
Retraction
Retracted: Classical and Bayesian Inference of Marshall-Olkin
Extended Gompertz Makeham Model with Modeling of
Physics Data

Journal of Mathematics

Received 10 October 2023; Accepted 10 October 2023; Published 11 October 2023

Copyright © 2023 Journal of Mathematics. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] R. A. H. Mohamed, A. A. Al-Babtain, I. Elbatal,
E. M. Almetwally, and H. M. Almongy, “Classical and Bayesian
Inference of Marshall-Olkin Extended Gompertz Makeham
Model withModeling of Physics Data,” Journal ofMathematics,
vol. 2022, Article ID 2528583, 14 pages, 2022.

Hindawi
Journal of Mathematics
Volume 2023, Article ID 9878505, 1 page
https://doi.org/10.1155/2023/9878505

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9878505


RE
TR
AC
TE
DResearch Article

Classical and Bayesian Inference of Marshall-Olkin Extended
Gompertz Makeham Model with Modeling of Physics Data

Rania A. H. Mohamed,1 Abdulhakim A. Al-Babtain ,2 I. Elbatal ,3

Ehab M. Almetwally ,4,5 and Hisham M. Almongy 6

1Department of Statistics Mathematics and Insurance, Faculty of Commerce, Port Said University, Port Fuad 42526, Egypt
2Department of Statistics and Operations Research, King Saud University, Riyadh 11362, Saudi Arabia
3Department of Mathematics and Statistics-College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11362, Saudi Arabia
4Department of Statistics, Faculty of Business Administration, Delta University of Science and Technology, Gamasa 11152, Egypt
5/e Scientific Association for Studies and Applied Research, Al Manzalah, Egypt
6Department of Applied Statistics and Insurance, Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to Ehab M. Almetwally; ehabxp_2009@hotmail.com

Received 20 April 2022; Revised 21 May 2022; Accepted 25 May 2022; Published 5 July 2022

Academic Editor: Naeem Jan

Copyright © 2022 Rania A. H. Mohamed et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e purpose of this study is to present the Marshall- Olkin extended Gompertz Makeham (MOEGM) lifetime distribution, which
has four parameters. As a result, we will describe some of the structural elements that are introduced for this model.)emaximum
likelihood approach is used to estimate the model parameters, and it is well known that likelihood estimators for unknown
parameters are not always available. As a result, we examine the prior distributions, which allow for prior dependence among the
components of the parameter vector, as well as the Bayesian estimators derived with respect to the squared error loss function. A
Monte Carlo simulation research is carried out to examine the performance of the likelihood estimators and the Bayesian
technique. Finally, we demonstrate the significance of the new model. And to conclude, we illustrate the importance of the new
model by exploring some of the empirical applications of physics to show it’s flexibility and potentiality of a new model.

1. Introduction

Gompertz distribution has been obtained by Gompertz [1].
It is critical in the analysis of survival periods in several areas,
including marketing, gerontology, biology, and computer
science. It was used to characterize human mortality, de-
velop growth models, and create actuarial tables. )e
Gompertz distribution’s hazard rate function (hrf) is an
increasing function used by actuaries and demographers to
characterize the distribution of adult life lengths. Makeham
[2] looked at the Gompertz distribution’s fit to actuarial data
and found that bymodifying it, he could enhance the fit.)is
change is now known as the Gompertz- Makeham (GM)

distribution. )e Gompertz - Makeham (GM) distribution
studied by Bailey et al. [3]. )e GM distribution has been

frequently utilised in actuarial tables and growth models to
describe human mortality.

Missov and Lenart [4] discovered closed-form solutions
to the life-expectancy integral in homogeneous and gamma-
heterogeneous populations, as well as in the presence or
absence of the Makeham factor. Chukwu and Ogunde [5]
introduced Kumaraswamy Gompertz-Makeham, a five-pa-
rameter generalized version of the GM with decreasing,
rising, and bathtub-shaped failure rate functions. For the
GM model, Wrycza [6] developed a straightforward for-
mulation of life table entropy.

)e cumulative distribution function (c.d.f.) of the
Gompertz- Makeham (GM) distribution is given by

GGM(x, θ, α, λ) � 1 − e
− θx− (α/λ) eλx− 1( ), x> 0, (1)
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where λ> 0 is a scale parameter, θ> 0 and α> 0 are shape
parameters.)e corresponding probability density function
(p.d.f ) and hrf are given by

gGM(x, θ, α, λ) � αe
λx

+ θ e
− θx− (α/λ) eλx− 1( ),

hGM(x, θ, α, λ) �
gGM(x, θ, α, λ)

GGM(x, θ, α, λ)

� αe
λx

+ θ,

(2)

respectively.
)ere has lately been a resurgence of interest in devel-

oping innovative generators for univariate continuous dis-
tributions by introducing one or more additional shape
factors into the baseline model. )is parameter induction
has been demonstrated to be useful in analyzing tail char-
acteristics and increasing the goodness-of-fit of the rec-
ommended generator family. )ese asymmetric
distributions were formed by adding new parameters to a
baseline c.d.f., resulting in a new family of more analytically
flexible asymmetric distributions. In the statistical literature,
several classes have been proposed for constructing new
distributions by adding one or more parameters. )e beta-G
by Eugene et al. [7], Kumaraswamy-G by Cordeiro and de
Castro [8], new extended cosine-G distributions by
Muhammad et al. [9], new truncated muth generated family
by Almarashi et al. [10], odd Perks-G class by Elbatal et al.
[11], and the Zografos-Balakrishnan-G family by Nadarajah
et al. [12] are just a few examples of well-known generators.

Marshall and Olkin [13] suggested a general approach
for adding a new positive shape parameter to a baseline
distribution, resulting in the Marshall-Olkin family of dis-
tributions (abbreviated as “MO” for short). )e baseline
distribution is included in this family as a fundamental
instance, and some distributions have more flexibility for
representing diverse types of data. )e proportional odds
family with tilt parameter are other names for theMO family
of distributions (Marshall and Olkin [14]). )eMarshall and
Olkin family’s c.d.f. is defined as:

F(x, c) �
G(x)

1 − cG(x)
, x> 0, c> 0. (3)

)e survival function F(x, c) is given by

F(x, c) �
cG(x)

1 − cG(x)
, (4)

where c � (1 − c), for c � 1, we get the baseline distribution,
i.e., F(x) � G(x), where the shape parameter c is called tilt
parameter, since the hazard rate function h(x; c) of the
transformed distribution is shifted below when c≥ 1 or
shifted below when 0< c≤ 1 from the baseline hazard rate
function hG(x). In fact, h(x; c)≤ hG(x) when c≥ 1 and
h(x; c)≥ hG(x) when 0< c≤ 1. )e corresponding p.d.f
becomes

f(x, c) �
cg(x)

[1 − cG(x)]
2, (5)

the hrf is given by

h(x, c) �
f(x, c)

F(x, c)
�

cg(x)

G(x)[1 − cG(x)]
. (6)

In recent years, several authors have used this method to
extend well-known distributions. A few examples include
Ghitany et al. [15] presented censored scheme of MO ex-
tended Weibull distribution, Jayakumar and Mathew [16]
introduced on a generalization to MO with application of
Burr type XII distribution, Pérez-Casany and Casellas [17]
presentedMO extended Zipf Distribution, Krishna et al. [18]
proposed the MO Fréchet distribution, Gui [19] introduced
the MO power log - normal distribution and and its ap-
plications to survival data, Idika et al. [20] introduced the
MO generalized Erlange - truncated exponential distribu-
tion, MirMostafaee et al. [21] represented the MO extended
generalized Rayleigh distribution, among others. )e aim of
this paper is to propose a new class of lifetime distributions
called “)e MO extended Gompertz-Makeham” distribu-
tion, as referred to as (MOEGM).

In this paper, the Marshall- Olkin extended Gompertz
Makeham (MOEGM) lifetime distribution has been pre-
sented, which has four parameters. As a result, we will
describe some of the structural properties that are intro-
duced for this model. )e maximum likelihood approach is
used to estimate the model parameters, and it is well known
that likelihood estimators for unknown parameters are not
always available. As a result, we examine the prior distri-
butions, which allow for prior dependence among the
components of the parameter vector, as well as the Bayesian
estimators derived with respect to the squared error loss
function. A Monte Carlo simulation and two real data sets
are carried out to examine the performance of the model and
likelihood estimators and the Bayesian technique.

)e rest of the paper is organized as follows: )e
Marshall-Olkin extended Gompertz Makeham distribution
and its technique are defined in Section 2. Section 3 in-
troduces and investigates numerous structural characteris-
tics properties of the MOEGM distribution. Section 4 shows
the likelihood estimates for the unknown parameters. Sec-
tion 5 shows the Bayesian estimates of the unknown pa-
rameters. Simulation results are carried out in Section 6.
Section 7 depicts two real-world data applications. Finally,
we demonstrate the significance of this study’s closing
remarks.

2. The MOEGM Model

In this section, we introduce the four parameter Marshall-
Olkin extended Gompertz-Makeham (MOEGM) distribu-
tion. Using equations (1), (3) and (4) shown in the previous
section, the c.d.f. and survival function can be written as
follows,
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F(x; θ, α, λ, c) �
G(x)

1 − cG(x)
�
1 − e

− θx− (α/λ) eλx− 1( )

1 − ce
− θx− (α/λ) eλx− 1( )

,

F(x, θ, α, λ, c) �
G(x)

1 − cG(x)
�

e
− θx− (α/λ) eλx− 1( )

1 − ce
− θx− (α/λ) eλx− 1( )

,

(7)

respectevely. )e corresponding p.d.f given by

f(x; θ, α, λ, c) �
c αe

λx
+ θ e

− θx− (α/λ) eλx− 1( )

1 − ce
− θx− (α/λ) eλx− 1( ) 

2 . (8)

Henceforth, Let X ∼ MOEGM(φ), having p.d.f. (8)
where φ � (θ, α, λ, c). Figure 1 display some plots of the
p.d.f. of MOEGM model for some different parameter
values.

)e failure (hazard) rate function in event time analysis
quantifies the current likelihood of failure for the population
that has not yet failed. )e hrf is essential when dealing with
lifetime data in reliability analysis, survival analysis, and
demography, as well as when building and creating models.
)e hrf for the Marshall-Olkin extended Gompertz-Make-
ham distribution is as follows in Figure 2. Figure 2 display
some plots of the hrf of MOEGM model for some different
parameter values.

h(x, φ) �
f(x;φ)

F(x; φ)
�

c αe
λx

+ θ 

1 − ce
− θx− (α/λ) eλx− 1( )

. (9)

2.1. Expansion of p.d.f. In this subsection, we present the
expansion of the MOEGM density function in terms of an
infinite linear combination of Gompertz-Makeham distri-
bution. using the power series expansion

(1 − z)
− n

� 
∞

i�0

Γ(n + i)

Γ(n)i!
z

i
, n> 0, |z|< 1. (10)

We get

1 − ce
− θx− (α/λ) eλx− 1( ) 

− 2
� 
∞

i�0
(i + 1)c

i
e

− i θx+(α/λ) eλx− 1( )[ ],

(11)

substituting equation (11) into equation (8), we get

f(x;φ) � c 
∞

i�0
(i + 1)c

i αe
λx

+ θ e
− (i+1) θx+(α/λ) eλx− 1( )[ ].

(12)

Using the series expansion of e− (i+1)eλx as follows

e
− (i+1)(α/λ)eλx

� 
∞

j�0

(− 1)
j
(i + 1)

j
(α/λ)

j

j!
e
λjx

, (13)

thus after some algebra (12) can be written as

f(x; φ) � 
∞

k�0
δk α(j + 1)

k
+ θj

k
 x

k
e

− (i+1)θx
, (14)

where

δk � 

∞

i,j�0

c(i + 1)
j+1

(− 1)
j+k

c
i
e

(i+1)(α/λ)
(α/λ)

jλk

j!k!
. (15)

3. Statistical Features

3.1. Quantile Function. For a random variable X has c.d.f. of
Marshall- Olkin power generalized Weibull distribution, the
quantile function Q(p) is given by the relation

θxp +
α
λ

e
λxp − 1  + log

1 − p

1 − pc
  � 0, p ∈ (0, 1). (16)

By equation (16), in addition to using the qf to obtain the
Bowley’s skewness and the Moors’ kurtosis, is highly useful
for generating MOEGM random variate and can be simply
applied. Bowley’s skewness is based on quartiles, as de-
scribed by Kenney and Keeping [22], it’s given by

BS �
Q(3/4) − 2Q(2/4) + Q(1/4)

Q(3/4) − Q(1/4)
, (17)

and the Moor’s kurtosis, see Moors [23], is given by

Mk �
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
, (18)

where Q(·) is the quantile function given by equation (16).

3.2.Moments. )e rth moment of the MOEGM distribution
is discussed in this subsection. In any statistical analysis,
especially in applications, moments are crucial and im-
portant. It can be used to investigate a distribution’s most
essential properties and qualities (e.g., tendency, dispersion,
skewness and kurtosis).

3.3./eoremQuantile Function. If X has X ∼ MOEGM(φ),
where φ � (θ, α, λ, c) then the rth moment of X is given by

μr
′(x) � 

∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(r + k + 1)

[(i + 1)θ]
r+k+1. (19)

Proof. Let X be a random variable with the distribution
MOEGM. )e well-known formula can be used to calculate
the rth ordinary moment.

μr
′(x) � 

∞

0
x

r
f(x, φ)dx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
  

∞

0
x

r+k
e

− (i+1)θxdx,

(20)

setting y � (i + 1)θx, after some algebra, the rth ordinary
moment can be written as

Journal of Mathematics 3
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μr
′(x) � 

∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(r + k + 1)

[(i + 1)θ]
r+k+1, (21)

where Γ(n) � 
∞
0 xn− 1e− xdx denotes the gamma

function. □

3.4. Moment Generating Function. Moment generating
functions are helpful for a variety of reasons, one of which
being their usage in sums of random variables analysis.
When compared to working directly with the probability
function or c.d.f. of a random variable, it provides the
foundation for an alternative approach to analytic solutions.

Theorem 1. If X has the MOEGM(θ, α, λ, c), then the the
moment generating function (mgf) of X is given as follows

MX(t) � 
∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(k + 1)

[θ(i + 1) − t]
k+1. (22)

Proof. We begin with the well-known simplification of the
moment generating function, which is as follows:

MX(t) � E e
tX

 

� 
∞

0
e

tx
f(x)dx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
  

∞

0
x

k
e

− [(i+1)θ− t]xdx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(k + 1)

[θ(i + 1) − t]
k+1,

(23)

which completes the proof. □

3.5. Conditional Moments. )e sth lower incomplete mo-
ment of MOEGM distribution is

ηs(t) � 
t

0
x

s
f(x)dx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
  

t

0
x

s+k
e

− (i+1)θxdx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
 

c(s + k + 1, θ(i + 1)t)

[θ(i + 1)]
s+k+1 ,

(24)

where c(s, t) � 
t

0 xs− 1e− xdx is the lower incomplete
gamma function. )e first incomplete moment of X,
denoted by, η1(t), is computed using equation (24) by
setting s� 1 as

η1(t) � 
∞

k�0
δk α(j + 1)

k
+ θk

j 
c(k + 2, θ(i + 1)t)

[θ(i + 1)]
k+2 . (25)

Similarly, the sth upper incomplete moment of MOEGM
distribution is

ξs(t) � 
∞

t
x

s
f(x)dx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
  

∞

t
x

s+k
e

− (i+1)θxdx

� 
∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(s + k + 1, θ(i + 1)t)

[θ(i + 1)]
s+k+1 ,

(26)

where Γ(s, t) � 
∞
t

xs− 1e− xdx is the upper incomplete
gamma function.

)e mean residual lifespan (MRL) has a diverse set of
uses and applications see Lai and Xie [24]. )e expected
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Figure 1: )e p.d.f. plot for the MOEGM model.
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Figure 2: )e hrf plot for the MOEGM model.
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extended life length for a unit alive at age t is represented by
the MRL (or life expectancy at age t). )e MRL is given by

μ(t) � E(X|X> t) �
ξ1(t)

F(t)
− t, (27)

where ξ1(t) is the first incomplete moment of X and by
setting s � 1 in equation (26), we get

μ(t) �
1

F(t)


∞

k�0
δk α(j + 1)

k
+ θj

k
 

Γ(k + 2, θ(i + 1)t)

[θ(i + 1)]
k+2 − t.

(28)

In addition, the mean inactivity time (MIT) shows the
amount of time that has passed after an item has failed,
assuming that the failure happened in (0; t). For t> 0, the
MIT of X is defined by

τ(t) � E(X|X< t) � t −
η1(t)

F(t)

� t −
1

F(t)


∞

k�0
δk α(j + 1)

k
+ θj

k
 

c(k + 2, θ(i + 1)t)

[θ(i + 1)]
k+2 .

(29)

4. Estimation and Inference

Only full samples are used to calculate the maximum
likelihood estimates (MLEs) of the parameters of the
MOEGM distribution in this section. Let X1, . . . , Xn be a
random sample of size n from MOEGM(φ) where
φ � (θ, α, λ, c). Let φ � (θ, α, λ, c)T be the parameter vector.
)e log-likelihood function for the vector of parameters φ �

(θ, α, λ, c) can be written as

log L(φ) � n log(c) + 
n

i�1
log αe

λxi + θ  − θ
n

i�1
xi −

α
λ



n

i�1
log e

λxi − 1 

− 2
n

i�1
log 1 − ce

− θxi− (α/λ) eλxi − 1( ) .

(30)

)e following is the associated score function:

Un(φ) �
zL(φ)

zθ
,
zL(φ)

zα
,
zL(φ)

zλ
,
zL(φ)

zc
 

T

. (31)

Either directly or by solving the nonlinear likelihood
equations derived by differentiating equation (30), the log-
likelihood can be maximized.)e score vector’s components
of likelihood are as follows:

z log L(φ)

zθ
� 

n

i�1

1
αe

λxi + θ
− 

n

i�1
xi − 2

n

i�1

cxie
− θxi − (α/λ) eλxi − 1( )

1 − ce
− θxi − (α/λ) eλxi − 1( )

,

z log L(φ)

zα
� 

n

i�1

e
λxi

αe
λxi + θ

−
1
λ



n

i�1
log e

λxi − 1  −
2
λ



n

i�1

ce
− θxi − (α/λ) eλxi − 1( ) e

λxi − 1 

1 − ce
− θxi − (α/λ) eλxi − 1( )

,

z log L(φ)

zλ
� 

n

i�1

αxie
λxi

αe
λxi + θ

− α
n

i�1

xie
λxi

λ
−

e
λxi − 1
λ2

 

+
2α
λ2



n

i�1

ce
− θxi − (α/λ) eλxi − 1( ) λxie

λxi − e
λxi + 1 

1 − ce
− θxi − (α/λ) eλxi − 1( )

,

z log L(φ)

zc
�

n

c
− 2

n

i�1

e
− θxi − (α/λ) eλxi − 1( )

1 − ce
− θxi − (α/λ) eλxi − 1( )

.

(32)

)e maximum likelihood estimation (MLE) of φ, say φ,
is obtained by solving the nonlinear system Un(φ) � 0.

5. Bayesian Estimation

)e Bayesian technique deals with the parameters because
random and parameter uncertainties are represented by a
previous joint distribution that was formed before the failure
data was collected. )e flexibility of the Bayesian technique
to incorporate past knowledge into research makes it par-
ticularly useful in the study of reliability, as one of the major
challenges with reliability analysis is a lack of data. Prior

gamma distributions are used in the θ, λ, α and c parameters
of the MOEGM distribution, where θ, λ, α, and c are non-
negative values. As separate joint prior density functions, the
θ, λ, α, and c parameters as follows:

 (θ, λ, α, c)∝ θq1− 1λq2− 1αq3− 1
c

q4− 1
e

− w1θ+w2λ+w3α+w4c( ).

(33)

)e likelihood function of the MOEGM distribution and
joint prior density (30) are used to produce the joint pos-
terior density function of θ, λ, α, and c.

Journal of Mathematics 5
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π θ, λ, α, c| x(  �
L x |θ, λ, α, c(   (θ, λ, α, c)

θλα
c
L x |θ, λ, α, c(  (θ, λ, α, c)dθdλdαdc

,

∝L x |θ, λ, α, c(   (θ, λ, α, c), ∝ θq1− 1λq2− 1αq3− 1
c

n+q4− 1
e

− θ w1+
n

i�1
xi − α w3+ 

n

i�1
eλxi − 1( )/λ  

×



n

i�1

e
− w4c αe

− λ w2− xi( ) + θe
− w2λ 

1 − ce
− θxi− α/λ eλxi − 1( ) 

2 .

(34)

)e majority of Bayesian inference algorithms are based
on symmetric loss functions. A prominent symmetric loss
function is the squared-error loss function (SELF). )e
Bayesian estimators of θ, λ, α, and c, say (θB, λB, αB, cB)

based on SELF.
θ � E θ | α, λ, c, x( ,

λ � E λ | α, θ, c, x( ,

α � E α | θ, λ, c, x( ,

c � E c | θ, λ, α, x( .

(35)

It should be noted that the integrals supplied by equation
(35) cannot be deduced clearly. As a result, we use Markov-
Chain-Monte-Carlo (MCMC) to approximate the value of
expectations in equation (35).

An observation was made that the integrals are given by
equation (35) are not possible to derive explicitly. As a result,
we employ the MCMC technique to approximate the value
of integrals in equation (35). Many of studies used MCMC
technique such as Al-Babtain et al. [25], Tolba et al. [26, 27],
and Bantan et al. [28].

In Gibbs samplers, more general Metropolis algorithms
are important subclasses of MCMC algorithms. Two of the
most prevalent MCMC methodologies are the Metropolis-
Hastings (MH) and Gibbs sampling methods. )e MH
technique, like acceptance-rejection sampling, assumes that
each algorithm iteration can yield a candidate value from a
proposal distribution. We apply the MH in the Gibbs
sampling phases to get random samples of conditional
posterior densities from the MOEGM distribution:

π θ|λ, α, c, x( ∝ θn+q1− 1
e

− θ w1+
n

i�1
xi 



n

i�1

1

1 − ce
− θxi − (α/λ) eλxi − 1( ) 

2,

π λ|θ, α, c, x( ∝ λq2− 1
e

− α
n

i�1
eλxi − 1( )/λ 



n

i�1

e
− λ w2− xi( ) + θe

− w2λ

1 − ce
− θxi − (α/λ) eλxi − 1( ) 

2,

π α|θ, λ, c, x( ∝ αq3− 1
e

− αw3 

n

i�1

α

1 − ce
− θxi− (α/λ) eλxi − 1( ) 

2,

π c|θ, λ, α, x( ∝ c
n+q4− 1



n

i�1

e
− w4c

1 − ce
− θxi− (α/λ) eλxi − 1( ) 

2.

(36)

6. Simulation

)eMonte-Carlo simulation approach is used in this section
to compare the likelihood estimation method with the
Bayesian estimation method. )e R language is used to
estimate MOEGM distribution parameters using MLE and a
Bayesian estimation approach based onMCMC under SELF.
Monte-Carlo experiments are carried out using 10000
randomly generated MOEGM distribution samples, where x

represents the MOEGM lifetime for various parameter ac-
tual values and sample sizes n: (30, 70, 150, and 200). )e
best estimator approaches could be described as minimizing
estimator bias (A1) and mean squared error (A2). )e
MOEGM distribution’s true parameters have been
determined.

Tables 1–3 describe the simulation results of the ap-
proaches presented in this paper for point estimate. In order
to do the essential comparison between various point
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estimating methods, we examine the A1 and A2 values. As a
result, the following conclusions were drawn:

(1) For parameters of the MOEGM distribution, the A1
and A2 decrease as sample size n grows.

(2) )e best estimating method is Bayesian estimation.
(3) )e A1 and A2 for all parameters diminish as c

increases.
(4) )e A1 and A2 for all parameters increase as θ

increases.

7. Applications of Physics

In this section, two real-world data applications are used to
demonstrate the significance of the MOEGM distribution.
We employ the Akaike information criterion measures
(AICM), Bayesian information criterion measures (BICM),
Consistent Akaike information Criterion (AICCM), Kol-
mogorov-Smirnov statistics (KSS), and the PVKSS test to
compare the models. Smaller values of these statistical
metrics equate to a better fit to the data set. )e maximum
likelihood approach is used to estimate the parameters of
each distribution, while the Bayesian estimation method is
used to estimate the parameters of the MOEGM

distribution.

7.1. FirstRealDataofFloodPeaks. In this subsection, the first
application of real data set is employed to illustrate the
importance of the MOEGM distribution. )is data set
represents 72 excrescences of flood peaks for the years
1958–1984 (rounded to one decimal place) of flood peaks (in
m3/s) of the Wheaton River near Carcross in Yukon Ter-
ritory, Canada. )e first data set is: “1.7, 2.5, 27.4, 1.0, 27.1,
2.2, 22.9, 1.7, 0.1, 1.1, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0,
12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 21.5, 27.6, 36.4, 2.7, 14.1,
22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3,
0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,
5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 64.0, 1.5, 20.2, 16.8, 5.3, 9.7,
27.5, 2.5 and 7.0.” )e fit of the proposed model are
compared with the transmuted Gompertz-Makeham (TGM)
(Abd El-Bar [29]), beta generalized Gompertz (BGG)
(Benkhelifa [30]), kumaraswamy gompertz makeham
(KGM) (Chukwu and Ogunde [5]), Gompertz Lomax (GL)
(Oguntunde et al. [31]), exponentiated generalized Weibull-
Gompertz (EGWG) (El-Bassiouny et al. [32]), generalized
Gompertz (GG) (El-Gohary et al. [33]) and Gompertz
models.

Table 4 presents theMLEs with standard error (SE) of the
model parameters for the first data set. )e values of AICM,
BICM, AICCM, HQICM, KSS and the PVKS are presented
for the MOEGM model and the other models.

From Table 4, we conclude that the MOEGM model
gives the best fit, where the values of AICM, BICM, AICCM,
HQICM, and KSS are smaller and the PVKS is higher for the

MOEGM model when compared with those values of the
other models. Figures 3(a), 3(b) illustrate the p.d.f., empirical
c.d.f.s and probability plots, respectively, of the comparative
models to show the over fitting of the MOEGM distribution.
Figures 3(a)–3(c) illustrate estimated p.d.f. with histogram,
estimated c.d.f. with empirical c.d.f., and Q-Q plot of the
MOEGM distribution, respectively. Figures 4 and 5 clarify
probability plots of the comparative models to show the over
fitting of the MOEGM distribution.

Based on the results in Table 4 and Figures 3 and 4, we
conclude that the MOEGM distribution is a better fit than
comparative models for this data set.

Table 5 discussedMLE and Bayesian estimation methods
comparing by SE, we note that the Bayesian estimation has
smaller SE than MLE. )e trace plots and the convergence
plots of parameters by MCMC results of the MOEGM
distribution are obtained in right and left Figure 6. )e
posterior density of MCMC findings for each parameter is
shown in the center of Figure 6, which indicates a symmetric
normal distribution comparable to the proposed
distribution.

7.2. Second Real Data of Stochastic Processes. In this sub-
section, we discuss data set of stochastic processes which
was first introduced by Aarset [34] and represents the
lifetimes of 50 devices (in weeks). )is data set, also re-
ported in Benkhelifa [30] BGG distribution, and Abd El-
Bar [29] to discuss TGM distribution, is: “0.1, 0.2, 1, 1, 1,
67, 67, 67, 72, 75, 79, 1, 1, 2, 3, 6, 7, 11, 60, 63, 63, 12, 18, 18,
85, 85, 85, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 67, 82,
82, 83, 84, 84, 84, 85, 85, 86, 86.” )e TGM distribution is
better than Gompertz, shifted Gompertz, transmuted
Lindley, Gompertz Makeham, transmuted Burr type III,
transmuted Gompertz, transmuted exponentiated expo-
nential, and transmuted generalized linear exponential
distributions, for more details see Abd El-Bar [29]. )e
BGG distribution is better than Gompertz, beta gener-
alized exponential, generalized exponential, beta Gom-
pertz, exponential, beta exponential, and GG, for more
details see Benkhelifa [30].

Table 6 presents the MLEs of the model parameters for
the stochastic processes data set. )e values of AICM,
BICM, AICCM, HQICM, KSS and the PVKS are presented
for the MOEGM model and the TGM, and the BGG
distribution.

From Table 6, we conclude that the MOEGM model
gives the best fit, where the values AICM, BICM, AICCM,
HQICM, and KSS are smaller for MOEFM distribution
than TGM and BGG distribution, and the PVKS is higher
for the MOEGMmodel than TGM and BGG distribution.
Figures 7(a), 7(b) illustrate the p.d.f.s, empirical c.d.f.s
and probability plots, respectively, of the comparative
models to show the over fitting of the MOEGM
distribution.

Journal of Mathematics 7



RE
TR
AC
TE
D

Table 1: A1 and A2 of MOEGM parameters by MLE, and Bayesian when. α � 0.5, λ � 0.5.

c � 0.75 c � 3
α � 0.5, λ � 0.5 MLE Bayesian MLE Bayesian

θ n A1 A2 A1 A2 A1 A2 A1 A2

0.75

30

θ 0.0663 0.2090 − 0.0105 0.0807 0.1024 0.1833 − 0.0064 0.0839
α 0.2976 2.6962 − 0.0118 0.0642 − 0.0389 0.3818 0.0092 0.0688
λ 0.5169 2.1535 − 0.0483 0.0773 0.4304 1.0915 − 0.0201 0.0679
c 0.6221 5.1127 − 0.0147 0.0593 0.2325 3.3815 − 0.0333 0.1281

70

θ 0.0361 0.1570 − 0.0009 0.0252 0.1016 0.1289 0.0094 0.0244
α 0.0892 1.0049 − 0.0178 0.0238 − 0.0932 0.1873 0.0020 0.0174
λ 0.3333 1.1596 − 0.0219 0.0284 0.3409 0.4543 − 0.0251 0.0271
c 0.2307 1.4412 − 0.0108 0.0224 − 0.0001 1.3741 − 0.0164 0.0293

150

θ 0.0413 0.1089 0.0009 0.0204 0.0643 0.0681 − 0.0001 0.0187
α − 0.0081 0.3685 − 0.0046 0.0162 − 0.0659 0.1047 0.0050 0.0119
λ 0.2005 0.5740 − 0.0189 0.0251 0.2062 0.2413 − 0.0174 0.0172
c 0.0851 0.5711 − 0.0052 0.0172 0.0176 0.6182 0.0087 0.0219

200

θ 0.0605 0.0764 0.0019 0.0056 0.0504 0.0349 − 0.0053 0.0051
α − 0.0431 0.0853 − 0.0059 0.0048 − 0.0346 0.0603 0.0026 0.0045
λ 0.1002 0.2251 − 0.0083 0.0062 0.1023 0.1092 − 0.0004 0.0045
c 0.0373 0.1438 − 0.0064 0.0049 0.0306 0.4561 − 0.0045 0.0064

3

30

θ − 0.6898 1.7822 − 0.0026 0.1054 − 0.4916 1.0311 − 0.0101 0.1357
α 0.9339 10.4192 − 0.0348 0.0685 0.5875 5.2078 − 0.0263 0.0934
λ 1.5259 10.5863 − 0.0581 0.1057 0.9608 5.9980 − 0.0252 0.0891
c 0.3771 2.7854 0.0451 0.0909 0.8456 9.9552 − 0.0161 0.1125

70

θ − 0.6936 1.3025 − 0.0004 0.0283 − 0.4240 0.7049 − 0.0079 0.0323
α 0.5995 5.5597 − 0.0336 0.0319 0.7208 4.3036 − 0.0227 0.0276
λ 0.8973 4.5855 − 0.0218 0.0362 0.4344 3.7110 − 0.0188 0.0314
c 0.0863 0.9616 − 0.0041 0.0221 0.7759 9.5984 0.0030 0.0353

150

θ − 0.4045 0.7562 − 0.0024 0.0246 − 0.2864 0.4528 − 0.0088 0.0243
α 0.5395 3.1483 − 0.0043 0.0252 0.5922 2.7309 − 0.0113 0.0204
λ 0.3132 2.7684 − 0.0180 0.0268 0.1767 2.6308 − 0.0174 0.0270
c 0.1129 0.6149 0.0007 0.0130 0.5947 5.4817 0.0037 0.0255

200

θ − 0.3160 0.4131 0.0007 0.0060 − 0.1378 0.2110 0.0019 0.0070
α 0.2804 0.8734 − 0.0102 0.0067 0.2864 0.9394 − 0.0035 0.0055
λ 0.1636 1.3895 − 0.0075 0.0081 0.0428 1.4592 − 0.0057 0.0072
c 0.0105 0.1054 0.0013 0.0043 0.2357 2.0228 − 0.0033 0.0065

Table 2: A1, and A2 of MOEGM parameters by MLE, and Bayesian when.α � 2, λ � 0.75.

c � 0.75 c � 3
α � 2, θ � 0.75 MLE Bayesian MLE Bayesian

λ n A1 A2 A1 A2 A1 A2 A1 A2

0.5

30

θ 0.2234 1.3192 − 0.0571 0.1101 0.1057 0.5171 − 0.0292 0.0957
α 0.2155 8.8678 0.0025 0.1119 − 0.2657 2.6640 0.0056 0.1101
λ 0.7288 6.6163 − 0.0177 0.0883 0.6797 2.8948 − 0.0474 0.0687
c 0.5717 5.5573 0.0139 0.0535 0.6411 9.8986 − 0.0285 0.1085

70

θ 0.0565 0.9048 − 0.0155 0.0298 0.0954 0.3111 − 0.0119 0.0304
α 0.0168 3.6365 − 0.0194 0.0301 − 0.1759 1.2053 − 0.0051 0.0262
λ 0.2718 2.7239 − 0.0203 0.0316 0.3094 1.1250 − 0.0149 0.0300
c 0.2262 1.9272 0.0014 0.0197 0.3733 7.0686 − 0.0003 0.0335

150

θ 0.0826 0.6743 − 0.0187 0.0269 0.0326 0.1921 − 0.0013 0.0216
α 0.1547 3.0759 − 0.0044 0.0227 − 0.2055 0.4865 − 0.0038 0.0205
λ 0.0107 1.8665 − 0.0170 0.0246 0.2044 0.4764 − 0.0012 0.0200
c 0.2081 1.3476 − 0.00001 0.0155 − 0.0034 2.7353 0.0001 0.0258

200

θ 0.0121 0.3445 0.00004 0.0064 0.0015 0.0763 − 0.0033 0.0063
α − 0.0127 0.9029 − 0.0012 0.0058 − 0.1218 0.2391 0.0017 0.0059
λ 0.0517 0.6778 − 0.0063 0.0066 0.1161 0.1799 − 0.0056 0.0053
c 0.0401 0.3068 0.0013 0.0043 − 0.0460 1.2654 − 0.0002 0.0059
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Table 2: Continued.

c � 0.75 c � 3
α � 2, θ � 0.75 MLE Bayesian MLE Bayesian

λ n A1 A2 A1 A2 A1 A2 A1 A2

3

30

θ 0.5940 2.3168 − 0.0579 0.1390 0.1581 1.38285 − 0.0576 0.11203
α 0.0865 5.9463 − 0.0084 0.0992 − 0.2814 2.56117 0.0197 0.10938
λ 0.9393 9.0583 − 0.0141 0.1159 1.1403 5.1957 − 0.0045 0.1068
c 0.5021 3.3756 0.0013 0.0544 0.2552 9.34188 − 0.0265 0.12716

70

θ 0.4157 1.2562 − 0.0165 0.0327 0.1110 0.45985 − 0.0051 0.03112
α 0.0020 3.1157 − 0.0081 0.0297 − 0.1964 1.6083 − 0.0062 0.0274
λ 0.4155 3.8968 − 0.0107 0.0295 0.6467 2.39636 − 0.0168 0.02602
c 0.2856 1.5833 − 0.0040 0.0207 0.1558 4.69425 − 0.0031 0.03366

150

θ 0.2229 0.6404 − 0.0268 0.0249 0.1088 0.1939 − 0.0139 0.0266
α − 0.1318 1.2423 0.0052 0.0212 − 0.1068 0.99542 0.0015 0.02033
λ 0.3486 2.0025 − 0.0055 0.0249 0.3275 1.06376 − 0.0004 0.02312
c 0.1034 0.6022 0.0004 0.0142 0.1821 2.7484 − 0.0116 0.0256

200

θ 0.0952 0.2498 − 0.0003 0.0058 0.0622 0.06397 − 0.0057 0.00671
α − 0.1570 0.5557 − 0.0010 0.0061 − 0.0534 0.58078 − 0.0028 0.00549
λ 0.2533 0.7987 0.0012 0.0061 0.1733 0.5270 − 0.0043 0.0058
c 0.0112 0.1641 0.0020 0.0042 0.1292 1.52845 − 0.0012 0.00647

Table 3: A1 and A2 of MOEGM parameters by MLE, and Bayesian when.α � 1.5, λ � 2.

c � 0.75 c � 3
θ � 1.5, λ � 2 MLE Bayesian MLE Bayesian

α n A1 A2 A1 A2 A1 A2 A1 A2

2

30

θ 0.3758 2.0520 − 0.0504 0.1184 0.1751 1.3836 − 0.0540 0.1333
α 0.1679 7.5009 − 0.0406 0.1219 − 0.0944 3.4698 − 0.0152 0.1037
λ 1.2045 10.8415 − 0.0046 0.1205 1.0588 6.0416 0.0114 0.1023
c 0.4812 3.8034 0.0184 0.0523 0.8747 9.6510 − 0.0330 0.1342

70

θ 0.1450 1.1987 − 0.0010 0.0338 0.2552 0.7051 − 0.0007 0.0292
α − 0.1459 2.9704 − 0.0025 0.0295 − 0.1261 1.7495 − 0.0012 0.0275
λ 0.7292 5.2783 − 0.0206 0.0307 0.5441 2.7962 − 0.0113 0.0273
c 0.0962 0.7837 0.0040 0.0190 0.5367 7.7801 − 0.0064 0.0333

150

θ 0.1380 0.7847 0.0020 0.0247 0.1120 0.2308 − 0.0063 0.0263
α − 0.0373 1.3426 − 0.0046 0.0252 − 0.1260 0.9165 − 0.0007 0.0208
λ 0.2790 2.4414 − 0.0041 0.0288 0.3392 1.2381 − 0.0091 0.0231
c 0.0879 0.4284 0.0054 0.0142 0.2194 3.2863 − 0.0066 0.0243

200

θ 0.0384 0.3915 − 0.0017 0.0065 0.0734 0.1321 − 0.0037 0.0061
α − 0.1123 0.4354 0.0009 0.0069 − 0.0612 0.5020 0.0042 0.0064
λ 0.2016 0.9034 − 0.0012 0.0064 0.1647 0.5829 − 0.0015 0.0059
c 0.0069 0.1181 − 0.0038 0.0046 0.1241 1.5795 0.0004 0.0066

4

30

θ 0.2236 3.2384 − 0.0636 0.1240 0.2958 2.5922 − 0.0100 0.1290
α − 0.1682 7.2254 − 0.0192 0.1180 − 0.6578 7.8654 − 0.0266 0.1177
λ 1.1611 9.1960 − 0.0561 0.1317 1.5862 9.9355 0.0020 0.1226
c 0.2173 1.4663 0.0239 0.0529 0.9513 9.4847 − 0.0503 0.1214

70

θ 0.2432 2.8862 − 0.0067 0.0291 0.2506 1.9412 − 0.0095 0.0343
α 0.0337 5.1864 − 0.0036 0.0326 − 0.5213 4.9119 − 0.0199 0.0336
λ 0.3411 6.1987 − 0.0065 0.0278 0.8382 5.8843 − 0.0292 0.0346
c 0.1539 0.7071 0.0074 0.0197 0.4678 10.9169 − 0.0150 0.0357

150

θ 0.0727 1.3884 − 0.0028 0.0246 0.0395 0.9230 − 0.0098 0.0262
α − 0.1128 1.7539 − 0.0143 0.0257 − 0.3259 2.2341 0.0030 0.0261
λ 0.2263 2.2326 − 0.0131 0.0249 0.4201 2.2449 − 0.0039 0.0222
c 0.0540 0.2351 0.0067 0.0117 0.0980 3.8122 − 0.0031 0.0239

200

θ 0.0722 0.9579 0.0036 0.0074 0.0215 0.6763 0.0000 0.0060
α − 0.0290 1.1019 − 0.0035 0.0062 − 0.2542 1.3980 − 0.0041 0.0062
λ 0.0586 1.4141 0.0012 0.0065 0.2818 1.1992 − 0.0040 0.0073
c 0.0331 0.1423 0.0021 0.0043 0.0397 2.1774 0.0021 0.0069
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Table 4: MLEs of the models parameters with SE and different measures for fitting: flood peaks data.

MLEs SE KSS PVKS CVMS ADS AICM AICCM BICM HQICM

MOEGM

θ 0.0141 0.0569

0.0985 0.4873 0.1014 0.5756 506.9077 507.5047 516.0144 510.5331α 0.0185 0.0379
λ 0.0319 0.0382
c 0.2966 0.3969

GL

θ 1.7323 3.7299

0.0999 0.4691 0.1193 0.6709 507.6678 508.2648 516.7744 511.2931α 0.4989 3.6786
λ 1.2268 5.6233
c 0.1877 0.6431

Gompertz λ 0.0013 0.0081 0.1463 0.0918 0.1120 0.6459 508.2565 508.429 518.8094 512.8534α 0.0852 0.0148

EGWG

θ 1.6924 19.7580

0.1026 0.4351 0.1027 0.6039 509.3512 510.2603 520.7345 513.8829
λ 0.4178 4.5617
α 0.1118 4.4805
c 0.5656 3.0847
β 0.3331 0.4674

BGG

λ 0.0123 0.0191

0.0998 0.4799 0.4754 0.5876 508.5600 509.4691 519.9433 513.0917
α 0.0331 0.0851
c 0.5632 1.6298
θ 1.4283 4.6792
β 1.6742 3.1784

KGM

λ 0.0229 0.0442

0.1034 0.4251 0.1102 0.5928 508.7930 509.7020 520.1763 513.3247
α 0.0160 0.0508
c 0.0399 0.0788
a 0.7910 0.1410
b 1.1351 0.9661

TGM

λ 0.0036 0.0596

0.1290 0.1821 0.1112 0.6376 508.4915 509.0885 517.5982 512.1169α 0.0655 0.0499
θ 0.0053 0.0060
c 0.2544 0.4056
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Figure 3: (a) Histogram and estimated p.d.f., (b) Estimated c.d.f. and the empirical c.d.f., (c) generate qunatile and data: flood peaks data.
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Figure 4: PP plot for different models.
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Figure 5: PP plot for different models.

Table 5: MLE and Bayesian estimation methods comparing by SE: flood peaks data.

MLE Bayesian
Estimates SE Estimates SE

θ 0.0141 0.0569 0.014041 0.003221
α 0.0185 0.0379 0.018479 0.001432
λ 0.0319 0.0382 0.031859 0.001461
c 0.2966 0.3969 0.294978 0.148231
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Figure 6: )e trace plots, posterior density and the convergence for parameters θ, α, λ and c: flood peaks data.

Table 6: Comparison between MOEGM, BGG and TGM distributions:stochastic processes data.

θ α λ c b KSS
MOEGM 0.0096 1.593E − 10 0.2511 0.5168 0.1265
TGM 0.0998 0.0003 0.0115 0.1280 0.1517
BGG 0.0638 0.0029 1.3644 0.1198 0.1776 0.1266

CVMS AICM AICCM BICM HQICM PVKS
MOEGM 0.1214 440.6824 441.5713 448.3305 443.5948 0.4003
TGM 0.2751 454.0590 454.9480 461.7070 456.9710 0.2002
BGG 0.157543 461.0024 462.366 470.5625 464.6429 0.3871
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Table 7 discussedMLE and Bayesian estimation methods
comparing by SE, we note Bayesian estimation has smaller
SE than MLE.

8. Conclusion

Based on Marshall and Olkin approach, a new four-pa-
rameter extended Gompertz Makeham distribution was
developed, the Marshall-Olkin extended Gompertz Make-
ham distribution. It includes special models, the Marshall-
Olkin extended Makeham, Marshall-Olkin Gompertz
Makeham, Gompertz Makeham, and Makeham distribu-
tions. Depending on the shape parameters, the MOEGM
density function can take on a variety of shapes. Further-
more, depending on the design parameters, its hazard rate
function might take on various shapes. We have included
some statistical features. )e method of likelihood and
Bayesian estimation methods are used to estimate the un-
known parameters of the proposed distribution. An MCMC
technique is used to give a comparison for the estimated
parameters. )ese comparisons were made using bias and
MSE as criteria. )e MSE and Bias of the Bayesian-based
SELF are superior to both MLE in our simulation case. Real
data sets were observed and it was noted that the MOEGM
distribution resulted in the best fit. To summaries, the
MOEGM distribution may provide a relatively flexible

mechanism for fitting a wide range of positive real-world
data sets. )e novel distribution may be a feasible alternative
to existing models now available in the literature for
modeling actual data in domains like as engineering, survival
analysis, hydrology, economics, and others.
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