Assignment Computations Based on $C_{\text {exp }}$ Average in Various Ladder Graphs

 and Sonam Gyeltshen (1) ${ }^{5}$
${ }^{1}$ Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
${ }^{2}$ Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
${ }^{3}$ Research and Development Wing, Live4Research, Tiruppur 638 106, Tamil Nadu, India
${ }^{4}$ Kongu Engineering College, Perundurai, Erode 638060, Tamil Nadu, India
${ }^{5}$ Department of Humanities and Management Jigme Namgyel Engineering College, Royal University of Bhutan, Dewathang, Bhutan

Correspondence should be addressed to K. Loganathan; loganathankaruppusamy304@gmail.com and Sonam Gyeltshen; sonamgyeltshen@jnec.edu.bt

Received 20 February 2022; Revised 29 March 2022; Accepted 7 April 2022; Published 11 May 2022
Academic Editor: M. T. Rahim
Copyright © 2022 A.Rajesh Kannan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study introduces the $C_{\exp }$ average assignments and investigates its properties using various ladder graphs. The ladder graphs can be found in every communication networks. Ladder networks are increasingly being used in everyday life for monitoring and environmental applications such as domestic, military, surveillance, industrial, medical applications, and traffic management. These datasets are afflicted by the average representation of the graph structure. It aids in the visualisation and comprehension of data analysis. The $C_{\text {exp }}$ labeling is used in sensor networks, adhoc networks, and other applications. It also efficiently creates a communication network after using noise reduction methods to remove salt and pepper noise.

1. Introduction

A graph labeling is the assignment of labels, conventionally indicated by integers, to edges and/or vertices of a graph in the mathematical domain of graph theory. The concept of labeling may be applied to many areas of graph theory, for example, in automata theory and formal language theory. We use [1-5] for notations and nomenclature. We recommend [6] for a thorough examination of graph labeling. Let P_{n} be a path on n nodes denoted by $u_{1, \mu}$, where $1 \leq \mu \leq n$, and with $n-1$ lines denoted by $e_{1, \delta}$, where $1 \leq \delta \leq n-1$, where e_{μ} is the line joining the vertices $u_{1, \mu}$ and $u_{1, \mu+1}$. On each edge e_{δ}, erect a ladder with $n-(\mu-1)$ steps including the edge e_{μ}, for $\mu=1,2,3, \ldots, n-1$. The resulting graph is called the onesided step graph, and it is denoted by $S T_{n}$. Let G_{1} and G_{2} be any two graphs with p_{1} and p_{2} vertices, respectively. Then, $G_{1} \times G_{2}$ is the Cartesian product of two graphs. A ladder graph L_{n} is the graph $P_{2} \times P_{n}$. The graph $G^{\circ} S_{m}$ is obtained from G by
attaching m pendant vertices to each vertex of G. The triangular ladder $T L_{n}$, for $n \geq 2$, is a graph obtained from two paths by $u_{1}, u_{2}, \ldots u_{n}$ and $v_{1}, v_{2}, \ldots v_{n}$ by adding the edges $u_{\mu} \nu_{\mu}, 1 \leq \mu \leq n$ and $u_{\mu} v_{\mu+1}, 1 \leq \mu \leq n-1$. The slanting ladder $S L_{n}$ is a graph obtained from two paths $u_{1}, u_{2}, \ldots u_{n}$ and $v_{1}, v_{2}, \ldots v_{n}$ by joining each v_{μ}, with $u_{\mu+1}, 1 \leq \mu \leq n-1$. The graph D_{n}^{*} having the vertices $\left\{a_{\mu, \delta}: 1 \leq \mu \leq n, \delta=1,2,3,4\right\}$ and its edge set is $\left\{a_{\mu, 1} a_{\mu+1,1}, a_{\mu, 3} a_{\mu+1,3}: 1 \leq \mu \leq n-1\right\} \cup\left\{a_{\mu, 1} a_{\mu, 2}\right.$, $\left.a_{\mu, 2} a_{\mu, 3}, a_{\mu, 3} a_{\mu, 4}, a_{\mu, 4} a_{\mu, 1}: 1 \leq \mu \leq n\right\}$.

2. Literature Survey

In [7], the authors talked about the F-root square mean labeling for line graph of the path, cycle, star, $P_{n}{ }^{\circ} S_{1}, P_{n}{ }^{\circ} S_{2}$, $\left[P_{n} ; S_{1}\right], S\left(P_{n}{ }^{\circ} \mathrm{S}_{1}\right)$, ladder, slanting ladder, the crown graph $C_{n}{ }^{\circ} \mathrm{S}_{1}$, and the arbitrary subdivision of S_{3}. The authors in [8] discussed ($1,1,0$) F-face mean labeling some planar graphs and, in [9], face labelings of type $(1,1,1)$ for generalized prism.

Alanazi et al. explained the classical meanness of the graphs, the one-sided step graph $S T_{n}$, double-sided step graph $2 S T_{2 n}$, planar grid $P_{m} \times P_{n}$, ladder graph L_{n}, graph $L_{n}{ }^{\circ} S_{\mathrm{m}}$ for $m \leq 2$, triangular ladder graph $T L_{n}$, graph $T L_{n}{ }^{\circ} \mathrm{S}_{\mathrm{m}}$ for $m \leq 2$, graph $S L_{n}{ }^{\circ} S_{\mathrm{m}}$ for $m \leq 2$, slanting ladder graph $S L_{n}$, graph $S L_{n}{ }^{\circ} \mathrm{S}_{\mathrm{m}}$ for $m \leq 2$, graph D_{n}^{*}, diamond ladder graph $D l_{n}$, and latitude ladder graph $L L_{n}$ in [10-12]. Dafik slamin et al. highlighted the super (a, d)-edge-antimagic total properties of triangular book and diamond ladder graphs in [13]. Moussa and Badr discussed the odd gracefulness of few ladder graphs and proved that ladder and subdivision of ladder graphs with pendent edges are odd graceful in [14]. In [15], the authors emphasized the significance of exponential mean labeling of graphs, and they examined the exponential mean labeling of some graphs obtained from duplicating operations. Inspired by such tremendous works of researchers in the region of graph assignments in [16-25], we defined $C_{\text {exp }}$ average assignment of graphs. A $C_{\text {exp }}$ average of two integers is not always an integer. Consequently, $C_{\text {exp }}$ average assignment must be an integer; we may get ceiling function by considering the integral part. In this study, our conversation and attempt is to examine the various assignment techniques on $C_{\text {exp }}$ average assignment for few ladder graphs.

3. Methodology

A function Ψ is known as an $C_{\text {exp }}$ average assignment of G if $\Psi: V(G) \longrightarrow N-\{q+2, q+3, \ldots, \infty\}$ is one to one and the instigated bijective function $\Psi^{*}: E(G) \longrightarrow$ $N-\{1, q+2, q+3, \ldots, \infty\}$ characterized by

$$
\begin{equation*}
\Psi^{*}(u v)=\left\lceil\frac{1}{e}\left(\frac{X(v)}{X(u)}\right)^{1 / Y}\right\rceil \tag{1}
\end{equation*}
$$

Figure 1: An $C_{\text {exp }}$ average assignment of the graph, $S L_{2}{ }^{\circ} S_{1}$.
where $X(w)=\Psi(w)^{\Psi(w)}, Y=\Psi(v)-\Psi(u), q$ is the number of edges, and N is the set of all natural numbers. A graph that concedes an $C_{\exp }$ average assignment is known as a $C_{\exp }$ average assignment graph.

Figure 1 shows the $C_{\text {exp }}$ average assignment of the graph $S L_{2}{ }^{\circ} S_{1}$.

4. Main Results

Theorem 1. The one-sided step graph $S T_{n}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$.

Proof. Make the vertex assignment $\Psi: V\left(S T_{n}\right) \longrightarrow N-$ $\left\{n^{2}+n, n^{2}+n+1, \ldots, \infty\right\}, \quad \Psi\left(u_{1, \mu}\right)=n^{2}-1+\mu$, for $2 \leq$ $\mu \leq n$, and $\Psi\left(u_{\lambda, \mu}\right)=(1+n-\lambda)^{2}+\mu-1$, for $2 \leq \lambda \leq n$ and $1 \leq \mu \leq n+2-\lambda$.

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \Psi^{*}\left(u_{\lambda, \mu} u_{\lambda+1, \mu}\right)=-2 n \lambda+n-\lambda+\lambda^{2}+n^{2}+\mu, \text { for } n-1 \geq \lambda \geq 1 \text { and } 1-\lambda+n \geq \mu \geq 1 \\
& \Psi^{*}\left(u_{1, \mu} u_{1, \mu+1}\right)=n^{2}+\mu, \text { for } 1 \leq \mu \leq n-1, \text { and } \tag{2}\\
& \Psi^{*}\left(u_{\lambda, \mu} u_{\lambda, \mu+1}\right)=(1+n-\lambda)^{2}+\mu, \text { for } 2 \leq \lambda \leq n \quad \text { and } 1 \leq \mu \leq n+1-\lambda
\end{align*}
$$

As a result, for $n \geq 2, \Psi$ is an $C_{\text {exp }}$ average assignment and the one-sided step graph $S T_{n}$ is an $C_{\exp }$ average assignment graph.

Theorem 2. The graph $P_{m} \times P_{n}$ is an $C_{\exp }$ average assignment graph, for $m \leq 4$ and $n \geq 2$.

Proof
Case (i): $m=2$.
Make the vertex assignment, $\Psi: V\left(P_{2} \times P_{n}\right) \longrightarrow N-$ $\{3 n, 3 n+1, \ldots, \infty\}$.
$\Psi\left(v_{\lambda \mu}\right)=\lambda-3+3 \mu$, for $1 \leq \lambda \leq 2$ and $1 \leq \mu \leq n$.
Consequently, the instigated edge assignment Ψ^{*} is acquired as follows.
$\Psi^{*}\left(v_{\lambda \mu} \quad v_{\lambda(\mu+1)}\right)=\lambda-1+3 \mu$, for $1 \leq \lambda \leq 2$ and $1 \leq \mu \leq$ $n-1$.
$\Psi^{*}\left(v_{1 \mu} v_{2 \mu}\right)=-13 \mu$, for $1 \leq \mu \leq n$.
Case (ii): $m=3$.
Make the vertex assignment, $\Psi: V\left(P_{3} \times P_{n}\right) \longrightarrow$ $N-\{5 n-1,5 n+1, \ldots, \infty\}$.
$\Psi\left(v_{\lambda \mu}\right)=\lambda-5+5 \mu$, for $1 \leq \lambda \leq 3$ and $2 \leq \mu \leq n$.
$\Psi\left(v_{\lambda 1}\right)=\left\{\begin{array}{cl}\lambda, & 1 \leq \lambda \leq 2, \\ 4, & \lambda=3 .\end{array}\right.$
Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:
$\Psi^{*}\left(v_{\lambda \mu} v_{\lambda(\mu+1)}\right)=\lambda-2+5 \mu$, for $1 \leq \lambda \leq 3$ and $2 \leq$
$\mu \leq n-1$
$\Psi^{*}\left(v_{\lambda \mu} v_{(\lambda+1) \mu}\right)=\lambda-4+5 \mu$, for $1 \leq \lambda \leq 2$ and $2 \leq \mu \leq n$
$\Psi^{*}\left(v_{\lambda 1} v_{\lambda 2}\right)=\lambda+3$, for $1 \leq \lambda \leq 3$,
$\Psi^{*}\left(v_{\lambda 1} v_{(\lambda+1) 1}\right)=1+\lambda$, for $1 \leq \lambda \leq 2$,
Case (iii): $m=4$ and $n \geq 3$.

Make the vertex assignment:

$$
\left.\begin{array}{l}
\Psi: V\left(P_{4} \times P_{n}\right) \longrightarrow N-\{7 n-2,7 n-1, \ldots, \infty\} \\
\Psi\left(v_{\lambda \mu}\right)=\lambda-7+7 \mu, \text { for } 1 \leq \lambda \leq 4 \text { and } 3 \leq \mu \leq n \\
\Psi\left(v_{\lambda 2}\right)=\lambda+7, \text { for } 1 \leq \lambda \leq 4
\end{array}\right\} \begin{array}{ll}
\lambda\left(v_{\lambda 1}\right)= \begin{cases}\lambda, & 1 \leq \lambda \leq 2 \\
\lambda+1, & 3 \leq \lambda \leq 4\end{cases}
\end{array}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \Psi^{*}\left(v_{\lambda \mu} v_{(\lambda+1) \mu}\right)=\lambda-6+7 \mu, \text { for } 1 \leq \lambda \leq 3 \text { and } 3 \leq \mu \leq n, \\
& \Psi^{*}\left(v_{\lambda 2} v_{(\lambda+1) 2}\right)=8+\lambda, \text { for } 1 \leq \lambda \leq 3, \\
& \Psi^{*}\left(v_{\lambda 1} v_{(\lambda+1) 1}\right)= \begin{cases}\lambda+1, & 1 \leq \lambda \leq 2, \\
5, & \lambda=3,\end{cases} \\
& \Psi^{*}\left(v_{\lambda \mu} v_{\lambda(\mu+1)}\right)=\lambda-3+7 \mu \text { for } 2 \leq \lambda \leq 4 \text { and } 1 \leq \mu \leq n-1, \text { and } \\
& \Psi^{*}\left(v_{1 \mu} v_{1(\mu+1)}\right)= \begin{cases}8 \mu-4, & 1 \leq \mu \leq 2, \\
7 \mu-2, & 3 \leq \mu \leq n-1 .\end{cases} \tag{3}
\end{align*}
$$

As a result, Ψ is an $C_{\text {exp }}$ average assignment and the graph $P_{m} \times P_{n}$ is an $C_{\text {exp }}$ average assignment graph, for $m \leq 4$.

Corollary 1. Every Ladder graph $L_{n}=P_{2} \times P_{n}$ is an $C_{\exp }$ average assignment graph.

Theorem 3. The graph $L_{n}{ }^{\circ} S_{m}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Proof

Case (i): $m=1$.
Make the vertex assignment: $\Psi: V\left(L_{n}{ }^{\circ} S_{1}\right) \longrightarrow \mathrm{N}-$ $\{5 n, 5 n+1, \ldots, \infty\}$,

$$
\left.\begin{array}{l}
\Psi\left(x_{1}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-1+5 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi\left(u_{1}^{(\lambda)}\right)=-4+5 \lambda, \text { for } 1 \leq \lambda \leq n,
\end{array}\right\} \begin{array}{ll}
4\left(v_{\lambda}\right)= \begin{cases}4, & \lambda=1, \\
-2+5 \lambda, & 2 \leq \lambda \leq n \text { and },\end{cases} \\
\Psi\left(u_{\lambda}\right)= \begin{cases}3, & \lambda=1, \\
-3+5 \lambda, & 2 \leq \lambda \leq n .\end{cases} \tag{4}
\end{array}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{aligned}
\Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right) & = \begin{cases}3, & \lambda=1, \\
-1+5 \lambda, & 2 \leq \lambda \leq n .\end{cases} \\
\Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right) & =5 \lambda-3, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(u_{\lambda} v_{\lambda}\right) & = \begin{cases}4, & \lambda=1, \\
-2+5 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right) & =1+5 \lambda, \text { for } 1 \leq \lambda \leq n-1 \text { and } \\
\Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right) & =5 \lambda, \text { for } 1 \leq \lambda \leq n-1 .
\end{aligned}
$$

Case (ii): $m=2$.
Make the vertex assignment: $\Psi: V\left(L_{n}{ }^{\circ} S_{2}\right) \longrightarrow \mathrm{N}-$ $\{7 n, 7 n+1, \ldots, \infty\}$,

$$
\begin{align*}
& \Psi\left(x_{2}^{(\lambda)}\right)= \begin{cases}8, & \lambda=1, \\
-5+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-2+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi\left(x_{1}^{(\lambda)}\right)= \begin{cases}2 \lambda+3, & 1 \leq \lambda \leq 2, \\
-6+7 \lambda, & 3 \leq \lambda \leq n, \lambda=2 k+2, k \in \mathbb{N}, \\
-3+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1 k \in \mathbb{N},\end{cases} \\
& \Psi\left(w_{2}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-1+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-4+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \tag{6}\\
& \Psi\left(w_{1}^{(\lambda)}\right)= \begin{cases}1, & \lambda=1, \\
-3+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-6+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi\left(v_{\lambda}\right)= \begin{cases}4, & \lambda=1, \\
-4+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-1+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi\left(u_{\lambda}\right)= \begin{cases}3, & \lambda=1, \\
-2+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-5+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N} .\end{cases}
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \Psi^{*}\left(v_{\lambda} x_{2}^{(\lambda)}\right)= \begin{cases}7 \lambda-4, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-1+7 \lambda, & 1 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right)= \begin{cases}7 \lambda-5, & 1 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-2+7 \lambda, & 4 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{2}^{(\lambda)}\right)= \begin{cases}7 \lambda-1, & 1 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-4+7 \lambda, & 1 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-2+7 \lambda, & 2 \leq \lambda \leq n, \lambda=2 k, k \in \mathbb{N}, \\
-5+7 \lambda, & 1 \leq \lambda \leq n, \lambda=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi^{*}\left(u_{\lambda} v_{\lambda}\right)=7 \lambda-3 \text {, for } 1 \leq \lambda \leq n, \\
& \Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right)=7 \lambda+1 \text {, for } 1 \leq \lambda \leq n-1 \text {, and } \\
& \Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)= \begin{cases}8, & \lambda=1, \\
7 \lambda, & 2 \leq \lambda \leq n-1 .\end{cases} \tag{7}
\end{align*}
$$

As a result, Ψ is an $C_{\text {exp }}$ average assignment and the graph $L_{n}{ }^{\circ} S_{\mathrm{m}}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Theorem 4. The triangular ladder graph $T L_{n}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$.

Proof. Make the vertex assignment; $\Psi: V\left(T L_{n}\right) \longrightarrow N-$ $\{4 n-1,4 n+1, \ldots, \infty\}$,

$$
\begin{align*}
& \Psi\left(v_{\lambda}\right)= \begin{cases}4 \lambda-1, & 1 \leq \lambda \leq n-1, \\
4 n-2, & \lambda=n, \text { and },\end{cases} \tag{8}\\
& \Psi\left(u_{\lambda}\right)=4 \lambda-3, \text { for } 1 \leq \lambda \leq n .
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
\Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right) & =4 \lambda, \text { for } 1 \leq \lambda \leq n-1, \\
\Psi^{*}\left(u_{\lambda} v_{\lambda+1}\right) & =1+4 \lambda, \text { for } 1 \leq \lambda \leq n-1, \\
\Psi^{*}\left(u_{\lambda} v_{\lambda}\right) & =-2+4 \lambda, \text { for } 1 \leq \lambda \leq n, \text { and } \tag{9}\\
\Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right) & =-1+4 \lambda, \text { for } 1 \leq \lambda \leq n-1 .
\end{align*}
$$

As a result, Ψ is an $C_{\text {exp }}$ average assignment and the triangular ladder graph $T L_{n}$ is an $C_{\text {exp }}$ average assignment graph, for $n \geq 2$.

Theorem 5. The graph $T L_{n}{ }^{\circ} S_{m}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Proof
Case (i): $m=1$.
Make the vertex assignment; $\Psi: V\left(T L_{n}{ }^{\circ} S_{1}\right) \longrightarrow \mathrm{N}-$ $\{6 n-1,6 n, \ldots, \infty\}$,

$$
\begin{align*}
\Psi\left(x_{1}^{(\lambda)}\right) & = \begin{cases}3, & \lambda=1, \\
-3+6 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi\left(u_{1}^{(\lambda)}\right) & = \begin{cases}-6+7 \lambda, & 1 \leq \lambda \leq 2, \\
-5+6 \lambda, & 3 \leq \lambda \leq n,\end{cases} \tag{10}\\
\Psi\left(v_{\lambda}\right) & =6 \lambda-2, \text { for } 1 \leq \lambda \leq n, \text { and } \\
\Psi\left(u_{\lambda}\right) & = \begin{cases}-3+5 \lambda, & 1 \leq \lambda \leq 2, \\
-4+6 \lambda, & 3 \leq \lambda \leq n .\end{cases}
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{aligned}
& \Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right)= \begin{cases}3, & \lambda=1, \\
-2+6 \lambda, & 2 \leq \lambda \leq n .\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right)=-4+6 i \text {, for } 1 \leq \lambda \leq n \text { and } \\
& \Psi^{*}\left(u_{\lambda} v_{\lambda}\right)= \begin{cases}4, & \lambda=1, \\
-3+6 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right)=6 \lambda \text {, for } 1 \leq \lambda \leq n-1 \text {, } \\
& \Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right)=1+6 \lambda \text {, for } 1 \leq \lambda \leq n-1 \text {, and } \\
& \Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)=-1+6 \lambda, \text { for } 1 \leq \lambda \leq n-1 \text {. }
\end{aligned}
$$

Case (ii): $m=2$.

Make the vertex assignment; $\Psi: V\left(T L_{n}{ }^{\circ} S_{2}\right) \longrightarrow \mathrm{N}-$ $\{8 n-1,8 n, \ldots, \infty\}$,

$$
\begin{align*}
\Psi\left(x_{2}^{(\lambda)}\right) & = \begin{cases}9, & \lambda=1, \\
-6+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi\left(x_{1}^{(\lambda)}\right) & = \begin{cases}4, & \lambda=1, \\
-7+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi\left(w_{2}^{(\lambda)}\right) & = \begin{cases}3, & \lambda=1, \\
-2+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
\Psi\left(w_{1}^{(\lambda)}\right) & = \begin{cases}1, & \lambda=1, \\
-4+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \tag{12}\\
\Psi\left(v_{\lambda}\right) & = \begin{cases}6, & \lambda=1, \\
-5+8 \lambda, & 2 \leq \lambda \leq n, \text { and }\end{cases} \\
\Psi\left(u_{\lambda}\right) & = \begin{cases}2, & \lambda=1, \\
-3+8 \lambda, & 2 \leq \lambda \leq n .\end{cases}
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \Psi^{*}\left(v_{\lambda} x_{2}^{(\lambda)}\right)= \begin{cases}8, & \lambda=1, \\
-5+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right)= \begin{cases}5, & \lambda=1, \\
-6+8 \lambda, & 2 \leq \lambda \leq n\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{2}^{(\lambda)}\right)= \begin{cases}3, & \lambda=1, \\
-2+8 \lambda, & 2 \leq \lambda \leq n,\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-3+8 \lambda, & 2 \leq \lambda \leq n\end{cases} \tag{13}\\
& \Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right)= \begin{cases}6, & \lambda=1, \\
8 \lambda, & 2 \leq \lambda \leq n-1,\end{cases} \\
& \Psi^{*}\left(u_{\lambda} v_{\lambda}\right)=8 \lambda-4, \text { for } 1 \leq \lambda \leq n, \\
& \Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right)= \begin{cases}9, & \lambda=1, \\
-1+8 \lambda, & 2 \leq \lambda \leq n-1, \text { and }\end{cases} \\
& \Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)= \begin{cases}7, & \lambda=1, \\
1+8 \lambda, & 2 \leq \lambda \leq n-1 .\end{cases}
\end{align*}
$$

As a result, Ψ is an $C_{\text {exp }}$ average assignment and the graph $T L_{n}{ }^{\circ} S_{\mathrm{m}}$ is an $C_{\text {exp }}$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Theorem 6. The slanting ladder graph $S L_{n}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$.

Proof. Make the vertex assignment; $\Psi: V\left(S L_{n}\right) \longrightarrow N-$ $\{3 n-1,3 n, \ldots, \infty\}$,

$$
\begin{align*}
& \Psi\left(v_{n}\right)=3 n-2, \\
& \Psi\left(v_{\lambda}\right)=3 \lambda, \text { for } 1 \leq \lambda \leq n-1, \\
& \Psi\left(u_{\lambda}\right)=3 \lambda-4, \text { for } 2 \leq \lambda \leq n, \quad \text { and } \tag{14}\\
& \Psi\left(u_{1}\right)=1
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right)=3 \lambda, \text { for } 1 \leq \lambda \leq n-1, \\
& \Psi^{*}\left(v_{n-1} v_{n}\right)=-2+3 n, \\
& \Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right)=3 \lambda+2, \text { for } 1 \leq \lambda \leq n-2, \text { and } \tag{15}\\
& \Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)= \begin{cases}2, & \lambda=1, \\
3 \lambda-2, & 2 \leq \lambda \leq n-1 .\end{cases}
\end{align*}
$$

As a result, Ψ is an $C_{\exp }$ average assignment and the graph $S L_{n}$ is an $C_{\text {exp }}$ average assignment graph.

Theorem 7. The graph $S L_{n}{ }^{\circ} S_{m}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Proof

Case $i: m=1$ and $n \geq 3$.
Make the vertex assignment, $\Psi: V\left(S L_{n}{ }^{\circ} \mathrm{S}_{1}\right) \longrightarrow \mathrm{N}-$ $\{5 n-1,5 n, \ldots, \infty\}$.

$$
\begin{align*}
\Psi\left(x_{1}^{(\lambda)}\right) & = \begin{cases}7, & \lambda=1, \\
1+5 \lambda, & 2 \leq \lambda \leq n-1, \\
-3+5 n, & \lambda=n\end{cases} \\
\Psi\left(w_{1}^{(\lambda)}\right) & = \begin{cases}3 \lambda-2, & 1 \leq \lambda \leq 2, \\
-7+5 \lambda, & 3 \leq \lambda \leq n,\end{cases} \tag{16}\\
\Psi\left(v_{\lambda}\right) & = \begin{cases}6, & \lambda=1, \\
5 \lambda, & 2 \leq \lambda \leq n-1, \\
5 n-2, & \lambda=n, \text { and }\end{cases} \\
\Psi\left(u_{\lambda}\right) & = \begin{cases}1+\lambda, & 1 \leq \lambda \leq 2 \\
-6+5 \lambda, & 3 \leq \lambda \leq n\end{cases}
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\left.\left.\left.\begin{array}{l}
\Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right)= \begin{cases}7, & \lambda=1, \\
1+5 \lambda, & 2 \leq \lambda \leq n-1, \\
-2+5 n, & \lambda=n,\end{cases} \\
\Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-6+5 \lambda, & 2 \leq \lambda \leq n,\end{cases} \tag{17}\\
\Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right)=5 \lambda, \text { for } 1 \leq \lambda \leq n-1,
\end{array}\right\} \begin{array}{ll}
5 \lambda+3, & 1 \leq \lambda \leq n-2,
\end{array}\right\} \begin{array}{ll}
-3+5 n, & \lambda=n-1,
\end{array}, v_{\lambda} v_{\lambda+1}\right)= \begin{cases}5 \lambda \\
\Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)= \begin{cases}3 \lambda, & 1 \leq \lambda \leq 2, \\
5 \lambda-3, & 3 \leq \lambda \leq n-1 .\end{cases} \end{cases}
$$

Case (ii): $m=2$ and $n \geq 3$.

Make the vertex assignment; $\Psi: V\left(S L_{n}{ }^{\circ} S_{2}\right) \longrightarrow \mathrm{N}-$ $\{7 n-1,7 n, \ldots, \infty\}$,

$$
\begin{align*}
& \Psi\left(x_{2}^{(\lambda)}\right)= \begin{cases}11, & \lambda=1, \\
1+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, k \in \mathbb{N}, \\
-2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, k \in \mathbb{N}, \\
-9+7 n, & \lambda=n-2, n=2 k, k \in \mathbb{N}, \\
-16+7 n, & \lambda=n-2, n=2 k+1, k \in \mathbb{N}, \\
-6+7 n, & \lambda=n-1, \text { and } \\
-2+7 n, & \lambda=n,\end{cases} \\
& \Psi\left(x_{1}^{(\lambda)}\right)= \begin{cases}9, & \lambda=1, \\
7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, k \in \mathbb{N}, \\
-3+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, k \in \mathbb{N}, \\
-12+7 n, & \lambda=n-2, n=2 k, k \in \mathbb{N}, \\
-17+7 n, & \lambda=n-2, n=2 k+1, k \in \mathbb{N}, \\
-8+7 n, & \lambda=n-1, n=2 k, k \in \mathbb{N}, \\
-7+7 n, & \lambda=n-1, n=2 k+1, k \in \mathbb{N}, \\
-4+7 n, & \lambda=n,\end{cases} \\
& \Psi\left(w_{(2)}^{(\lambda)}\right)= \begin{cases}7 \lambda-5, & 1 \leq \lambda \leq 2, \\
-5+7 \lambda, & 3 \leq \lambda \leq n-1, \lambda=2 k+2, k \in \mathbb{N}, \\
-8+7 \lambda, & 3 \leq \lambda \leq n-1, \lambda=2 k+1, k \in \mathbb{N}, \\
-7+7 n, & \lambda=n, n=2 k, k \in \mathbb{N}, \\
-8+7 n, & \lambda=n, n=2 k+1, k \in \mathbb{N},\end{cases} \\
& \Psi\left(w_{1}^{(\lambda)}\right)= \begin{cases}1, & \lambda=1, \\
-5+5 \lambda, & 2 \leq \lambda \leq 3, \\
-7+7 \lambda, & 4 \leq \lambda \leq n-1, \lambda=2 k+2, k \in \mathbb{N}, \\
-10+7 \lambda, & 4 \leq \lambda \leq n-1, \lambda=2 k+3, k \in \mathbb{N}, \\
-11+7 n, & \lambda=n \text { and } \lambda=n-1, \\
-10+7 n, & \lambda=n \text { and } \lambda=n,\end{cases} \\
& \begin{cases}8, & \lambda=1, \\
2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, \quad k \in \mathbb{N},\end{cases} \\
& \Psi\left(v_{\lambda}\right)= \begin{cases}2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, \quad k \in \mathbb{N}, \\
-1+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, \quad k \in \mathbb{N}, \\
-13+7 n, & \lambda=n-2, n=2 k, \quad k \in \mathbb{N}, \\
-15+7 n, & \lambda=n-2, n=2 k+1, \quad k \in \mathbb{N}, \\
-5+7 n, & \lambda=n-1, \\
-3+7 n, & \lambda=n,\end{cases} \\
& \Psi\left(u_{\lambda}\right)= \begin{cases}\lambda+2, & 1 \leq \lambda \leq 2, \\
-6+7 \lambda, & 3 \leq \lambda \leq n-1, n=2 k+2, \quad k \in \mathbb{N}, \\
-9+7 \lambda, & 3 \leq \lambda \leq n-1, n=2 k+1, \quad k \in \mathbb{N}, \\
-10+7 n, & \lambda=n, \quad k \in \mathbb{N}, \\
-9+7 n, & \lambda=n, n=2 k+1, \quad k \in \mathbb{N} .\end{cases} \tag{18}
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
& \quad \begin{cases}10, & \lambda=1,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} x_{2}^{(\lambda)}\right)= \begin{cases}2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, \quad k \in \mathbb{N}, \\
-1+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, \quad k \in \mathbb{N}, \\
-11+7 n, & \lambda=n-2, n=2 k, \quad k \in \mathbb{N}, \\
-15+7 n, & \lambda=n-2, n=2 k+1, \quad k \in \mathbb{N}, \\
-5+7 \lambda, & \lambda=n-1, \\
-2+7 n, & \lambda=n,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} x_{2}^{(\lambda)}\right)= \begin{cases}10, & \lambda=1, \\
2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, \quad k \in \mathbb{N}, \\
-1+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, \quad k \in \mathbb{N}, \\
-11+7 n, & \lambda=n-2, n=2 k, \quad k \in \mathbb{N}, \\
-15+7 n, & \lambda=n-2, n=2 k+1, \quad k \in \mathbb{N}, \\
-5+7 \lambda, & \lambda=n-1, \\
-2+7 n, & \lambda=n,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} x_{1}^{(\lambda)}\right)= \begin{cases}9, & \lambda=1, \\
1+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k, \quad k \in \mathbb{N}, \\
-2+7 \lambda, & 2 \leq \lambda \leq n-3, \lambda=2 k+1, \quad k \in \mathbb{N}, \\
-12+7 n, & \lambda=n-2, n=2 k, \quad k \in \mathbb{N}, \\
-16+7 n, & \lambda=n-2, n=2 k+1, \quad k \in \mathbb{N}, \\
-6+7 n, & \lambda=n-1, \\
-6+7 n, & \lambda=n,\end{cases} \\
& \Psi^{*}\left(u_{\lambda} w_{2}^{(\lambda)}\right)= \begin{cases}4 \lambda-1, & 1 \leq \lambda \leq 2, \\
-5+7 \lambda, & 3 \leq \lambda \leq n-1, \lambda=2 k+2, \quad k \in \mathbb{N}, \\
-8+7 \lambda, & 3 \leq \lambda \leq n-1, \lambda=2 k+1, \quad k \in \mathbb{N}, \\
-8+7 n, & \lambda=n,\end{cases} \tag{19}\\
& \Psi^{*}\left(u_{\lambda} w_{1}^{(\lambda)}\right)= \begin{cases}2, & \lambda=1, \\
-7+6 \lambda, & 2 \leq \lambda \leq 3, \\
-6+7 \lambda, & 4 \leq \lambda \leq n-1, \lambda=2 k+2, \quad k \in \mathbb{N}, \\
-9+7 \lambda, & 4 \leq \lambda \leq n-1, \lambda=2 k+3, \quad k \in \mathbb{N}, \\
-10+7 n, & \lambda=n, n=2 k, \quad k \in \mathbb{N}, \\
-9+7 n, & \lambda=n, n=2 k, \quad k \in \mathbb{N},\end{cases} \\
& \Psi^{*}\left(v_{\lambda} v_{\lambda+1}\right)= \begin{cases}12, & \lambda=1, \\
7 \lambda+4, & 2 \leq \lambda \leq n-3, \\
7 n-9, & \lambda=n-2, n=2 k, \quad k \in \mathbb{N}, \\
7 n-10, & \lambda=n-2, n=2 k+1, \quad k \in \mathbb{N}, \\
7 n-4, & \lambda=n-1,\end{cases} \\
& \Psi^{*}\left(v_{\lambda} u_{\lambda+1}\right)= \begin{cases}6, & \lambda=1, \\
7 \lambda, & 2 \leq \lambda \leq n-1,\end{cases} \\
& \Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right)= \begin{cases}4 \lambda, & 1 \leq \lambda \leq 2, \\
7 \lambda-4, & 3 \leq \lambda \leq n-2, \\
7 n-13, & \lambda=n-1, n=2 k, \quad k \in \mathbb{N}, \\
7 n-11, & \lambda=n-1, n=2 k, \quad k \in \mathbb{N} .\end{cases}
\end{align*}
$$

Case (iii): $m=1,2$ and $n=2$. An $C_{\text {exp }}$ average assignment of the graphs $S L_{2}{ }^{\circ} S_{1}$ and $S L_{2}{ }^{\circ} S_{2}$ are shown in Figures 1 and 2.

As a result, Ψ is an $C_{\exp }$ average assignment and the graph $S L_{n}{ }^{\circ} \mathrm{S}_{\mathrm{m}}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$ and $m \leq 2$.

Figure 2: An $C_{\text {exp }}$ average assignment of the graph $\mathrm{SL}_{2}{ }^{\circ} \mathrm{S}_{2}$.

Theorem 8. The graph D_{n}^{*} is an $C_{\exp }$ average assignment graph, for $n \geq 2$.

Proof. Make the vertex assignment; $\Psi: V\left(D_{n}^{*}\right) \longrightarrow N-$ $\{6 n, 6 n+1, \ldots, \infty\}$,

$$
\begin{align*}
& \Psi\left(a_{\lambda, 4}\right)=-1+6 \lambda, \text { for } 1 \leq \lambda \leq n \\
& \Psi\left(a_{\lambda, 3}\right)=-3+6 \lambda, \text { for } 1 \leq \lambda \leq n \\
& \Psi\left(a_{\lambda, 2}\right)=-5+6 \lambda, \text { for } 1 \leq \lambda \leq n, \text { and } \tag{20}\\
& \Psi\left(a_{\lambda, 1}\right)=-2+6 \lambda, \text { for } 1 \leq \lambda \leq n
\end{align*}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
\Psi^{*}\left(a_{\lambda, 4} a_{\lambda, 1}\right) & =-1+6 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(a_{\lambda, 3} a_{\lambda, 4}\right) & =-2+6 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(a_{\lambda, 2} a_{\lambda, 3}\right) & =-4+6 \lambda, \text { for } 1 \leq \lambda \leq n, \tag{21}\\
\Psi^{*}\left(a_{\lambda, 1} a_{\lambda, 2}\right) & =-3+6 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(a_{\lambda, 3} a_{\lambda+1,3}\right) & =6 \lambda, \text { for } 1 \leq \lambda \leq n-1, \quad \text { and } \\
\Psi^{*}\left(a_{\lambda, 1} a_{\lambda+1,1}\right) & =1+6 \lambda, \text { for } 1 \leq \lambda \leq n-1
\end{align*}
$$

As a result, Ψ is an $C_{\exp }$ average assignment and the $\operatorname{graph} D_{n}^{*}$ is an $C_{\exp }$ average assignment graph, for $n \geq 2$.

Theorem 9. The diamond ladder graph $D l_{n}$ is an $C_{\exp }$ average assignment graph, for $n \geq 1$.

Proof. Make the vertex assignment; $\Psi: V\left(D l_{n}\right) \longrightarrow N-$ $\{8 n-1,8 n, \ldots, \infty\}$,
$\Psi\left(z_{\lambda}\right)= \begin{cases}1, & \lambda=1, \\ -2+4 \lambda-\left(\frac{(-1)^{\lambda+1}+1}{2}\right), & 2 \leq \lambda \leq 2 n \text { and } \lambda \text { is even, } \\ -2+4 \lambda-\left(\frac{(-1)^{\lambda+1}+1}{2}\right), & 3 \leq \lambda \leq 2 n \text { and } \lambda \text { is odd, }\end{cases}$
$\Psi\left(y_{\lambda}\right)=-3+8 \lambda$, for $1 \leq \lambda \leq n, \quad$ and
$\Psi\left(x_{\lambda}\right)=-5+8 \lambda$, for $1 \leq \lambda \leq n$.

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
\Psi^{*}\left(y_{\lambda} z_{2 \lambda}\right) & =-2+8 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(y_{\lambda} z_{2 \lambda-1}\right) & =-5+8 \lambda, \text { for } 1 \leq \lambda \leq n, \text { and } \\
\Psi^{*}\left(x_{\lambda} z_{2 \lambda}\right) & =-3+8 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(x_{\lambda} z_{2 \lambda-1}\right) & =-6+8 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(z_{2 \lambda} z_{2 \lambda+1}\right) & =8 \lambda, \text { for } 1 \leq \lambda \leq n-1, \tag{23}\\
\Psi^{*}\left(x_{\lambda} y_{\lambda}\right) & =-4+8 \lambda, \text { for } 1 \leq \lambda \leq n, \\
\Psi^{*}\left(y_{\lambda} y_{\lambda+1}\right) & =1+8 \lambda, \text { for } 1 \leq \lambda \leq n-1, \text { and } \\
\Psi^{*}\left(x_{\lambda} x_{\lambda+1}\right) & =-1+8 \lambda, \text { for } 1 \leq \lambda \leq n-1
\end{align*}
$$

As a result, Ψ is an $C_{\exp }$ average assignment and the diamond ladder graph $D l_{n}$ is an $C_{\text {exp }}$ average assignment graph, for $n \geq 1$.

Theorem 10. The latitude graph is an $C_{\exp }$ average assignment graph.

Proof. Make the vertex assignment; $\Psi: V(G) \longrightarrow N-$ $\{3 n / 2+1,3 n / 2+2, \ldots, \infty\}$,

$$
\Psi\left(u_{\lambda}\right)= \begin{cases}-2+3 \lambda, & 1 \leq \lambda \leq \frac{n}{2} \tag{24}\\ -1+3 \lambda 1, & \lambda=\frac{n}{2} \\ \frac{3 n}{2}, & \lambda=\frac{n}{2}+1 \\ 3+3 n-3 \lambda, & \frac{n}{2}+2 \leq \lambda \leq n-1 \\ 3, & \lambda=n\end{cases}
$$

Consequently, the instigated edge assignment Ψ^{*} is acquired as follows:

$$
\begin{align*}
\Psi^{*}\left(u_{\lambda} u_{n+2-\lambda}\right) & =-2+3 \lambda, \text { for } 2 \leq \lambda \leq \frac{n}{2}, \\
\Psi^{*}\left(u_{n} u_{1}\right) & =2, \text { and } \\
\Psi^{*}\left(u_{\lambda} u_{\lambda+1}\right) & = \begin{cases}3 \lambda, & 1 \leq \lambda \leq \frac{n}{2}, \\
-1+\frac{3 n}{2}, & \lambda=\frac{n}{2}+1, \\
2+3 n-3 \lambda, & \frac{n}{2}+2 \leq \lambda \leq n-1 .\end{cases} \tag{25}
\end{align*}
$$

As a result, Ψ is an $C_{\exp }$ average assignment and the latitude graph is an $C_{\text {exp }}$ average assignment graph.

5. Conclusion

The significant properties on $C_{\exp }$ average assignment of several ladder networks are discovered in this work. Analysis of the $C_{\text {exp }}$ average assignment of other networks can be discussed further.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] J. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, London, UK, 1999.
[2] F. Harary, Graph Theory, Narosa Publishing House Reading, New Delhi, India, 1988.
[3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, Taylor \& Francis Group, Boca Raton, New York, USA, 6th edition, 2016.
[4] F. Buckley and F. Harary, Distance in Graphs, AddisonWesley Reading, 1990.
[5] G. S. Bloom and S. W. Golomb, "Numbered complete graphs, unusual rulers, and assorted applications," Lecture Notes in Mathematics, vol. 642, pp. 53-65, 1978.
[6] J. A. Gallian, "A dynamic survey of graph labeling," Electronic Journal of Combinatorics, vol. 24, p. \#DS6, 2021.
[7] S. Arockiaraj, A. Durai Baskar, and A. Rajesh, "Kannan, Froot square mean labeling of line graph of some graphs," Utilitas Mathematica, vol. 112, pp. 11-32, 2019.
[8] A. Meena Kumari and S. Arockiaraj, "On (1,1,0)- F-Face magic mean labeling of some graphs," Utilitas Mathematica, vol. 103, pp. 139-159, 2017.
[9] S. I. Butt, M. Numan, I. A. Shah, and S. Ali, "Face labelings of type ($1,1,1$) for generalized prism," Ars Combinatoria, vol. 137, pp. 41-52, 2018.
[10] A. M. Alanazi, G. Muhiuddin, A. R. Kannan, and V. Govindan, "New perspectives on classical meanness of some ladder graphs," Journal of Mathematics, vol. 2021, pp. 1-14, 2021.
[11] G. Muhiuddin, A. M. Alanazi, A. R. Kannan, and V. Govindan, "Preservation of the classical meanness property of some graphs based on line graph operation," Journal of Mathematics, vol. 2021, pp. 1-10, 2021.
[12] H. U. Afzal, M. Javaid, A. M. Alanazi, and M. G. Alshehri, "Computing edge weights of symmetric classes of networks," Mathematical Problems in Engineering, vol. 2021, Article ID 5562544, 22 pages, 2021.
[13] S. Dafik, R. Fitriana Eka, and L. Sya' Diyah, Super Antimagicness of Triangular Book and Diamond Ladder Graphs, Indoms-UGM Yogyakarta, Indonesia, 2013.
[14] M. I. Moussa and E. M. Badr, "Ladder and subdivision of ladder graphs with pendent edges are odd graceful," International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks, vol. 8, no. 1, pp. 1-8, 2016.
[15] A. Rajesh Kannan, P. Manivannan, and A. Durai Baskar, "Exponential mean labeling of some graphs obtained from duplicating operations," Journal of Physics: Conference Series, vol. 1597, no. 1, Article ID 012028, 2020.
[16] G. V. Ghodasara and I. I. Jadav, "New grid related cordial graphs," International Journal Applied Mathematics.vol. 28, no. 2, pp. 1244-1248, 2013.
[17] Y. Kurniawati and I. H. Agustin, "On the super edge local antimagic total labeling of related ladder graph," Journal de Physique: Conf. Ser.vol. 1465, no. 1, Article ID 012027, 2020.
[18] L. Ratnasari and Y. Susanti, "Total edge irregularity strength of ladder-related graphs," Asian-European Journal of Mathematics, vol. 13, no. 4, Article ID 2050072, 2020.
[19] A. Ahmed and M. G. Ruxandra, "Radio labeling of some ladder related graphs," Mathematical Reports, vol. 19, no. 69, pp. 107-119, 2017.
[20] R. Mohamed, "Zeen El Deen, Edge graceful labeling for some cyclic related graphs," Advances in Mathematical Physics, vol. 2020, pp. 1-8, 2020.
[21] L. Ratnasari and Y. Susanti, "Total edge irregularity strength of ladder-related graphs," Asian-European Journal of Mathematics, vol. 13, no. 4, Article ID 2050072, 2020.
[22] A. A. Elsonbaty and S. N. Daoud, "Edge even graceful labeling of cylinder grid graph," Symmetry, vol. 11, no. 4, pp. 584-630, 2019.
[23] P. Deb and N. B. Limaye, "On elegant labelings of triangular snakes," Journal of Combinatorics, Information and System Sciences, vol. 25, pp. 163-172, 2000.
[24] N. Diefenderfer, D. C. Ernst, M. G. Hastings et al., "Prime vertex labelings of several families of graphs," Involve, a Journal of Mathematics, vol. 9, no. 4, pp. 667-688, 2016.
[25] A. Elsonbaty and S. N. Daoud, "Edge even graceful labeling of some path and cycle related graphs," Ars Combinatoria, vol. 30, pp. 79-96, 2017.

