-
quently, {w,} is a Cauchy sequence. Since Q is closed, {w,}
converges strongly to some x' € Q. Now, we prove that
x = x'. In fact, it follows from Lemma 1, w, = Pyx, and
x€Q that (x-w,w,-x,)>0. Since w, — x' and
x,—X, we have (x-x',x'—%x)>0. This shows that
x =x' =lim,_, Pqx,. This completes the proof. O

In Algorithm 1, ¢; and ¢, need to be known as the input
parameters. The following algorithm is a modification in
which ¢, and ¢, do not need to be known. O

Remark 7. By (A4), we have
g (xn’ tn) -9 (X,,, un) -9 (uw tn)
2 2
<ciu, = x|+ [t - | (88)

<c(Ju, = ol +[e - ")

where ¢ = max{c,,c,}. If g(x,,,t,,) — g (x,,, u,)— g (u,,t,) <0,
then

(s =+ - )

/3n+1 = min

(=l +e w7

" g9 (xn’ tn) -9 (xn’ un) -9 (un’ tn)

(89)

Note that from the definition of f,,,, it follows that
B,.s1 =min{B,, (u/c)} still holds even if
g(x,t,) —g(x,,u,) —g(u,t,)<0. Since {B,} is nonin-
creasing and bounded from below by min{f, (u/c)}, there
exists 5> 0 such that

Jim f, =5 )

Similarly, we can conclude that there exists A >0 such

that
lim A, =1>0. (91)

n—=oo

" (o ke )

= min{[)’n,%} > Zmin{ﬁo,%},

Theorem 2. The sequence {x,} generated by Algorithm 2

converges weakly to the point X = lim Paox

n—-00 n*

Proof. Repeating the proof of (37) and (40), we can get, for
allneN,

An (f(yn—l’an) - f(yn—vyn)) = <xn Vo Xup1 ~ yn>’
(92)

and

/lnf(yn’ an)S <xn = Xpt > Xne1 _X*>- (93)
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Initialization: Choose x,, y_;, ¥, € C, the parameters 5;,A, >0, and y € (0,1/4). Put n = 0.

u, = argmin{ﬂng (x5 ) +1/2||x,, - y||2: y € C},
t, = argmin{B,g (u,, t) + 1/2|x, — yl*: t € Ci},
where C, = {v € H: {x,, - B,w, — u,,v—u,) <0} withw, € 0,g(x,,u,).

Xy = argmin{/\nf(yn,y) +1/2|x,, - y||2: y e Hn},

Ynet = argmin{d,, £ (3 9) + 172lx,1 = ¥l y € T},

Step 1. For given x,, solve the strongly convex problems: {

Step 2. Solve the strongly convex problems: {

where H, ={z € H: {x, = AV, = ¥,z — ¥,y <O} withv, € 0, f (y,_1, ¥,), T, = {z € H: |z - t, | <llz - x,lI},

h) _ A’n’ ) ) f(yn—l’xnﬂ)_f(yn—l’yn)_f(ywxnﬂ)go’
it mln{/\nhu(”yn - ynflll + "yn - xn+1” )/f (,'anl’xnﬂ) - f(ynfl’ yn) - f(yn’xn+1)}’ otherwise.

Step 3. Modify f,,,, by the following formula:

_ ﬁn» g(xn’ tn) -9 (xn’ un) - g(un’ tn) <0,
Pt = min{ﬁn,y(llun - xn||2 +It, — unllz)/g (x5 t,) — g(x,,u,) — g(un,tn)}, otherwise.

Step 4. If x,,, = v, = x,, = ¥,,, then the algorithm stops, x,, € Q; otherwise, set # =n+ 1 and return to Step 1.

ALGORITHM 2: (Extragradient-like method without prior constants).

By (92) and (93), we have

An(f(yn—l’xnﬂ) _f(yn—l’yn) _f(yn"xru—l))2 <xn = Y Xnt1 _yn> _<xn T Xpr > X1 — X >

1 2 2 2 2 2 |2 (94)
= (= 5ll s = 3l =1t = 5l ) = (= 5 =1t = 5l =l =57 ) | v e
By the definition of A,,,, in the case when
f(yn—l’xnﬂ) - f(yn—l’ yn) - f(yn’erl) >0, we have
b=yl 1= %) 05
f(ynfl’xwrl)_f(yn—l’yn)_f(yn’xwrl)S h . 4 Vn e N.
n+
It is emphasized here that (95) still holds even if So, combining (94) with (95), we obtain
f(yn—1>xn+l)_f(yn—l’yn)_f(yn’an)SO' (96)

(b= 2lP s =) + 32 (= 3o =50

“'xn+1 -

2 4l
n—ynllz—( ;i >||xn+1 7l 3 A <|| xn||2+||xn—yn71||2) (97)

. me 2l
S o e Lt i (s l)uxnﬂ -l
n+ n+

2, Vn € N.

4pd,
An+1 o
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Since A, — A>0, it follows that By (97) and (98), we have
lim, |, (4pM, /A, ) =4u<1l. Thus, for a fixed number
€ € (4u, 1), there exists n, € N such that
4uh
e, Vnzn, (98)
An+1
|2 |12 2 € 2 2
[ = 2" < e = 2" = (1= Ol = 2l (15 s = 3l + el = s 2, (99)
which is a similar result with (61). On the other hand, for all x' € EP(g,C), repeating the
proof of (35) and (38), we have
<xn — Uy t, - un> +<xn —tw x' - tn> Sﬁn [g(xn’ tn) - g(xn’ un) - g(un’ tn)]’ Vn € N0' (100)
By the definition of Bi1s if
g(x,,t,) —g(x,,u,) —gu,t,) >0, then
2 2
il =+l =)
() = 9 (% u) — g tt,) < , VneN, (101)
/';n+1
Note that the definition of f3,,, implies that (101) still
holds even if g(x,,t,)g(x,,u,) — g(u,,t,) <0. So by (100)
and (101), we obtain
2 2
Bl - ) (102)
(%, = Uy t, —u,) +{x, —t,, X —t,) < , Vn e N,
ﬁn+1
Now, by (102) and 2{t, - x,t,—x') = |x, - x'|P-
It, — x,I* = It — x"[|*, we have
2 2
S : 248, (s = 5.l +lts - w)
th -x || < ||x,, -x ” —||tn - xn” - 2{x,, — U, t, —u,) +
ﬁn+1
2 2
200, [, = .+t = ) (103)

=l =1 =Nt = el =l = +

ﬁn+1

2 2
ST _(1 _ ﬁ’:_f?)”x,, _uff +<1 _ ﬁ‘f:)"u,, | Vi e N
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Since B, — B>0, it follows that
lim, |, (2uB,/B.1) =2u<1. Thus, for a fixed number
T € (2, 1), there exists m, € N such that

%< 7, Yn>m,,. (104)
ﬁn+1
By (103) and (104), we have
A e EA ] O A |
+(1 —T)"un—tn“2 (105)

! 2
S“xn—x || , Yn>my.

Finally, by arguing similarly to the proof of Lemma 5 and
Theorem 1, we can obtain the desired conclusion. This
completes the proof.

As an application of the results above, we consider the
following bilevel variational inequality problem (BVIP for
short):

Journal of Mathematics

findx € VI(G, C) such that (F (X), y — X) >0,

(106)
Vy e VI(G,C),

where F and G be the mappings from H into itself. We
denote the solution set of (106) by T, that is,

T ={z € VI(G,C): (F(2),y —2) =0, Vy € VI(G,C)}.
(107)
0

Corollary 1. Let H be a real Hilbert space and C be a
nonempty closed and convex subset of H. Let F,G: H — H
be the pseudomonotone and Lipschitz continuous mappings
with the Lipschitz constants L, and L, satisfy the following
conditions:

(B)limsup{F (x,), y — x,» <<{F (%), y — %) and lim sup{G(x,,), y — x,,) <(G(X), y - X)

n—=o00

for every sequence {x,,} converging weakly to X.

Assume  that I'+Q. Take the  parameters
B e (0, (1/L))), A € (0, (1/3L,)), the  initial  points
Xg» Yoo Y-1 € H and generate the sequence {x,} in the fol-
lowing manner:

u, = Pc(x, - PG (x,)),

t, = Pc, (%, = PG (u)),

Xper = Py, (6, = AF (3,));

Yui1 = Pr, (%541 = AF (3,)),n20,
where C, ={y € H: {x, - BG(x,) —u,, ¥y —u,» <0}, H, =
{y e H: {x,, = BF(¥y-1) = Yo ¥ — V0 <0}, and T, is defined

as in Algorithm 1. Then, the sequence {x,} generated by (109)
converges weakly to the point X = lim Prx,,.

(109)

n—-00

Proof. Let g(x, y) = {G(x),y —x) and f(x,y) = (F(x),y
—x) for all x, y € H. Since F is pseudomonotone on H, it
follows that f (x, y) = (F(x),y —x) 20= f (y,x) = (F(y),
x — ) <0.So f is pseudomonotone on H. It is obvious that
f satisfies the condition (A3). In addition, if x,—X, by (B),
we have

limsup f(x,, ¥) = limsup{F(x,), y — x,,»

SCF(x),y-%) = f(% »).

So f satisfies the condition (A2). Finally, since F is
L,-Lipschitz continuous, f is Lipschitz-type continuous
with the constant d, = d, = (L,/2); see Remark 1. Thus, f
satisfies the conditions (A1)-(A4). Similarly, g also satisfies

(110)

n—~oo

(108)

the conditions (A1)-(A4). In particular, g satisfies (A4) with
¢, = ¢, = (L,/2). So, the conditions on  and A in Lemma 5
become the ones in Corollary 1. On the other hand, by
Algorithm 1,

u, = argmin{ﬁg(xn, y) +%||xn - y"z: ye€ C} (111)
is equivalent to u, = P (x, — fG(x,)). Similarly, ¢t,,x,.,,,
and y,,,, in Algorithm 1 are equivalent to t,, x,,,,, and y,,,
in Corollary 1, respectively. By Theorem 1, the desired
conclusion can be obtained. This completes the proof.

Since the proof process of the following corollary is
similar to the one of Corollary 3.1, we give the following
corollary and omit the proof process. O

Corollary 2. Let H be a real Hilbert space and C be a
nonempty closed and convex subset of H. Let F,G: H — H
be the pseudomonotone and Lipschitz continuous mappings
with the Lipschitz constants L, and L, satisfying the condition
(B) in Corollary 3.1. Assume that I +&. The parameters
Bo>0,A,>0, pe (By, (1/4)), the initial  points
Xg» Yo» Y1 € H are taken, and the sequence {x,} is generated
by the following manner:

- B,G(x,)),

t, = P, (%, = B.G (14,))s

%1 = Py, (5~ AE(3,))

Yur1 = Pr, (%1 = Apir F (7)), 120,

where C,, H,,

un:PC(xn

(112)

and T, are defined as in Corollary I,
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10? . . ; .
D?l DVI
10’2 1 1 1 1 1 1 1 1 1 10’2 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Number of iterations Number of iterations
—o— Algorithm 3.1 —o— Algorithm 3.1
—+— Algorithm 3.2 —#— Algorithm 3.2
() (b)
101 T T T T T T T T T 102 T T T T T T T T T
Dn

10-2 ! ! ! ! ! ! ! ! ! 10-2 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Number of iterations Number of iterations
—o— Algorithm 3.1 —o— Algorithm 3.1
—+— Algorithm 3.2 —#— Algorithm 3.2
(c) (d)
FIGURE 1: Experiment in different R™.
An’ <F(yn—1) _F(yn)’xm—l _yn> <0,
L= 2 2 (113)
n+l y U "yn _yn—1|| +||yn _xn+1|| h
min s , otherwise,
! <F(yn—1) _F(yn)’xn+1 _yn>
and f,,,, is modified by
B (G(x,) - G(u,),t, —u,» <0,
= 2 2
o Bl =5l #ls =) (119
min , otherwise.

" <G (xn) - G(un)’ t, = un>



14

Then, the sequence {x,} generated by (112) converges
weakly to the point X = lim, ,  Prx,,.
Remark 8. Since C,, H,, and T, are half-spaces, from Re-
mark 2, it follows that t,, x,,,;, and y,,,, in Corollary 1 and 2

can be computed explicitly.

4. Numerical Examples

In this section, we give two examples to illustrate the
convergence of Algorithm 1 and 2. The programs are written
in Matlab 2016b, and the examples are computed on a PC
Intel(R) Core (TM) i5-4260U CPU, 2.00 GHz, Ram 4.00 GB.

We first give the following example to illustrate the
effectiveness of Algorithm 1 and 2.

Example
x;>21,Vie{2,...

1. Let H=R™ and C={xeR" x,>0,
,m}}. Let g: Hx H — R be defined by

glx,y) = ;(yi_xi)”x"’ (115)

s Vm) € H.

It is known that g satisfies the conditions (A1)-(A4). In
particular, g is Lipschitz-type continuous with the constants
¢, =c¢, =2; see [30] for details. Let f: HxH — R be
defined by

Vx = (x5 %,), ¥ = -

f(x,y)=C(Ax,y —x), Vx,yeH, (116)
-210 1 -1
1 210 2
A= 0 13 1 2 |
0131 0
2 01-1 3
0 1 2 1-1
-1 3 2 0 2
B=| -2-211-31
-1 0 -11 0
1 -2 3 0 2
500 0 O
030 0 O
D=1 0012 0 0 |,
00 0 15 0
00 0 0 22

Journal of Mathematics

where Ax = ((x,/2), (x; = 1/2),..., (x,, — 1/2)). It is easy to
see that f satisfies the conditions (A1)-(A4). In particular, f
is  Lipschitz-type continuous with the constants
d, = d, = (1/4). The solution set of the bilevel equilibrium
problem (7) in this example is found as Q ={(0,1,...,1)}.

We choose the initial points x;, ¥y, ¥_; randomly from
the interval (0,5) for Algorithm 1 and 2, the input parameters
A=p=0.1 for Algorithm 1, and A, =p,=p=0.2 for
Algorithm 2. The maximum iteration of 100 as the stop
criterion is used for Algorithm 1 and 2. The numerical results
with the different dimensions m are shown in Figure 1. In
this figures, the x-axis represents the number of iterations
while the y-axis is for the value of D, generated by Algo-
rithm 1 and 2, where

D, =|x,-(0,1,...,1)|. (117)

From the computed results, we see the effectiveness of
Algorithm 1 and 2.

The next example was ever used in [20]. Here, we use this
example to illustrate the convergence of Algorithm 1 and 2
and compare the computed results with Algorithm 2.1 in
[20].

Example2. LetC ={x e R: —1<x;<1,Vi=1,...,5}and
f: R> x R® be defined by

F(x) = (§x; + &x, + sin(x)), —€x; + &x, + sin(x,), (§ = 1)x5, (£ — Dxy, (6 - 1xs),

and g is a vector in R
Let f: R®> x R be defined by

flx,y) =(F(x)+Qy+q,y-x),Vx,y € R, (118)
where Q = AAT + B+ D with

(119)

g(x,9) =(Px + Py + p,y — x),¥x,y € R’, (120)

where p is a vector in R’ and P = 2P + I with
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TaBLE 1: Computed results for Algorithm 3.1 with the different parameters.

Test prob. ¢ B A No. iter. CPU-times (s)

1 65 (1/3¢,) (1/7d,) 8 1.5345

2 69 (1/3¢,) (1/7d,) 17 17113

3 55 (1/5¢,) (1/7d,) 22 2.0234

4 55 (1/5¢,) (1/7d,) 13 1.7431

5 70 (1/5¢,) (1/10d,) 15 1.7113

6 80 (1/5¢4) (1/10d,) 24 1.9885

7 95 (1/8¢,) (1/15d,) 35 22331

8 45 (1/8¢y) (1/15d,) 21 1.9935

9 100 (1/10c,) (1/10d,) 19 21003

10 150 (1/10c,) (1/10d,) 22 2.0023

TasLE 2: Computed results for Algorithm 3.2 with the different parameters.

Test prob. ¢ Bo Ay U No. iteration CPU times (s)

1 65 (1/3¢,) (1/7d,) 0.2 12 43243

2 69 (1/3¢,) (1/7d,) 0.2 23 4.001 2

3 55 (1/5¢,) (1/7d,) 0.15 22 3.0234

4 55 (1/5¢,) (1/7d,) 0.15 32 51113

5 70 (1/5¢,) (1/10d,) 0.1 25 4.8750

6 80 (1/5¢,) (1/10d,) 0.1 29 51146

7 95 (1/8¢,) (1/15d,) 0.1 33 6.1437

8 45 (1/8¢,) (1/15d,) 0.12 31 5.8875

9 100 (1/10c,) (1/10d,) 0.09 29 49973

10 150 (1/10¢,) (1/10d,) 0.09 31 5.8803
TaBLE 3: Computed results for Algorithm 2.1 in [20] with the different parameters.

Test prob. ¢ B, A, No. iteration CPU times (s)

1 65 (2n/2d> (n? +2)) (1/2¢, + 100n) 8 1.500 2

2 69 (2n/2d2 (2n* +12)) (1/2¢, +200n) 7 0.8872

3 55 (2n/2d3 (2n + 20)) (1/2¢, + 500m) 12 1.687

4 55 (2n/2d2 (2n* + 15)) (1/2¢; + 600n) 13 1.4003

5 70 (2n/2d3 (2n + 20)) (1/2¢, + 1000n) 5 1.7113

6 80 (2n/2d% (2n2 + 30)) (1/2¢, + 1000n) 5 1.4222

7 95 (2n/2d3 (n? + 100)) (1/2¢, + 500m) 7 0.9831

8 45 (2n/2d> (n? + 150)) (1/2¢, + 500n) 9 0.800 5

9 100 (2n/2d2 (n +200)) (1/2¢, + 1000n) 7 0.9659

10 150 (2n/2d3 (2n* + 1)) (1/2¢, +200n) 14 21103
1200 0 We choose the initial point x, = y, = y_; = (1,1,1,1,1)

for Algorithm 1 and 2 and x, = (1,0,0, 1, 1) for Algorithm
2400 0 . Lo 3
B 2.1 in [20]. The stop criterion is D, < 10>, where
P=10070 1 (121)

0009 0 D, = max{|[x, = y,| %1 = v} (122)
001055

It is known that f and g satisfy all the conditions re-
quired in [20] and Section 3 of this paper. In particular, f is
Lipschitz-type ~ continuous ~ with ~ the  constants

d =d, = (1/2)(\2(2& + 26 +1) +]|Q|), where

Il =

58.9677 and g is Lipschitz-type continuous with the con-

stants ¢; = ¢, = (1/2)||P + I|; see [20].

for the three algorithms. The computed results are presented
in Tables 1-3 for Algorithm 1, 2, and Algorithm 2.1 in [20],
respectively. In Table 3, y =& -1 - Q|.

From the computed results, we see that Algorithm 2
needs more CPU times and iterations over Algorithm 1 and
Algorithm 2.1 in [20]. The course may be that Algorithm 2
involves a self-adaptive process of computing the values of
ﬁn+l and /\n+1'
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5. Conclusion

We have proposed two iterative algorithms for finding the
solution of a bilevel equilibrium problem in a real Hilbert
space. The sequence generated by our algorithms converges
weakly to the solution. Furthermore, we reported some
numerical results to support our algorithms. How to obtain
the strong convergence of Algorithm 1 and 2 without the
additional assumptions is our future investigation.
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