
Research Article
Comparative Study of Y-Junction Nanotubes with Vertex-Edge
Based Topological Descriptors

Al-Nashri Al-Hossain Ahmad

Department of Mathematics, Al Qunfudha University College, Umm Al-Qura University, Mecca, Saudi Arabia

Correspondence should be addressed to Al-Nashri Al-Hossain Ahmad; aanashri@uqu.edu.sa

Received 15 April 2022; Accepted 3 June 2022; Published 20 July 2022

Academic Editor: Muhammad Kamran Jamil

Copyright © 2022 Al-Nashri Al-Hossain Ahmad. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

�e current results of various forms of carbon nanostructures and its applications in di�erent areas attract the researchers. In
pharmaceutical, medicine, industry and electronic devices they used it by its graphical invariants. �e detection of di�erent types
of carbon nanotubes junctions enhanced the attention and interest for forthcoming devices like transistors and ampli�ers. A
topological index plays a very important role in the study of physicochemical properties of biological and chemical structures. In
this paper, we determine results of ve-degree topological indices for various type of carbon nanotubes Y-junctions and their
comparisons. �e particular indices called as �e �rst ve-degree Zagreb β index, the second ve-degree Zagreb index, ve-degree
Randic index, ve-degree atom-bond connectivity index, ve-degree geometric-arithmetic index, ve-degree harmonic index and
ve-degree sum-connectivity index.

1. Introduction

Let a graph having vertex set V and edge set E possesses the
properties of connectivity, usually labeled as G � (V, E). For
a vertex x1 ∈ V, the concept of open neighborhood of that
vertex x1 is formulated as N(x1) � x2 ∈ V: x1x2 ∈ E{ },
while the concept of closed neighborhood formulated and
notated byN[x1] � N(x1)∪ x1, [1–3]. A notation ξve(x1), is
used for the ve-degree of any vertex x1 ∈ V, andmeasured by
the count of distinct edges which are incident to any vertex
from the closed neighborhood of x1. Further detail and
discussion on this notation and its mathematical de�nition,
one can see [4–6].

In molecular graph theory, vertices and edges are
replaced by atoms and their bonds while transforming from
a molecular structure to a molecular graph, respectively,
[7, 8]. Carbon nanotubes with branching ends are promising
building blocks for next-generation enhanced nano-
electronics and nanodevices. In the junction family, three-
terminal devices and carbon nanotube graphs have tre-
mendous potential. While study the chemical things for
various determinations in di�erent areas, the energy bond is

the one of the most important thermophysical to be mea-
sured. �ere are di�erent type of nanotubes junctions for
example, X, Y, L and T and their applications can be seen in
[9–12].

�e topological descriptor of a given graph is a numeric
number that describes the quantitative structural-property
relationship and quantitative structural-activity of the mo-
lecular graph [13–16]. �e researcher in [17] discussed the
metal-organic network, supramolecular chain is discussed
by [18], carbon nanotubes are measured in [19] with dif-
ferent parameters of graph-based chemical theory. For study
of di�erent types of topological indices, see [20–25]. Some
new variants and generalized results on the topological
descriptors are found in the articles suggested [3, 26, 27].

�ere are variety of topological descriptors, one of them
is the vertex-edge based that will be discussed in this article.
�e researchers in [1], de�ned the “ev-degree,” and [4]
contributed in this study. Basic de�nitions regarding
“ve-degree” topological indices, refer to [28].

�e vertex-edge based topological descriptors are: �e
�rst ve-degree Zagreb β index (M1

βve(Ym(n, n)) � ∑x1x2∈E
(ξve(x1) + ξve(x2))), the second ve-degree Zagreb index
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(M2
ve(Ym(n, n)) � x1x2∈E(ξve(x1) × ξve(x2))), ve-degree

Randić index (Rve(Ym(n, n)) � x1x2∈E(ξve(x1) × ξve

(x2))
(− 1/2)), ve-degree atom-bond connectivity index

(ABCve(Ym (n, n)) � x1x2
∈E((ξve(x1) + ξve(x2) − 2)/(ξve

(x1) × ξve(x2)))
(1/2)), ve-degree geometric-arithmetic index

(GAve(Ym(n, n)) � x1x2∈E ((2(ξve(x1) × ξve (x2))
(1/2))/

(ξve(x1) + ξve(x2)))), ve-degree harmonic index (Hve

(Ym(n, n)) � x1x2∈E(2/(ξve(x1) + ξve(x2)))) and ve-degree
sum-connectivity index (χve(Ym(n, n)) � x1x2∈E(ξve(x1) +

ξve(x2))
(− 1/2)). For further results and detail on vertex-edge

based topological indices see [29, 30]. Some other related
topics based on the information of edges of a graph are
detailed in [31–37]. In this paper, the exact values of vertex-
edge based topological indices for Y-junctions carbon
nanotubes are determined.

2. Y-Junction Graphs

)e Y-junctions investigated in this paper are formed by the
covalent interconnection of three finite-length armchair
single-walled nanotubes that intersect at a 120° angle and are
specified by the chiral vector (n, n). For detail study of
structures, authors refer to [38–41]. A Y-junction graph is
defined as follows:

Let n is even and m, n are two integers. A graph of Y-
junction labeled as Ym(n, n) is constructed by using an
armchair Y(n, n), and three CNTsTm(n, n) single-walled
armchair which are identical having m hexagons-layers.
Total face count is (3n2/4) − (3n/2) + 5 in an armchair
Y(n, n), containing openings of count three, heptagons
count is six, hexagons count is (3n2/4) − (3n/2) − 5. Fur-
thermore, each armchair tube labeled by Tm(n, n) contained
hexagonal-faces of count 2mn. )e degree two count vertices
are 6n, degree three with count (3n2/2) + 3n + 12mn + 6,
collectively having (3n2/2) + 9n + 12mn + 6 order, and
(9n2/4) + (21n/2) + 18mn + 9 size.

In this work, a junction graph labeled with Ym(n, n) is
graphs having no pendent or degree one vertex, exists. )is
work also consists of other three topologies of Y-junction
graphs labeled with Y1

m(n, n), Y2
m(n, n) and Y3

m(n, n) and
these contained some vertices with degree one.)ese further
topologies are constructed by Ym(n, n)-junction graphs by
adding pendants to degree 2 vertices. Single tube among
three tubes of Ym(n, n) has exactly 2n count of vertices
having two degree. In result, 6n is the maximum number of
pendants that can be utilised with this attachment for
Ym(n, n) and 2n for each tube.

3. The ve-Degree Results of Y-Junction
Graph Ym(n, n)

)is section presented the ve-degree results of Y-junction
graph Ym(n, n). )is graph does not contain any pendent
vertex that is shown in Figure 1. )e edge partition of end
vertices ve-degree of each edge along with the degree of
end vertices of each edge for Ym(n, n) graph is given in
Table 1.

3.1. )e First ve-Degree Zagreb β Index.

M
1
βve Ym(n, n)(  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

� (10)(3n) +(13)(6n) +(17)(6n)

+(18)
9n

2

4
−
9n

2
+ 18mn + 9 

�
81n

2

2
+ 129n + 324mn + 162.

(1)

3.2. )e Second ve-Degree Zagreb Index.

M
2
ve Ym(n, n)(  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

� (25)(3n) +(40)(6n) +(72)(6n)

+(81)
9n

2

4
−
9n

2
+ 18mn + 9 

�
729n

2

2
+
765n

2
+ 1458mn + 729.

(2)

3.3. )e Randić Index Developed by ve-Degree Methodology.
Utilizing the edge-partition details described in the Table 1,
we measured the Randić index developed by ve-degree
methodology:

Figure 1: A variant of Y-junction Ym(n, n).

Table 1: )e ve-degrees of each edge of Ym(n, n) junction graph.

(ξ(x1), ξ(x2)) (ξve(x1), ξve(x2)) Count

(2, 2) (5, 5) 3n

(2, 3) (5, 8) 6n

(3, 3) (8, 9) 6n

(3, 3) (9, 9) (9n2/4) − (9n/2) + 18mn + 9
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Rve Ym(n, n)(  � 
x1x2∈E

ξve x1(  × ξve x2( ( 
(− 1/2)

� (25)
(− 1/2)

(3n) +(40)
(− 1/2)

(6n) +(72)
(− 1/2)

(6n) +(81)
(− 1/2) 9n

2

4
−
9n

2
+ 18mn + 9 

�
n
2

4
+

1
10

+
3

��
10

√

10
+

�
2

√

2
+ 2m n + 1.

(3)

3.4. )e Atom-Bond Connectivity Index Developed by
ve-Degree Methodology. Utilizing the edge-partition details

described in the Table 1, we measured the atom-bond
connectivity index developed by ve-degree methodology:

ABCve Ym(n, n)(  � 
x1x2∈E

ξve x1(  + ξve x2(  − 2
ξve x1(  × ξve x2( 

 

(− 1/2)

� (3n)

��
8
25



+(6n)

��
11
40



+(6n)

��
15
72



+
9n

2

4
−
9n

2
+ 18mn + 9 

��
16
81



� n
2

+
6

�
2

√

5
+
3

���
110

√

10
+

��
30

√

2
+ 8m − 2 n + 4.

(4)

3.5. )e Geometric-Arithmetic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 1, we measured the geometric-arithmetic index
developed by ve-degree methodology:

GAve Ym(n, n)(  � 
x1x2∈E

2 ξve x1(  × ξve x2( ( 
(− 1/2)

ξve x1(  + ξve x2( 
⎛⎝ ⎞⎠

� (3n)
(2)

��
25

√

10
+(6n)

(2)
��
40

√

13
+(6n)

(2)
��
72

√

17
+

9n
2

4
−
9n

2
+ 18mn + 9 

(2)
��
81

√

18

�
9n

2

4
+

− 3
2

+
24

��
10

√

13
+
72

�
2

√

17
+ 18m n + 9.

(5)

3.6. )e Harmonic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 1, we measured the harmonic index developed
by ve-degree methodology:

Hve Ym(n, n)(  � 
x1x2∈E

2
ξve x1(  + ξve x2( 

 

� (3n)
2
10

+(6n)
2
13

+(6n)
2
17

+
9n

2

4
−
9n

2
+ 18mn + 9 

2
18

�
n
2

4
+

3821
2210

+ 2m n + 1.

(6)
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3.7. )e Sum-Connectivity Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 1, we measured the sum-connectivity index
developed by ve-degree methodology:

χve Ym(n, n)(  � 
x1x2∈E

ξve x1(  + ξve x2( ( 
(− 1/2)

� (3n)
1
��
10

√ +(6n)
1
��
13

√ +(6n)
1
��
17

√ +
9n

2

4
−
9n

2
+ 18mn + 9 

1
��
18

√

�
3

�
2

√
n
2

8
+

3
��
10

√

10
+
6

��
13

√

13
+
6

��
17

√

17
+

�
2

√

6
− 9
2

+ 18m  n +
3

�
2

√

2
.

(7)

4. The ve-Degree Results of Y-Junction
Graph Y1

m(n, n)

By attaching the 2n pendants vertices with 2 degree vertices
to any one tube of Ym(n, n) graph, we obtain a new graph, it
is denoted by Y1

m(n, n), see Figure 2. )e order and size of
Y1

m(n, n) graph is (3n2/2) + 11n + 12mn + 6 and
(9n2/4) + (25n/2) + 18mn + 9, respectively. )is section

determinen the ve-degree results of Y-junction graph
Y1

m(n, n). )e edge partition of end vertices ve-degree of
each edge along with the degree of end vertices of each edge
for Y1

m(n, n) graph is given in Table 2.

4.1. )e First ve-Degree Zagreb β Index.

M
1
βve Y

1
m(n, n)  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

� (10)(2n) +(13)(4n) +(16)(2n) +(10)(2n) +(17)(4n) +(14)(n) +(18) +
9n

2

4
−
5n

2
+ 18mn + 9 

�
81n

2

2
+(161 + 324m)n + 162.

(8)

4.2. )e Second ve-Degree Zagreb Index.

M
2
ve Y

1
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( ,

M
2
ve Y

1
m(n, n)  � (25)(2n) +(40)(4n) +(63)(2n) +(21)(2n) +(72)(4n) +(49)(n) +(81) +

9n
2

4
−
5n

2
+ 18mn + 9 

� 729 +
729n

2

4
+

1025
2

+ 1458m n.

(9)

4.3. )e Randić Index Developed by ve-Degree Methodology.
Utilizing the edge-partition details described in the Table 2,
we measured the Randić index developed by ve-degree
methodology:

4 Journal of Mathematics



Rve Y
1
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

(− 1/2)

� (35)
(− 1/2)

(2n) +(40)
(− 1/2)

(4n) +(63)
(− 1/2)

(2n) +(21)
(− 1/2)

(2n)

+(72)
(− 1/2)

(4n) +(49)
(− 1/2)

(n) +(81)
(− 1/2) 9n

2

4
−
5n

2
+ 18mn + 9 

� 1 +
n
2

4
+

167
630

+

��
10

√

5
+
2

�
7

√

21
+
2

��
21

√

21
+

�
2

√

3
+ 2m n.

(10)

4.4. )e Atom-Bond Connectivity Index Developed by
ve-Degree Methodology. Utilizing the edge-partition details
described in the Table 2, we measured the atom-bond
connectivity index developed by ve-degree methodology:

Extension of Ym (n, n) to Y1
m (n, n)

Figure 2: A variant of Y-junction Y1
m(n, n).

Table 2: )e end vertices ve-degrees of each edge of Y1
m(n, n).

(ξ(x1), ξ(x2)) (ξve(x1), ξve(x2)) Count

(2, 2) (5, 5) 2n

(2, 3) (5, 8) 4n

(3, 3) (7, 9) 2n

(1, 3) (3, 7) 2n

(2, 3) (8, 9) 4n

(3, 3) (7, 7) n

(3, 3) (9, 9) (9n2/4) − (5n/2) + 18mn + 9
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ABCve Y
1
m(n, n)  � 

x1x2∈E

ξve x1(  + ξve x2(  − 2
ξve x1(  × ξve x2( 

 

(1/2)

� (2n)

��
8
25



+(4n)

��
11
40



+(2n)

��
14
63



+(2n)

��
8
21



+(4n)

��
15
72



+(n)

��
12
49



+

��
16
81


9n

2

4
−
5n

2
+ 18mn + 9 

� 4 + n
2

+
22

�
2

√

15
+

���
110

√

5
+
4

��
42

√

21
+

��
30

√

3
+
2

�
3

√

7
−
10
9

+ 8m n.

(11)

4.5. )e Geometric-Arithmetic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 2, we measured the geometric-arithmetic index
developed by ve-degree methodology:

GAve Y
1
m(n, n)  � 

x1x2∈E

2 ξve x1(  × ξve x2( ( 
(1/2)

ξve x1(  + ξve x2( 

� (2n)
(2)

��
25

√

10
+(4n)

(2)
��
40

√

13
+(2n)

(2)
��
63

√

16
+(2n)

(2)
��
21

√

10

+(4n)
(2)

��
72

√

17
+(n)

(2)
��
49

√

14
+

(2)
��
81

√

18
9n

2

4
−
5n

2
+ 18mn + 9 

� 9 +
9n

2

4
+

1
2

+
16

��
10

√

13
+
3

�
7

√

4
+
2

��
21

√

5
+
48

�
2

√

17
+ 18m n.

(12)

4.6. )e Harmonic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 2, we measured the harmonic index developed
by ve-degree methodology:

Hve Y
1
m(n, n)  � 

x1x2∈E

2
ξve x1(  + ξve x2( 

� (2n)
2
10

+(4n)
2
13

+(2n)
2
16

+(2n)
2
10

+(4n)
2
17

+(n)
2
14

+
2
18

9n
2

4
−
5n

2
+ 18mn + 9 

� 1 +
n
2

4
+

557213
278460

+ 2m n.

(13)

4.7. )e Sum-Connectivity Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 2, we measured the sum-connectivity index
developed by ve-degree methodology:

χve Y
1
m(n, n)  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

(− 1/2)

� (2n)
1
��
10

√ +(4n)
1
��
13

√ +(2n)
1
��
16

√ +(2n)
1
��
10

√ +(4n)
1
��
17

√ +(n)
1
��
14

√ +
1
��
18

√
9n

2

4
−
5n

2
+ 18mn + 9 

�
2

��
10

√

5
+
4

��
13

√

13
+
1
2

+
4

��
17

√

17
+

��
14

√

14
+

�
2

√

6
− 5
2

+ 18m  n +
3

�
2

√
n
2

8
+
3

�
2

√

2
.

(14)
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5. The ve-Degree Results of Y-Junction
Graph Y2

m(n, n)

By attaching the 4n pendants vertices with 2 degree vertices
to any two tube of Ym(n, n) graph, we obtain a new graph, it
is denoted by Y2

m(n, n), see Figure 3. )e cardinality of
Y2

m(n, n) is (3n2/2) + 13n + 12mn + 6 and size is
(9n2/4) + (29n/2) + 18mn + 9. )is section determined the

ve-degree results of Y-junction graph Y2
m(n, n). )e edge

partition of end vertices ve-degree of each edge along with
the degree of end vertices of each edge for Y2

m(n, n) graph is
given in Table 3.

5.1. )e First ve-Degree Zagreb β Index.

M
1
βve Y

2
m(n, n)  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

� (10)(n) +(13)(2n) +(16)(4n) +(10)(4n) +(17)(2n) +(14)(2n) +(18)
9n

2

4
−

n

2
+ 18mn + 9 

� 162 +
81n

2

2
+(193 + 324m)n.

(15)

5.2. )e Second Zagreb Index Developed by ve-Degree
Methodology.

M
2
ve Y

2
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

� (25)(n) +(40)(2n) +(63)(4n) +(21)(4n) +(72)(2n) +(49)(2n) +(81)
9n

2

4
−

n

2
+ 18mn + 9 

� 729 +
729n

2

4
+

1285
2

+ 1458m n.

(16)

5.3. )e Randić Index Developed by ve-Degree Methodology. Utilizing the edge-partition details described in the Table 3,
we measured the Randić index developed by ve-degree
methodology:

Rve Y
2
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

(− 1/2)

� (35)
(− 1/2)

(n) +(40)
(− 1/2)

(2n) +(63)
(− 1/2)

(4n) +(21)
(− 1/2)

(4n)

+(72)
(− 1/2)

(2n) +(49)
(− 1/2)

(2n) +(81)
(− 1/2) 9n

2

4
−

n

2
+ 18mn + 9 

� 1 +
n
2

4
+

271
630

+

��
10

√

10
+
4

�
7

√

21
+
4

��
21

√

21
+

�
2

√

6
+ 2m n.

(17)

5.4. )e Atom-Bond Connectivity Index Developed by
ve-Degree Methodology. Utilizing the edge-partition details
described in the Table 3, we measured the atom-bond
connectivity index developed by ve-degree methodology:
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ABCve Y
2
m(n, n)  � 

x1x2∈E

ξve x1(  + ξve x2(  − 2
ξve x1(  × ξve x2( 

 

(1/2)

� (n)

��
8
25



+(2n)

��
11
40



+(4n)

��
14
63



+(4n)

��
8
21



+(2n)

��
15
72



+(2n)

��
12
49



+

��
16
81


9n

2

4
−

n

2
+ 18mn + 9 

� 4 + n
2

+
26

�
2

√

15
+

���
110

√

10
+
8

��
42

√

21
+

��
30

√

6
+
4

�
3

√

7
−
2
9

+ 8m n.

(18)

5.5. )e Geometric-Arithmetic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 3, we measured the geometric-arithmetic index
developed by ve-degree methodology:

GAve Y
2
m(n, n)  � 

x1x2∈E

2 ξve x1(  × ξve x2( ( 
(1/2)

ξve x1(  + ξve x2( 

� (n)
(2)

��
25

√

10
+(2n)

(2)
��
40

√

13
+(4n)

(2)
��
63

√

16
+(4n)

(2)
��
21

√

10
+(2n)

(2)
��
72

√

17

+(2n)
(2)

��
49

√

14
+

(2)
��
81

√

18
9n

2

4
−

n

2
+ 18mn + 9 

� 9 +
9n

2

4
+

5
2

+
8

��
10

√

13
+
3

�
7

√

2
+
4

��
21

√

5
+
24

�
2

√

17
+ 18m n.

(19)

Figure 3: A variant of Y-junction Y2
m(n, n).

Table 3: )e ve-degrees of each edge of Y2
m(n, n).

(ξ(x1), ξ(x2)) (ξve(x1), ξve(x2)) Count

(2, 2) (5, 5) n

(2, 3) (5, 8) 2n

(3, 3) (7, 9) 4n

(1, 3) (3, 7) 4n

(2, 3) (8, 9) 2n

(3, 3) (7, 7) 2n

(3, 3) (9, 9) (9n2/4) − (n/2) + 18mn + 9
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5.6. )e Harmonic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 3, we measured the harmonic index developed
by ve-degree methodology:

Hve Y
2
m(n, n)  � 

x1x2∈E

2
ξve x1(  + ξve x2( 

� (n)
2
10

+(2n)
2
13

+(4n)
2
16

+(4n)
2
10

+(2n)
2
17

+(2n)
2
14

+
2
18

9n
2

4
−

n

2
+ 18mn + 9 

� 1 +
n
2

4
+

31649
13923

+ 2m n.

(20)

5.7. )e Sum-Connectivity Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described

in the Table 3, we measured the sum-connectivity index
developed by ve-degree methodology:

χve Y
2
m(n, n)  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

(− 1/2)

� (n)
1
��
10

√ +(2n)
1
��
13

√ +(4n)
1
��
16

√ +(4n)
1
��
10

√ +(2n)
1
��
17

√ +(2n)
1
��
14

√ +
1
��
18

√
9n

2

4
−

n

2
+ 18mn + 9 

�

��
10

√

2
+
2

��
13

√

13
+ 1 +

2
��
17

√

17
+

��
14

√

7
+

�
2

√

6
−
1
2

+ 18m  n +
3

�
2

√
n
2

8
+
3

�
2

√

2
.

(21)

6. The ve-Degree Results of Y-Junction
Graph Y3

m(n, n)

In Ym(n, n) when one tube appears with exactly 2n pendants,
we denote it byY1

m(n, n), see Figure 2.)e order and size of this
new graph is (3n2/2) + 11n + 12mn + 6 and (9n2/4)+

(25n/2) + 18mn + 9, respectively. )e Y-junction graph Y2
m

(n, n) is obtained by attaching 4n pendants to any two tubes of
Ym(n, n), see Figure 3.)e cardinality of Y2

m(n, n) is (3n2/2) +

13n + 12mn + 6 and size is (9n2/4) + (29n/2) + 18mn + 9.
)e graph Ym(n, n) with maximum possible pendants denoted
by Y3

m(n, n), see Figure 4. It has order (3n2/2) + 15n + 12mn +

6 and size (9n2/4) + (33n/2) + 18mn + 9.

6.1. )e First ve-Degree Zagreb β Index.

M
1
βve Y

3
m(n, n)  � 

x1x2∈E
ξve x1(  + ξve x2( ( 

� (16)(6n) +(10)(6n) +(14)(3n)

+(18)
9n

2

4
+
3n

2
+ 18mn + 9 

� 162 +
81n

2

2
+(225 + 324m)n.

(22)
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6.2. )e Second Zagreb Index Developed by ve-Degree
Methodology.

M
2
ve Y

3
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

� (63)(6n) +(21)(6n) +(49)(3n)

+(81)
9n

2

4
+
3n

2
+ 18mn + 9 

� 729 +
729n

2

4
+

1545
2

+ 1458m n.

(23)

6.3. )e Randić Index Developed by ve-Degree Methodology.
Utilizing the edge-partition details described in the Table 4,
we measured the Randić index developed by ve-degree
methodology:

Rve Y
3
m(n, n)  � 

x1x2∈E
ξve x1(  × ξve x2( ( 

(− 1/2)

� (63)
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2
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2
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2
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2
�
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√

7
+
2

��
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√

7
+
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42

+ 2m n.

(24)

6.4. )e Atom-Bond Connectivity Index Developed by
ve-Degree Methodology. Utilizing the edge-partition details
described in the Table 4, we measured the atom-bond
connectivity index developed by ve-degree methodology:

ABCve Y
3
m(n, n)  � 
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2
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7
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6

�
3

√

7
+
2
3

+ 8m n.

(25)

6.5. )e Geometric-Arithmetic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described
in the Table 4, we measured the geometric-arithmetic index
developed by ve-degree methodology:

Figure 4: A variant of Y-junction Y3
m(n, n).
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GAve Y
3
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6.6. )e Harmonic Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described
in the Table 4, we measured the harmonic index developed
by ve-degree methodology:

Table 4: )e ve-degrees of each edge of Y3
m(n, n).

(ξ(x1), ξ(x2)) (ξve(x1), ξve(x2)) Count

(3, 3) (7, 9) 6n

(1, 3) (3, 7) 6n

(3, 3) (7, 7) 3n

(3, 3) (9, 9) (9n2/4) − (3n/2) + 18mn + 9

Table 5: Numerical comparison of M1
βve, M2

ve, Hve, Rve, χve, ABCve, GAve for Y-junction graph Ym(n, n).

(m, n) M1
βve M2

ve Rve ABCve GAve Hve χve

(5, 5) 9919.50 43647.8 66.0289 256.910 566.888 65.8948 136.481
(6, 6) 14058.0 62073.0 92.5347 361.493 799.966 92.3738 191.992
(7, 7) 18925.5 83778.8 123.541 484.074 1073.55 123.353 257.048
(8, 8) 24522.0 108765.0 159.046 624.656 1387.62 158.832 331.649
(9, 9) 30847.5 137032.0 199.052 783.240 1742.20 198.811 415.797
(10, 10) 37902.0 168579.0 243.558 959.820 2137.28 243.290 509.491
(11, 11) 45685.5 203407.0 292.564 1154.40 2572.86 292.269 612.730
(12, 12) 54198.0 241515.0 346.069 1366.98 3048.94 345.748 725.515
(13, 13) 63439.5 282904.0 404.075 1597.56 3565.50 403.726 847.847
(14, 14) 73410.0 327573.0 466.581 1846.15 4122.58 466.205 979.724

Table 6: Numerical comparison of M1
βve, M2

ve, Hve, Rve, χve, ABCve, GAve for Y-junction graph Y1
m(n, n).

(m, n) M1
βve M2

ve Rve ABCve GAve Hve χve

(5, 5) 10079.5 44297.8 67.5368 262.078 576.262 67.2553 139.058
(6, 6) 14250.0 62853.0 94.3441 367.695 811.214 94.0063 195.082
(7, 7) 19149.5 84688.8 125.652 491.309 1086.66 125.257 260.653
(8, 8) 24778.0 109805.0 161.459 632.925 1402.61 161.008 335.770
(9, 9) 31135.5 138202.0 201.767 792.543 1759.08 201.259 420.433
(10, 10) 38222.0 169879.0 246.574 970.157 2156.02 246.011 514.641
(11, 11) 46037.5 204837.0 295.881 1165.77 2593.47 295.262 618.397
(12, 12) 54582.0 243075.0 349.688 1379.39 3071.43 349.013 731.697
(13, 13) 63855.5 284594.0 407.996 1611.0 3589.89 407.264 854.543
(14, 14) 73858.0 329393.0 470.803 1860.62 4148.83 470.015 986.937
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(27)

6.7. )e Sum-Connectivity Index Developed by ve-Degree
Methodology. Utilizing the edge-partition details described
in the Table 4, we measured the sum-connectivity index
developed by ve-degree methodology:

χve Y
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(28)

7. Conclusion

In this research work, ve-degree topological indices are
measured of Y-junctions and their three different variants.
We determined the first ve-degree Zagreb β-index, second

Zagreb index, Randić, atom-bond-connectivity index, gen-
eral sum-connectivity and geometric-arithmetic, and har-
monic index developed by ve-degree methodology, for four
types of Y-shaped carbon nanotube junctions Ym(n, n). )e
results of Y-junctions and their structures also are elaborated

Table 7: Numerical comparison of M1
βve, M2

ve, Hve, Rve, χve, ABCve, GAve for Y-junction graph Y2
m(n, n).

(m, n) M1
βve M2

ve Rve ABCve GAve Hve χve

(5, 5) 10239.5 44947.8 69.0446 267.247 585.636 68.6157 141.634
(6, 6) 14442.0 63633.0 96.1536 373.896 822.463 95.6389 198.173
(7, 7) 19373.5 85598.8 127.763 498.545 1099.79 127.162 264.260
(8, 8) 25034.0 110845.0 163.872 641.194 1417.62 163.185 339.891
(9, 9) 31423.5 139372.0 204.480 801.845 1775.94 203.708 425.069
(10, 10) 38542.0 171179.0 249.590 980.494 2174.78 248.731 519.793
(11, 11) 46389.5 206267.0 299.199 1177.15 2614.10 298.255 624.062
(12, 12) 54966.0 244635.0 353.306 1391.80 3093.92 352.278 737.878
(13, 13) 64271.5 286284.0 411.915 1624.45 3614.25 410.801 861.241
(14, 14) 74306.0 331213.0 475.024 1875.09 4175.07 473.824 994.147

Table 8: Numerical comparison of M1
βve, M2

ve, Hve, Rve, χve, ABCve, GAve for Y-junction graph Y3
m(n, n).

(m, n) M1
βve M2

ve Rve ABCve GAve Hve χve

(5, 5) 10399.5 45597.8 70.5523 272.414 595.010 69.9762 144.209
(6, 6) 14634.0 64413.0 97.9629 380.098 833.713 97.2714 201.264
(7, 7) 19597.5 86508.8 129.873 505.781 1112.91 129.067 267.865
(8, 8) 25290.0 111885.0 166.283 649.463 1432.61 165.362 344.012
(9, 9) 31711.5 140542.0 207.194 811.148 1792.82 206.157 429.705
(10, 10) 38862.0 172479.0 252.604 990.830 2193.52 251.452 524.945
(11, 11) 46741.5 207697.0 302.515 1188.51 2634.72 301.248 629.729
(12, 12) 55350.0 246195.0 356.926 1404.20 3116.43 355.543 744.059
(13, 13) 64687.5 287974.0 415.836 1637.88 3638.63 414.338 867.937
(14, 14) 74754.0 333033.0 479.246 1889.56 4201.33 477.633 1001.36
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in numerical Tables 5–8. Instead of a whole complex
structure, it will be easy to see as a numeric quantity.
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