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We propose a new �xed point theorem that completely characterizes the existence of �xed points for multivalued maps on �nite
sets. Our result can be seen as a generalization of Abian’s �xed point theorem. In the context of �nite games, our result can be used
to characterize the existence of a Nash equilibrium in pure strategies and can therefore distinguish pure strategy equilibria from
mixed strategy equilibria in the celebrated Nash theorem.

1. Introduction

�e �nite version of Abian’s [1] �xed point theorem states
that given a function from a �nite set into itself, the set
cannot be partitioned into three sets so that the intersection
of each of these sets with their image is empty if and only if
the mapping has a �xed point. Although this result can be
applied to all functions that have a �nite domain, it can be
shown that it does not generalize to multivalued mappings
which are often referred to as correspondences (1 see [2] for
a proof of this claim). As a result, Abian’s theorem cannot be
applied to problems in game theory where the best response
map is multivalued. In this paper, we solve this problem by
providing a new �xed point theorem that can be de�ned over
any abstract �nite set and that works for multivalued maps.
In its most general form, our theorem completely charac-
terizes the �xed point problem for correspondences over
�nite sets.

�e �xed point theorem we propose, when put in the
context of the widely studied class of �nite games, can help
�ll the gap between the existence of a completely mixed
strategy equilibrium and the existence of a pure strategy
equilibrium as it is well known that the existence theorem of
Nash (1950, 1951) [3,4] does not distinguish between the two
(2 although from the Nash theorem, we know that the
Prisoner’s Dilemma, the Battle of Sexes, and the game of

Matching Pennies have equilibrium points, we cannot tell
which of these games have pure strategy equilibria). In fact,
although the Nash theorem is one of the most important
results in game theory, it only guarantees that an equilibrium
(pure or mixed) exists and therefore a part of the problem of
existence of equilibrium points in pure strategies remains
unsolved. While most of the subsequent research on the
problem of existence of equilibrium points in games have
generalized Nash’s theorem in more general and abstract
in�nite spaces, (for example, see [5–17, 19–26]), fewer
studies have retained the �nite strategy space assumption (3
for example, see [27–32]). (It is important to note that the
generalization of the problem to in�nite spaces with a richer
topological structure does not solve the pure strategy
equilibrium problem when the space is �nite and mixed
strategies are not allowed). Nevertheless, as observed by [2],
the latter work do not give a complete characterization of
equilibrium points in �nite games as they only provide
su�cient conditions and hence, there are no known char-
acterizations of pure strategy equilibria for �nite games.

It was argued by [2] that it is the lack of a topological
structure when the strategy space (without mixed extension)
is a �nite set which renders the problem at hand di�cult. [2]
also observes that Abian’s partitioning method does not
work for multivalued maps. In this paper, we solve this
problem by using an equivalent �xed point result due to the
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author [33] who relates the idea of cycle to Abian’s fixed
point theorem. By representing the fixed point problem on a
directed graph, we make use of [33]’s idea to generalize
Abian’s theorem by first defining a set of all infinite walks of
the mapping and second, by providing the necessary and
sufficient conditions that these walks need to satisfy so that
the mapping has a fixed point. In its most general form, the
fixed point theorem we propose shows that a fixed point
exists if and only if at least one of these walks converges in
the Cauchy sense. -e cyclicity of best response maps in
games was also considered by the authors of [34] who show
that some weak acyclicity condition is necessary for the
existence of a unique Nash equilibrium in every subgame.
More recently, the authors of [30] gave a related sufficient
condition for the existence of pure strategy Nash equilibria
for the class of finite games (with n> 2 players) that satisfy
some unilaterally competitive (UC) property which was first
developed by the authors of [35]. (4 While the authors of
[35] gave some interesting properties of the UC class of
games, the authors of [28] show in the first place that all
quasi-concave, symmetric UC games have a symmetric pure
strategy equilibrium and more recently (in [30]) that all UC
games with at least three players have a Nash equilibrium).
Another class of games that have the pure strategy Nash
equilibrium property was given by the authors of [36,37]
who proved the existence of equilibrium for all symmetric
quasi-concave finite games two-player zero-sum games.

Our contribution relative to the literature is threefold.
First, we propose a new fixed point theorem for mappings
acting on finite domains as our results generalize Abian’s
fixed point theorem for multivalued maps. Our theorem is
given in terms of some “convergent” like properties on the
digraph induced by the mapping. Second, by applying our
fixed point theorem to the class of finite games, we are able
to give a complete characterization of pure strategy Nash
equilibria. -erefore, our result not only sharpens the
Nash theorem (as it can pin down the exact class of finite
games have pure strategy equilibria) but is also able to
successfully separate the completely mixed strategy
equilibria from the pure ones. -ird, our results readily
generalize the existing results by the authors of
[27,28,30,37] who provided sufficient conditions for the
existence of pure strategy Nash equilibria. Furthermore, in
the context of finite games, we are able to generalize the
existence theorems of potential games ([31]) and super-
modular games [38–41]. Finally, it is worth noting that
while the condition we propose when imposed on best
response maps guarantee the existence of a pure strategy
Nash equilibrium, when applied to the class of games in
satisfaction form (introduced by Debreu ([42]) and de-
veloped further by the authors of[43–46]), it can guarantee
the existence of a satisfaction equilibrium.

-e rest of this paper is organized as follows. In the next
section, we briefly introduce Abian’s theorem. In Section 3,
we give some new fixed point theorems for general map-
pings, Section 4 applies these theorems in the context of
finite games, Section 5 compares our results to results in
some well-known classes of games, while Section 6 gives the
conclusion.

2. Abian’s Theorem and Multivalued Maps

In this section, we introduce the fixed point theorem due to
Abian and show that its generalization to multivalued
mappings on finite sets fails.

2.1. Abian’s*eorem. Let X be a nonempty finite set and let
f: X⟶ X. -en, f has a fixed point if X cannot be
partitioned into three sets A, B, and C such that
A∩F(A) � B∩F(B) � C∩F(C) � ∅.

It was showed by [33] that when the periodicity of f is
even, then two sets suffice in the statement of Abian’s
theorem. We now consider the above statement when the
mapping is generalized to a set-valued map. For a given
nonempty finite set X, let F: X⟶ P(X), whereP(X) is the
power set of X, be a nonempty valued correspondence. At
times, we denote the correspondence by F: X↠X. [2] re-
cently showed, using a counterexample, that it is not possible
to characterize the fixed points of F using Abian’s three set
partitioning method and as a result, an Abian-like theorem
cannot be given for multivalued mappings on finite sets. -e
authors of [2] also went one step further to show that the
theorem does not generalize even if the number of partitions
is increased. In fact, it was shown that only the trivial
partition (singletons) always works for multivalued maps.

-e above negative result and the desirability of a fixed
point for correspondences over finite domains that can
distinguish a pure strategy equilibrium from the set of mixed
strategy equilibria in Nash’s theorem are our main moti-
vations for this paper.

3. Fixed Point Theorem for Multivalued
Maps on Finite Sets

For finite set X, let F: X⟶ P(X) be a nonempty valued
correspondence as defined in the previous section. From F,
we define digraph GF � (X, E), where E⊆X × X is the set of
the edges of GF, satisfying the following. (5 See [47] for more
details on digraphs).

∀x, y ∈ X, (x, y) ∈ E iff

y ∈ F(x).
(1)

We assign weights to the edges of E through mapping λ,
so that λ: E⟶ 0, 1{ } is defined as follows.

∀ e � (x, y) ∈ E, (2)

λ((x, y)) �
1 if x≠y

0 if x � y
.􏼨 (3)

LetTGF
(X) denote the set of all infinite walks ofGF. For a

given finite walk w � 〈wj〉
k

j�1 in GF, we denote by l(w) the
total weight of edges it encounters, with the convention that
if an edge is repeated, then the total weight of the number of
its occurrences contributes to l(w). Formally, for each finite
walk w � 〈wj〉

k

j�1, the length of finite walk w, denoted by
l(w), is defined as follows.
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l 〈wj〉
k

j�1􏼒 􏼓 � 􏽘
k−1

j�1
λ wj, wj+1􏼐 􏼑􏼐 􏼑. (4)

For any vertices x, y ∈ X, we let W(x, y) be the set of all
finite walks connecting x and y. -en, we can define the
distance between x and y as follows.

d(x, y) �

inf l(w)
w∈W(x,y)

if W(x, y)≠∅,

+∞ otherwise.

⎧⎪⎨

⎪⎩
(5)

We say that infinite walk s � 〈sj〉
∞
j�1 ∈ TGF

(X) is Cauchy
if for every ϵ> 0, there exist some natural number N such
that for all m, n>N, we have d(sm, sn)< ϵ. We say that a
graph GF is closed if every sequence s ∈ TGF

(X) is Cauchy.

Theorem 1. If GF is a closed graph, then F has a fixed point.

Proof. We prove by contradiction. Suppose that GF is closed
but F has no fixed points. -en, for all x ∈ X, we have
x ∉ F(x). As a result, there exist some s � 〈sj〉

∞
j�1 ∈ TGF

(X)

such that for each j, F(sj) ∋ sj+1 ≠ sj. Let ϵ � 1/2.-en, since
GF is a closed graph, for every natural N, there exist
m, n>N, such that m � j and n � j + 1 for some j th term of
s. Now, since sj+1 ≠ sj, we have d(sj, sj+1) � 1> 1/2 � ϵ. As a
result, this would imply that s is not Cauchy, and hence, GF

is not closed, which is a contradiction.
-eorem 1 gives a sufficient condition for the existence

of fixed points for multivalued mappings on finite sets. -e
closed graph condition can be seen as the counterpart of the
upper-hemicontinuity assumption of Kakutani’s fixed point
theorem (see [3]). When the relationship defined by the
mapping is represented by a digraph, the closed graph
condition guarantees the existence of fixed points. -e next
result makes this closed graph condition more transparent
and relates it direct to the acyclicity of the graph. We first
define cycles more formally as follows.

We say that GF has a cycle if it has some vertex x′ and
finite walk w � 〈wj〉

k

j�1 ∈W(x′, x′) satisfying the following:
For all m, n ∈ 1, . . . , k{ }, where k> 2, m≠ n imply wm ≠wn,
except at m � 1 and n � k, where w1 � wk � x′.(6 Although

the graph may have longer cycles with repeated vertices, the
condition used in this definition is necessary for any kind of
cycles to exist). □

Theorem 2. If GF is a closed graph, then F is acyclic.

Proof. We prove by contradiction. Suppose that GF is closed
but contains some cycle. -en, GF has some vertex x′ and
finite walk w � 〈wj〉

k

j�1 ∈W(x′, x′) satisfying for all
m, n ∈ 1, . . . , k{ }, where k> 2, m≠ n imply wm ≠wn, except at
m � 1 and n � k. Concatenating w with w ad infinitum, we
obtain s � (w; w; . . .). Hence, s � 〈sj〉

∞
j�1 ∈ TGF

(X) such
that for each j, F(sj) ∋ sj+1 ≠ sj. -en, we can use an ar-
gument similar to that in the proof of -eorem 1 to show
that s is not Cauchy, and therefore, GF is not closed, which is
a contradiction.

-eorem 2 shows that the closed graph condition relates
the acyclicity of the mapping which in turn relates to Abian’s
fixed point theorem ([33]). Since from the standpoint of
directed graphs the acyclicity condition may be easier to
verify, -eorem 2 can be useful in the development of graph
theoretic fixed point search algorithms.

Since our aim is to achieve a result that is parallel to
Abian’s theorem for multivalued maps, the next theorem
gives a complete characterization of fixed points for mul-
tivalued maps. -e following definitions will be useful in
establishing this result. We first make use of the notion of
distance between two vertices to define an index on GF. For
any given walk w � 〈wj〉j�1 in GF, let m(w) be defined as
follows. (7 Here, w can be finite or infinite).

m(w) �

1
inf i≠j∈Nd wi, wj􏼐 􏼑

if inf i≠j∈Nd wi, wj􏼐 􏼑≠ 0,

+∞ otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Wewill use m to define an index on GF. We first index an
element of TGF

(X) by wj for j ∈ K, where K can be
countable or uncountable, so that TGF

(X) � wj􏼈 􏼉j∈K. We
can now define index M on GF as follows:

M GF( 􏼁 �
1 if m w

j
􏼐 􏼑≠ +∞ for all j ∈ K, whereTGF

(X) � w
j

􏽮 􏽯
j∈K,

+∞ otherwise.

⎧⎨

⎩ (7)

□
Theorem 3. F has a fixed point if M(GF) � +∞.

Proof. (Only if ) Suppose F has a fixed point. -en, there
exist some Cauchy sequence in TGF

(X). An example of such
a sequence is s � 〈x, x, . . .〉. For such s, we have
inf

i≠j∈N
d(wi, wj) � 0 and therefore, m(s) � +∞, which in turn

implies that M(GF) � +∞.
(If) We prove by contradiction. Suppose that M(GF) �

+∞ but F has no fixed points. -en, we claim that there are
no Cauchy sequences in TGF

(X). Indeed, suppose that s �

〈sk〉∞k�1 were some Cauchy sequence in TGF
(X), then for all

ϵ ∈ (0, 1), there would exist some N such that for all i, j>N,
d(si, sj)< ϵ . However, this would have implied that for some
kth (>N) term of the sequence, we would have sk � sk+1,
which would contradict the fact that F has no fixed points.
-erefore, all sequences of TGF

(X) are non-Cauchy.
Now, since M(GF) � +∞, there must exist some

s ∈ TGF
(X) such that m(s) � +∞. Hence, for such an s,

inf
i≠j∈N

d(wi, wj) � 0, which implies that there exist some edge e �

(x, y) in GF satisfying x � y. -en, we can construct Cauchy
sequence 〈x, x, . . .〉 ∈ TGF

(X), which leads to a contradiction.□
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-e above theorem reduces the fixed point problem to
the construction of an index on the digraph induced by the
mapping. -e index we construct gives a “measure” to each
walk in TGF

(X) and it is shown that a fixed point exists if and
only if this measure is infinite. Our result can also be seen as
a finite interpretation of the well-known Lefschetz fixed
point theorem [48] which uses an index that counts the loops
of the underlying topological space. (8 Fixed point indices
for mappings on topological spaces was invented by Lef-
schetz (1937).

We next show that a strengthening of-eorem 1 can also
be given as a characterization of fixed points for multivalued
maps. □

Theorem 4. F has a fixed point if GF has a Cauchy sequence.
*e proof is similar to the proof of *eorem 1.

-eorem 4 shows that as long as the digraph induced by
the mapping has a Cauchy sequence, the map has a fixed
point. We will show that -eorem 4 can be used in a
straightforward manner to prove the existence of Nash
equilibria in finite games.

Remark 1. -eorems 1–4 readily generalize to mappings
with countable domains as the assumption of finiteness was
not used in the proofs.

4. Characterizing Pure Strategy Nash
Equilibria in Finite Games

In this section, we apply the theorems obtained in the
previous section in the context of finite noncooperative
games. We denote a finite noncooperative game by triple

Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I), where the set of players is denoted by
I � 1, . . . , n{ } and Si the finite strategy space available to
player i. We also denote the set of all strategy profiles by S so
that each s ∈ S is an n-tuple, where S � 􏽑

n
i�1 Si. Finally,

payoffs are defined by the vector-valued function
u: S⟶ Rn

++.(9 Note that assuming strictly positive payoffs
for each player does not lead to any loss of generality). Our
aim will be to use the results obtained in the previous section
to derive a necessary and sufficient condition for the exis-
tence of a pure strategy Nash equilibrium (NE) in any
general finite game. As remarked by [2], the lack of the
topological structure of space S, which can be an abstract set,
hinders the usage of the powerful toolbox of functional
analysis for fixed point theorems.(10 For example, games like
the Prisoner’s Dilemma, -e Battle of Sexes, and the
Matching Pennies have abstract strategy spaces). Moreover,
since we want to be able to distinguish pure strategies NE
from mixed strategies NE, we cannot rely on the topological
structure of the mixed extension as is typically done in the
literature.

4.1. Fixed Points of the Unilateral Best Response
Correspondence. -e following definitions will be useful in
establishing our results. We define the best response map of
player i with respect to some strategy profile s by the
following:

BRi(s) � s
∗
i ∈ Si: ∀si ∈ Si, ui s

∗
i , s−i( 􏼁≥ ui si, s−i( 􏼁􏼈 􏼉. (8)

From BRi(s), we define the best response correspon-
dence of Γ by BR(s) ≡ 􏽑

n
i�1 BRi(s). We can then define a

unilateral best response correspondence UNBR: S↠S as
follows:

UNBR(s) �
s′ � si
′, s−i( 􏼁 ∈ S􏼈 􏼉 if si

′ ∈ BRi(s) and ui si
′, s−i( 􏼁> ui si, s−i( 􏼁 for some i,

s{ } otherwise.

⎧⎨

⎩ (9)

While it is well known that the game has a Nash
equilibrium if and only if the best response map BR has a
fixed point, it is straightforward to show that UNBR has a
fixed point if and only if the game has a Nash equilibrium.
Indeed, suppose that s is a NE. -en, there exists no i such
that ui(si

′, s−i)> ui(si, s−i) . -us, UNBR(s) � s{ } is a fixed
point. Next, suppose that UNBR(s) has a fixed point, say s.
-en, no (si

′, s−i) ∈ S satisfying ui(si
′, s−i)> ui(si, s−i) are in

UNBR(s). Hence, s ∈ UNBR(s) is a NE. (11 Our notion of
UNBR is in similar veins as the concepts of better (or best)
improvement paths studied by [30, 34]).

For game Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I), we define function
u: S⟶ R as follows:

u(s) � 􏽘
n

i�1
ui(s). (10)

We then say that game Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I) is a payoff
sum separable if u is a bijection from S into Range(u).

Since UNBR(s) is a correspondence from a finite set into
itself, we can define the directed graph GUNBR(s) as in the
previous section and we can let TGUNBR(s)

be the set of all
infinite walks of GUNBR(s). We then have the following
definition.

We say that payoff sum function u converges weakly if
for some sequence t � 〈sk〉k�1 in TGUNBR(s)

, sequence
〈u(sk〉k�1 converges to some point in Range(u).

-e next theorem achieves our objective of completely
characterizing pure strategy NE in finite games for the class
of payoff-sum separable games.

Theorem 6. Suppose that Γ is a payoff-sum separable. *en,
Γ has a pure strategy NE if u converges weakly.

Proof. (If) We show that if 〈u(sk〉k�1 converges to some u∗

in the range of u for some sequence t � 〈sk〉
∞
k�1 ∈ TGUNBR(s)

of
graph GUNBR(s), then UNBR(s) has a fixed point. Since
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〈u(sk〉k�1 converges to u∗, for every ϵ> 0, there exist integer
N such that for all m>N we have the following:

u s
m

( 􏼁 − u
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ϵ. (11)

Since u∗ is in the range of u, there exist some s∗ satisfying
u∗ � u(s∗). Let

ϵ �
mins,s′∈S, s≠ s′ u(s) − u s′( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

2
. (12)

Since the game is payoff-sum separable and finite, ϵ> 0.
-us, if |u(sm) − u∗(s∗)|< ε holds for all m>N along the
sequence, we must have sm � s∗ for all m>N since

u s
m

( 􏼁 − u
∗

s
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε< u s
m

( 􏼁 − u s″( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 for all s″ ≠ s
∗
. (13)

-erefore, t is a Cauchy sequence and by -eorem 4,
UNBR(s) has a fixed point. Hence, Γ has a NE.

(Only If) Suppose that Γ has a NE, say s∗. -en, some
Cauchy sequence t � 〈sk〉

∞
k�1 � 〈s∗, s∗, . . .〉 ∈ TGUNBR(s)

ex-
ists. Along this sequence, the payoff sum function sequence
〈u(sk〉k�1 converges to. u(s∗).□

While -eorem 6 gives us a characterization of NE, it is
restricted to the class of payoff sum separable games. We
next show that the result can be generalized to all finite
games. For that, we need the following definitions.

We say that Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I) and
Γ′ � (I, Si􏼈 􏼉i∈I, ui

′􏼈 􏼉i∈I) are argmax payoff equivalent to if the
following condition holds:

For every i and s−i, si ∈ BRi s−i( 􏼁 in Γ⇔ si ∈ BRi
′ s−i( 􏼁 in Γ′ (14)

It is to be noted that the only difference between Γ and Γ′
is the payoff function. An important implication of this
definition is that finding a NE in Γ is equivalent to finding a
NE in Γ′. -e next theorem shows that every finite game has
an argmax payoff equivalent game that is payoff
separable. □

Theorem 7. Let Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I) be a finite game.*en,
Γ has an argmax payoff equivalent game
Γ′ � (I, Si􏼈 􏼉i∈I, ui

′􏼈 􏼉i∈I) that is payoff separable.

Proof. For a given Γ, we construct an argmax payoff
equivalent sum separable game Γ′ � (I, Si􏼈 􏼉i∈I, ui

′􏼈 􏼉i∈I) by
modifying the payoff of some player in Γ each time a pair of
profiles yield the same payoff sum. -e construction is as
follows.

(i) Step 1: Fix S1 for player 1 and enumerate S−1 by
s

p
−1􏽮 􏽯

M

p�1
. For each p, consider set S1 × s

p
−1􏽮 􏽯.(Note

that (Tex translation failed)). For each p and every
pair s1, s1′ ∉ BR1(s

p
−1), if u(s1, s

p
−1) � u(s1′, s

p
−1),

profiles (s1, s
p
−1), and (s1′, s

p
−1) can be made payoff

sum separable by modifying the payoffs of player 1
so that u′(s1, s

p
−1)≠ u′(s1′, s

p
−1) in Γ′. -us, by the

finiteness of the strategy space, for each p, we can
make for all pairs s1, s1′ ∉ BR1(s

p
−1) satisfy

u′(s1, s
p
−1)≠ u′(s1′, s

p
−1) in Γ′. Since pair

s1, s1′ ∉ BR1(s
p
−1), Γ remains equivalent to Γ′.

(ii) Step 2: For p, q ∈ 1, . . . , M{ } and s1 satisfying
s1 ∉ BR1(s

p
−1), s1 ∉ BR1(s

q
−1), if

u(s1, s
p
−1) � u(s1, s

q
−1), profiles (s1, s

p
−1), and (s1, s

q
−1)

can be made payoff sum separable by modifying the
payoffs of player 1 so that u′(s1, s

p
−1)≠ u′(s1, s

q
−1) in

Γ′. -us, by the finiteness of the strategy space, for
each p, q ∈ 1, . . . , M{ } satisfying s1 ∉ BR1(s

p
−1),

s1 ∉ BR1(s
q
−1), we can make u′(s1, s

p
−1)≠ u′(s1, s

q
−1)

in Γ′. Moreover, by finiteness again, we can ensure
that these payoff sum are distinguished from those
modified in step 1. Hence, since s1 ∉ BR1(s

p
−1) and

s1 ∉ BR1(s
q
−1), Γ remains equivalent to Γ′. (12 -e

same step can be repeated for p, q ∈ 1, . . . , M{ } and
s1, s1′ satisfying s1 ∈ BR1(s

p
−1), s1′ ∉ BR1(s

q
−1), if

u(s1, s
p
−1) � u(s1′, s

q
−1)).

(iii) Step 3: For p, q ∈ 1, . . . , M{ } satisfying
s1 ∈ BR1(s

p
−1), s1 ∈ BR1(s

q
−1), if u(s1, s

p
−1) �

u(s1, s
q
−1), profiles (s1, s

p
−1), and (s1, s

q
−1) can be

made payoff sum separable bymodifying the payoffs
of player 1 so that u′(s1, s

p
−1)≠ u′(s1, s

q
−1) in Γ′.

Furthermore, for all s1′ ≠ s1 ∈ BR1(s
p
−1), the payoff

sum of (s1′, s
p
−1) will be subject to the same modi-

fication of player 1’s payoff as that of (s1, s
p
−1) so that

Γ′ remains equivalent to Γ. -us, by the finiteness of
the strategy space, for each p, q ∈ 1, . . . , M{ } and s1
satisfying s1 ∈ BR1(s

p
−1) and s1 ∈ BR1(s

q
−1), we can

make u′(s1, s
p
−1)≠ u′(s1, s

q
−1) in Γ′. Moreover, by

finiteness again, we can ensure that these payoffs
sum are distinguished from those modified in steps
1 and 2. Hence, Γ remains equivalent to Γ′. (13 -e
same step can be repeated for p , q ∈ 1, . . . , M{ } and
s1, s1′ satisfying s1 ∈ BR1(s

p
−1), s1′ ∈ BR1(s

q
−1), if

u(s1, s
p
−1) � u(s1′, s

q
−1).

(iv) Step 4: For each p and every pair s1, s1′ ∈ BR1(s
p
−1), if

u(s1, s
p
−1) � u(s1′, s

p
−1), profiles (s1, s

p
−1), and (s1′, s

p
−1)

can be made payoff sum separable by modifying the
payoffs of player 2 so that u′(s1, s

p
−1)≠ u′(s1′, s

p
−1) in

Γ′. Furthermore, for profile s∗ � (s1, s2, s
p
−1,−2) if

s2 ∈ BR1(s∗−2), then the same modification will need
to be made to all other s2′ ∈ BR1(s∗−2) so that Γ
remains equivalent to Γ′. Moreover, by finiteness
again, we can ensure that these payoffs sum are
distinguished from those modified in steps 1, 2, and
3. -us, by the finiteness of the strategy space, for
each p we can make for all pairs s1, s1′ ∈ BR1(s

p
−1)

satisfy u′(s1, s
p
−1)≠ u′(s1′, s

p
−1) in Γ′. Hence, Γ re-

mains equivalent to Γ′.
(v) Step 5: If needed, repeat steps 1–4 until Γ′ is payoff

sum separable. By the finiteness of the strategy
space, Γ′ can be made payoff sum separable in a
finite number of steps. □

Theorem 8. Let Γ � (I, Si􏼈 􏼉i∈I, ui􏼈 􏼉i∈I) be a finite game.
*en, Γ has a Nash equilibrium if it has an argmax
payoff equivalent game Γ′ � (I, Si􏼈 􏼉i∈I, ui

′􏼈 􏼉i∈I) which
satisfies (i) payoff sum separability and (ii) u′ converges
weakly.
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Proof. -e proof follows from -eorems 6 and 7. □
-eorem 8 is the most general existence result for finite

games in the literature as it does not impose any topological
structure on S and it completely characterizes NE for the
original class of games studied by Nash. From-eorem 7, we
know that condition (i) is met for all finite games. Condition
(ii) is the minimum requirement on the payoff function
along some sequence of UNBR(s) needed for a pure strategy
NE to exist. □

4.2. Remark on the Complexity of the Pure Strategy NE
Problem. While the literature often argues that since every
finite game has an NE (in either pure or mixed strategies),
one cannot use the concept of NP-completeness in assessing
the complexity of the problem of finding an NE in finite
games (see [49,50] for instance). (14 It is also known that the
symmetric case of finding an NE is as hard as the general
one). -e appropriate notion of complexity used for this
class of problems is the polynomial parity argument (di-
rected case) (PPAD).-e Lemke–Howson algorithm (due to
[51]) is a well-known example of the PPAD class which uses
a graph theoretical approach (directed paths on polytopes)
to compute the NE. However, the Lemke–Howson algo-
rithm is not an efficient algorithm as the number of vertices
in the graph can be exponentially large (see[50,55]). When
the class of NE is restricted to pure strategies, then the
authors of [30, 34] show that games that satisfy certain
properties (for example, UC games with more than two
players) are weakly acyclic. -en, the pure strategy NE of
such games are computable in polynomial time (P). In
similar veins, our fixed point result given in -eorem 1
(when applied to finite games) is computable in
P. Unfortunately, the more general results given in -eo-
rems 3, 4, and 6 are not computable in P as they involve
checking walks of the graph that can be exponentially long.

5. Applications

In this section, we apply the results obtained in the previous
sections to some widely studied classes of games like po-
tential games (Monderer and Shapley (1996) [31]), super-
modular games (Topkis (1998) [40] and Vives (1990) [41])
and satisfaction form games (Debreu (1952) [42]). We will
show that the existence of equilibrium results of potential
games and supermodular games are special cases of-eorem
8.

5.1. Potential Games. Monderer and Shapley (1996) [31]
showed that if there exist some function Q: S⟶ R such
that

∀i, s−i ∈ S−i ,

∀si, si
′ ∈ Si, ui si

′, s−i( 􏼁 − ui si, s−i( 􏼁> 0,
(15)

⇔Q si
′, s−i( 􏼁 − Q si, s−i( 􏼁> 0. (16)

-en, the game is a potential game and has a pure strategy
NE. Note that the above condition implies that if ui(si

′, s−i) −

ui(si, s−i)> 0 for some i, then the inequality holds for all i.
We now show that if a game is payoff sum separable and has
potential, then the hypothesis of -eorem 6 is satisfied.

Theorem 9. Let Γ � (I, X, Y{ }, ui􏼈 􏼉i∈I) be a payoff sum
separable potential game. *en, it has a Nash equilibrium.

Proof. Suppose that the game is potential, that is, in-
equalities (15) and (16) imply that u is always increasing
along any sequence of UNBR(s). By the finiteness of the
strategy space and payoff sum separability, u converges
weakly and therefore by -eorem 6, the game has a Nash
equilibrium. □

While the above result is given in terms of a payoff
separable game, a theorem analogous to -eorem 8 can be
given to show that if any game satisfies the potential game
condition, then there exist some argmax payoff equivalent
payoff sum separable potential game Γ′ such that inequalities
(15) and (16) are preserved and such that u′ converges
weakly. □

5.2. Supermodular Games. It is well known that super-
modular games (see (Topkis (1998) [40] and Vives (1990)
[41])) have the NE property due to the results by Tokpis and
Tarski. We will construct a simple proof of this theorem for
finite games using-eorem 4. For the sake of illustration, we
will restrict the analysis to the case of two players and thus,
we assume that Γ � (I, X, Y{ }, ui􏼈 􏼉i∈I) is a supermodular
game, where I � 1, 2{ }, X (Y) is an ordered lattice strategy
space of player 1 (2) and such that the following increasing
differences condition is satisfied by ui for each i. For all
x′ ≥x and y′ ≥y, we have the following:

ui x′, y′( 􏼁 − ui x, y′( 􏼁≥ ui x′, y( 􏼁 − ui(x, y). (17)

We will also make use of the following result due to
Topkis.

If ui is supermodular in (x, y), and X and Y are lattices,
then x∗(y) ≡ Argmaxx∈Xu1(x, y) is increasing in y and
y∗(x) � Argmaxy∈Yu2(x, y) is increasing in x.

Theorem 10. Let Γ � (I, X, Y{ }, ui􏼈 􏼉i∈I) be a payoff sum
separable supermodular game. *en, Γ has a Nash
equilibrium.

Proof. We prove by contradiction by supposing that the
game is payoff sum separable and supermodular but does
not have a NE. Consider some profile (x0, y0) so that both x0
and y0 are the minimum (in the lattice ordering) of X and Y

respectively. Since (x0, y0) is not NE, without any loss of
generality, we can assume that u1(x1, y0) − u1(x0, y0)> 0
for some x1 ∈ BR1((x0, y0)), satisfying x1 > x0. Now, either
(x1, y0) is a NE, or by Topkis theorem, there exist some
y1 >y0 such that y1 ∈ BR2((x1, y0)) satisfying
u2(x1, y1) − u2(x1, y0)> 0. (Note that at (x1, y0), there is no
profitable deviation from player 1 and hence, the only de-
viation can come from player 2.) But since
(x1, y1)≫ (x0, y0), either (x1, y1) is a NE or there exist
some unilateral deviation that leads to some profile
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(x2, y2)≫ (x1, y1). By repeating the latter argument, one
can construct sequence 〈(xi, yi)〉i�1 satisfying
(xi+1, yi+1)≫ (xi, yi). By the ordering of the lattice, since
either xi or yi is strictly increasing along 〈(xi, yi)〉i�1, one
can construct some s ∈ TGUNBR(s)

that does not have any finite
cyclic subsequence. -en, on the one hand, s must be
eventually Cauchy as it does not have any finite cyclic
subsequence and on the other hand by payoff sum sepa-
rability and since the game has no NE, -eorems 6 and 4
imply that GUNBR(s) has no Cauchy sequences, a contra-
diction. □

While the above result is given in terms of a payoff
separable game, a theorem analogous to -eorem 8 can be
given to show that if any game satisfies the supermodularity
condition, then there exists some argmax payoff equivalent
supermodular game which preserves inequality (17) and
satisfies the condition of -eorem 4 so that it has a NE. □

5.3. Games in a Satisfaction Form. Our fixed point theorem
readily applies to games in satisfaction form as it can es-
tablish the existence of a satisfaction equilibrium (SE) when
the set of actions of each player is finite. -e concept of SE
was first introduced by Debreu (1952 [42]) and developed
further recently by [42–44, 46] to study the learning behavior
of players in games where players can only observe their own
payoffs. An SE is an equilibrium in the sense that a player
who is satisfied with her payoff has no incentives to deviate
from her current action. It is well-known that in the context
of electrical engineering (15 for the analysis of quality of
service (QoS) in wireless ad hoc networks), SE has proved to
be particularly useful. For example, the “players” of the game
are often described by radio devices (network components)
which can choose among different possible operating con-
figurations with the objective of satisfying some targeted
QoS. (16 more recently, SE was used in the fifth generation of
cellular communications (5G) for tackling the problem of
energy efficiency, spectrum sharing, and transmitting power
control (see [44,45]).

More formally, a game in satisfaction form is given by
the triple Λ � (I, Si􏼈 􏼉i∈I, fi􏼈 􏼉i∈I), where I is a finite set of n

players, each player i has a finite set of actions denoted by Si

and preference mapping fi given by the following
correspondence.

fi: S1 × . . . Si−1 × Si+1 × . . . Sn⟶ 2Si . (18)

As usual, we denote by S � 􏽑
n
i�1 Si the set of strategy

profiles of the game. We say that s∗ ∈ S is a satisfaction
equilibrium (SE) if s∗i ∈ fi for all i. We show that -eorems
1, 3, and 4 can be used to prove the existence of an SE in Λ.
For that, we define mapping gi: S⟶ 2Si which extends fi

to S as follows. For each s ∈ S, let gi(si, s−i) � fi(s−i) and let
g: S⟶ 2S be a correspondence satisfying
g(s) ≡ 􏽑

n
i�1 gi(s). -en, it is clear that correspondence g

has a fixed point if Λ � (I, Si􏼈 􏼉i∈I, fi􏼈 􏼉i∈I) has an SE. (17
Indeed, suppose that s∗ is an SE of Λ. -en, for each i,
s∗i ∈ fi(s−i) � gi(si, s−i). -us, s∗ ∈ 􏽑

n
i�1 gi(s∗) ≡ g(s∗)

and hence, it is a fixed point of g. Conversely, suppose that s∗

is a fixed point of g. -en, for each i, we have s∗i ∈ gi(s∗) �

fi(s∗−i) and hence, it is an SE). -e following results follow
from -eorems 1, 3, and 4.

(i) If Gg is a closed graph, then Λ has an SE.
(ii) Λ has an SE if M(Gg) � +∞.
(iii) Λ has an SE if Gg has a Cauchy sequence.

6. Conclusion

We have shown that the original problem of existence of an
equilibrium in finite games can be fully characterized
without the need to extend the strategy space to mixed
strategies. We proceeded by generalizing Abian’s theorem
for correspondences and applying it in the context of finite
games. Our result sharpens the celebrated Nash theorem as it
can filter out the exact class of games that have pure strategy
NE from the class of finite games (for which a NE in mixed
strategies always exists). We also show that the existence of
equilibrium points problem studied in supermodular games,
potential games, and games in satisfaction form follow as
special cases of our theorem for the finite case.
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