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The core objective of this article is to introduce and investigate a new class f§ — UCVQ [A, B] of convex functions associated with the
conic domain defined by the Ruscheweyh g-differential operator. Many interesting properties such as sufficiency criteria, co-
efficient bounds, partial sums, and radius of convexity of order « for the functions of the said class are investigated here.

1. Introduction

Quantum calculus has emerged as one of the most vibrant
areas of research in recent years. Researchers have discussed
and found its applications in numerous dimensions, such as
hypergeometric series, complex analysis, and applied
physics. It has developed techniques to be used in g-calculus,
time scales, partitions, and continued fractions. Jackson, for
the first time, in the beginning of the 20th century, intro-
duced quantum calculus, where he developed and stan-
dardized it. For more details about quantum calculus, see
[1-14]. To make a good pace and understanding of the
results presented in this article, we are going to give below
some primary definitions and relevant details of quantum
calculus. Suppose F represents the class of holomorphic
functions of type

y(2) =z+§bnz”. (1)
n=2

in open unit disk & = {z: z € Cand |z| < 1} and normalized
by the conditions y'(0) =1 and y(0) = 0. Moreover, &

represents the class of all functions in & which are univalent
in &; see [15].

A domain 9 is starlike with respect to a point z, € 9 if
all possible lines which are confined by two points, con-
necting z, to any other point, lie entirely within 2. Cor-
respondingly, a domain & is convex if all possible lines
which are obtained by connecting any two points in 9 lie
thoroughly within &. More clearly, we can say that if the
domain is starlike with respect to each of its points in 9,
then it is convex. If y (&) is starlike for y € & with respect to
the origin, then it is called a starlike function, whereas if
y (&) is convex, then it is called a convex function. The class
of all convex functions is represented by C, and the class of
all starlike functions is represented by S*. Analytically, these
are defined as follows:

. o |2 (2)
S -{yecs’. ER{ M) }>O, ze%},

(2)

o . zy" (2)
C: —{yec?. ER«[I+ @ }>0, ze%}.
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For a € [0,1), suppose that S* (a) and C(«a) are sub-
classes of § consisting of a-starlike functions and a-convex
functions, respectively, defined analytically as follows:

fon S C)
S(a).-{yeé’.?{{y(z)}mx, ze%},

(3)

C(a): ={y€ S: 9{{1+Z;((ZZ))}>% ze %}

For a = 0, the class S* («)= S* and the class C(a) = C.
Moreover, the following two classes are closely related with
their functions defined, respectively.

. zy' (2) }
S = eqs: -1l<l-a, 2z€&¢,
p e ’
] (4)
Ca:z{yeé’: Zy, (Z)<1—(x, ZE%}.
y (2)

Note that S? € S* (a) and C, € C(a). The k' partial sum
of the function y, denoted by y,, is the polynomial, defined
by

k
(@) =z+) bz" (5)
n=2
Generally, lower bounds on ratios such as

R{y (2)/y (2)} or R{y,(2)/y(z)} have been found to be
sharp only when k = 1, but Silverman determined sharpness
Vn € N; see [16, 17]. He investigated that lower bounds are
strictly increasing functions of k. In the present article, by
using Silverman’s technique [16], we will find the function’s
ratio having Taylor series (1) to its sequence of partial sums
ye(z)=z+ Zﬁzzbnz” when the coefficients of y are suffi-
ciently small to fulfill the necessary and sufficient condition.
In more details to clarify, we will find sharp lower bounds for
Y@y (2), ¥ @)y (2), y(2)ly(2), and y;(2)/y (2).
Indeed, we will wuse the familiar result, ie,
Ri{w(z) - lw(z)+1}>0, ze&, if and only if
w(z) = Y, 2c,2" satisfies |w(z)|<|z|. Unless otherwise
stated, we will presume that y has form (1) and that its
sequence of partial sums is represented by (5).

For «a € [0, 1), Ravichandran gave the sharp radius of
starlike and convex functions of order a with form (1) whose
Taylor series coefficients b, satisfy the conditions
bl =2 d,de[0,1], and |b,|<n; M or M/n (M >0) for
nx3.

Consider that y, and y, are holomorphic functions in &
with  w(0)=0 and |w(z)<l|, Vze &, so that
y1(2) = y,(w(2)); y, will be subordinated by y, and
denoted by y,<y,. If y, is holomorphic, then y,<y, iff
¥,(0) = ,(0) and y, (&) < y,(¥).

For two holomorphic functions

y1(2) =) a2and y,(2) = Y b2" (z€E), (6
k=0 k=0
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the Hadamard product of y, (z) and y,(z) is defined as

71(2) 3, (2) = Y a2t (7)
k=0

We will define some notations and concepts of quantum
calculus which are to be used in this article. All results can be
found in [2, 3, 18]. For n € N, 0 <g < 1, we see the classical
g-theory begins with the g-extension of the positive num-
bers. The expression

n

1 —
lim q _ . (8)
q—1 1- q

proposes that we define the g-generalization of n, which is
also called the g-bracket of n, given as

[n.q) = [n], = 11%‘2 ©)

and the g-generalization of the factorial which is called
g-factorial given by

nl n-1],...[1],, n=12,...,
[n]q!:{[ Joln-11,... 11, w0
1, n=0.
The g-difference operator for y € F is defined as
_y(gz) -y (2)
oy@) == (z<b) (11)

and we can see that, for n € N and z € E,

n _ n-1
aqz —[n]qz ,

© ) 12
aq{ > bnz”]» = [n]be"" 1
n—1 n—1

For y(z) € #, the g-analogue of the Ruscheweyh dif-
ferential operator is defined as

R;y(z) =¢(gA+1;2)* y(2)

=z+ OZO: V,.1b,2", (z€ EandA> - 1), (13)
n=2
where
<p(q,l+1;z)=z+§wn_lz’“, (14)
n=2
and
Y = Lem (Ll (Vo =1), (15)

(n-1], T, (A +1) - In- 1],!

where [A+1,g],_; is a Pochhammer symbol, which is de-
fined as follows:
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1, n=0,
(7.4, =

From (13), it is clear that

ng(z) = y(2) andR}Zy(z) =20,y (2),

~ za;"(z'"‘ 1y(z))

Ryy(2) = [l | (m eN),
(17)
li A+12) =———,
qg}* ¢(gA+1:2) (1-2)"!
lim R (z2) = y(2) = 2
o Ry E =Y (1-2"

(n,qlln+1,9][n+2,q][n+3,q]...[m+n-1,q],

(A(l+q) +(3-9)ps(2) - (A(1+q) - (3-9))

neN. (16)

It follows that g — 17, and the Ruscheweyh g-differ-
ential operator converts into the Ruscheweyh differential
operator D° (y(2)); for more details, see [19]. Using (13),

(A] [A]
Z0R,y (2) = (1 +7")R3“y<z> - q—fRzﬂz). (18)

If g— 17, then
z(R'y(2)) =1+ VR y(2) - AR'y(2).  (19)

Definition 1. The function p(z) will lie in the class f3 -
P, [A, B] if and only if

p(z)<(B(l+q)+(3—q))13ﬁ(z)—(B(1+q)—(3_q))’ p=0, (20)
where
1+z
1-72 p=0,
2 1+2z ) B
1+?(10gm> N ﬁ— 1,
Pp(2) =1 (21)

1+

) 1 ) T Ju(z)/\/t—
+——S81In| ———
ﬂz -1 2R(n) Jo

For more details, see [20-24]. If f)ﬁ (z) =1+0pz+--
then it is shown in [25] that, from (46), one can have

2 2
2sinh2 [(— arccos ﬁ)arctan Yz ], 0<p<1,
i1

1

1
dx |+ ,
V1 - x* /1 - (tx)? ) /32_1

B> 1.



4
. 2
87([22??5/35)), 0<B<1,
65=1> B=1, (22)
A
2
L4(" = 1)VE L+ R* () Pt
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Definition 2. A function y(z) € & will lie in the class
B-UCV,[A,B], 20, -1<B<A<1, if and only if

(B(1+q) - (3-@)D,(2D,y(2))/D,y(2) - (A(1+q) - (3 - q))]
(B(1+q)+(3-)D,(zD,y(2))/D,y(2) - (A1 +9) +(3-q))

(23)

B+ -G = @)Dy(2Dyy(2))/IDyy(2) = (AL +q) -(3-q) 1‘
|(B(1 +q) +(3- q))Dq(quy(z))/qu(z) -(A(1+9)+(3-9)

or equivalently,

Dq(Zqu(z))
o€ B—P,[A,Bl. (24)

For more details about the above classes and conic
domain, we refer the readers to [20, 25-28]. Using the

q-Ruscheweyh differential operator, we now define the
following more general class 8 — UCV; [A, B] of functions
associated with the conic domain defined by Janowski
functions.

Definition 3. A function y(z) € ¥ will lie in the class
B~ UCV,[A,B], f20,-1<B<A<1, if and only if

(B(1+q) - (3-q))0,(20,R,y(2)) /9, R,y (2) - (A(1+q) - (3 - q))]
(B(1+q)+(3-)9,(20,Ry (2))/0,Ryy(2) - (A1 + ) + (3 - g))

(25)

|(B(1+9) - (3-9)3,(20,Ryy (2))/0,Ryy(2) - (AL +9) -3 ) 1’
‘(B(l +q)+(3- q))aq(zaquy(z))/angy(z) -(A(l+q9)+(3-9)

or equivalently,

aq(zang y(2))

~ P[A,B]. 26
0Ky (@) € p-P[A, B] (26)

The above defined class - UCV?[A, B] generalizes
many known classes which can be obtained by setting
suitable particular values to the parameters as follows.

Special cases:

(1) B—UCVY_[A, B] = f— UCV(A, B], the well-known
class of B-uniformly Janowski convex functions,
introduced by Noor and Malik [27]

(2) 0 - UCVY.[A, B] = C[A, B], the well-known class of
Janowski convex functions, introduced by Janowski
(20]

(3) B—UCVY[1 -2a,-1] = KD (B, «), see [29]

(4) 0-UCVY_[1 - 2a,-1] = C(a), see [15]

Lemma 1 (see [30]). Let g(z) = 1+ Y., c,2" be subordinate
to G(z) =1+ Y.2,C,z" If G(z) is holomorphic in & and
G (&) is convex, then

e <ICy|, nz1 (27)

2. Main Results

Theorem 1. A function y(z) € F with form (1) will lie in
class ./3.— UCV’; [A,B], f=0, -1 <B<A<]1, if it satisfies the
condition

o

E
D ?"|bn| <1, (28)

n=2
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where
E, = [n]q{z(z» ~ B+ Dgln— 1], +|[(B1+ ) + B -q)lnl,~ (A1 +9)+ (3~ q))l}wm, (29)
and Proof. Suppose that (28) holds; then, it is enough to show
e=(1+q)B- Al (30) that

|(B(1+q)-(3-9)9, (20,R}y (2))/0,R}y (2) - (A(1 + ) - (3-q)) 1‘

|(B(1+9)+ (3~ )9,(20,R,y (2))/9,R.y (2) ~ (A(1 + ) + (3 - 9))
(31)

(B(1 +9) - (3 - 9)9,(29, qu(z>)/a qu<z> ~(A(L+q) - (3-9) 1] B
(B(1+q)+(3- q))aq(za R (z))/a qu(z) (A(l+q@)+(3-9q) .

We consider

|(B(1+9) -(3-9)9, (zaqu(z))/aqu(z)—(A(1+q)—(3 ) 1‘
|(B(1+q)+(3- 2)9,(20,R,y (2))/9,Rby (2) — (A(1+q) + (3 - q))

g B9 -G-9)0 o(20,Ry (2))/3,Rby (2) - (A(1 + ) - (3 - q)) 1}
(B(1+q) +(3-))0,(23,R,y(2))/0,R}y (2) - (A(1 + ) + (3 - q))

<(B+1)

|(B(1+9) - (3-9)3,(20,Ryy (=) = (A(1 + ) - (3= )Ry (2) 1‘
|(B(1+9)+(3-9)9,(20,Roy(2)) — (A1 + @) + (3~ 9)3,Rby (2)

9,Rhy (2) - 3,(20,R,y (2)) | (32)

=2G-9)(B+1)
P (B(1+9)+(3-9)2 (za Rly(2)) (A1 +q) +(3 - 9)o,Rhy (2)|

Yoo (1= [n]g) Yo (] b,2" ‘

(B(1+q) +(3-q)nl,
z(B—A)(1+q)+Zz‘12< >1//,11[n]bz
-(A(1+9)+(3-9q)

- 2(3 - ) (B+ DY2qln - 1], [n],|b,|
T (14 QIB- Ay, - T2|(B(1+q) + (B - q)lnl, — (A(L+ ) + (3 - q)| In],[b,|

=2(3-q)(B+1)

The last expression is bounded above by 1 if



26-)(B+1) Y qln-1],[nl,|b,|<(1 +q)B - Al
n=2
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1

=Y |BO+9) +B-9)nl, - (AU +q) + (G- )|lnl,b,,
n=2

which reduces to

ZZ [n]q{2(3 @) (B+1)gln-1],+

This finalizes the proof. O O

For ¢ — 17 and A = 0, we have the following known
result, proved in [27].

Corollary 1. A function y(z) € F with form (1) will lie in
class p—UCV[A,B], =0, -1<B<A<]1, if it satisfies the
condition

¥ n2(B+1)(n-1)+n(B+1)—(A+ 1)|}|bn| <|B-Al.  (35)

n=2

Forq — 17,1 =0,and A = 1 - 2aand B = -1, we have
the following known result, proved in [29].

Corollary 2. A function y(z) € F with form (1) will lie in
class KD(B,a), =0, 0<a <1, if it satisfies the condition

[

Y nfn(B+1) - (B+a)}b,| < (1-a). (36)

n=2

(AQ1+9)+(3-9))ps(2) - (A(1+q)-(3-¢q)

(B(1+9)+(-q)In],
-(A(l+q)+(3~-9q)

WH—I
(33)
}wn_llbn|<(l +q)|B - Al (34)
Theorem 2. Let y(z)ef- UCV; [A, B], p=0,
-1<B< A<, and be of form (1); then, for n>2,
n2|(A - B)(q+ 1)8,;v; — 4Bqljl v,
[n]q j=0 4q [] + 1]qu+1

where  is defined by (15).

ﬁroof. By the definition for y(z) € f8 —UCV; [A, B], we
ave

(B(1+q) +(B-q)ps(2)-(BU+q) -(3-¢q)

1
4

Now, if p(2) =1+ Y 2,c,z", then by (27) and (39), we
have

|cnlsi(A—B)(q+1)|5ﬁ', nz1. (41)

1 1 1. 1 ,
—[(—ZAq—ZA+ZBq+ZB)((B+1)(1+q)+2—2q)]8ﬁ+---.

d,(z0,R
w = p(2), (38)
IRy (2)
where
(Z)<(A(1 +q)+(3-q)pp(z) —(A(1+q) - (3-q)
P (B(1+q)+(3-9)ps(2) —(B(1+q) - (3~-q))
(39)
If f)ﬁ(z) =1 +6ﬁz+ ..., then
1+4_11 (A-B)(g+ 1)6[3+
(40)
Now, from (38), we have
3,(20,R}y (2)) = p(2)3,R, y (2). (42)

Let p(z) =1+ Y,2,c,2", and using the Cauchy product
formula, we obtain
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M8

1+ f [n], [n]gy,,1b,2" —<1 +Zc z ><1

n=2

]qll/n—lan’%l >
2

n

[\/]8

n=2

This implies that

Z([”]q_ 1)[”]qwﬂ*1b 2! <ch 1+ZZ (q¥j-10jcn- J>
n=2 n=2 j=2

. . o (A-B)(q+ 1)|6ﬂ|
C f coefficients of z"!
omparison of coeflicients of z"~! gives us |b | aqln — 11, (7] ¥ Z lgvj- l'bl|
([Vl]q - 1) [n]ql//n—lbn = (Cnl + zz[]’ q]vjjlbjcnj> (bl = 1)’ (45) or
=
(A=B)(q+ D8] (!
or .
b,|< b
1 ) l nl 4q[n - I]q[”]an—l ]Z{[J]qwl 1| J|
b, = Co1+ ) ljlowiqbic,i ). (46)
([n]q - 1)[n]q1//n,1 < ! J:Z; La¥im1?i J> Now, we prove that
Using (41), we have
(A-B)(q+ D)8y (= 1 m2|(A-B)(q+ )dsy; - 4Bqlnl,y
| ﬁ| Z[]]q%_1|b]| S—H' BYj q ]|
4qln =1, [nlgy, \ = [nly 5 491 + ¥ jn

For this, we use the induction technique. For n =2, we  or

have from (46), '5,3' (A-B)(q+1)

'8ﬁi(q+ 1)(A_B) 221 |b | | 2|S 4q[1]q[2]qv/1 > Y=L

(50)

|bs| < 1
aq(1], 21y, £ ¥y
Tt A For n = 3, we have from (46),

|6s|(A=B)(g+1) p
b= 49[21,314v J; e

o)

_ |05/ (A-B)(q+1)

19021, 531,9, (111,v0lba| + 121,910,

<‘6ﬁ'(A—B)(q+1) (A= B)(q+1)|5]
T 4q(2],[31,v, 4q[1], '

[n], (1] ¥, 1B 27 = ch 2" 1+Z ]qt//nlbnz”_l+<2[n]q1//nlbnz”_1>.<2cn_lz"_1>.
n=2 n=2 n=2

(43)

(44)

(47)

(48)

(49)

(51)

(52)
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From (37), we have

(A= B)(q+ Dogy; - 4Bqljl v,
I

I 3| B [3]q j=0 4q[] + l]qVJjH

(53)

1 (A-B)(g+ D3| [ (A-B)(q+ 1|5sly, +49[1l,w,
S Bl 4qlly, 4q(2],v;

|8 (a-B)(g+ D)  A-Ba+ 1)[3g]
- 4q(2],[3],v, 4q[1], '

Let the assumption be true for n = m + 1. From (46), we From (37), we have
have
< 1_[ 2|(A - B)(q +1)dsy; - 4Bql ]]qy/]'
[b| < Z gy 1'b1‘> (54) mly o 40+ g¥jn

j=1

(55)

03/(A-B)(g+1)
B

4q[m - 1] [ ] Vin1
! By the induction hypothesis,

1_[j(A B)(q+ 1)y, - 4Bq[]]q1//]'> |5ﬂ\(A B)(g+1) m-l

[ b (56)
mlg i 49[j + 1y jn 4q[m - 1] [m]ql,,mljz1 q%1| J|

Multiplying both sides by 1/ [m]q (A-B)(g+ 1)|8B| Vot
4q[m-11,y,,,/49[m],y,,, we have

i 2|(A - B)(q+ 1)dsy; - 4Bqljl,v|
m]q i 4q(j + 1y

(1 A=B @ Dy +daln - gy )
*\ T, 4q[m] v,

03/ (A - B)( 1)’”1
)

4q[ - l]qV/m 1 =1

|6s|(A=B)(g+1)
= X
4q[m] v,

< |65/ (A= B)(q+1) =)

wm_14Q[m_1]q[m]qv/mfl ; j- 1| ]|+ Z 1//J l'b]|>

0;|(A-=B)(g+1)
R G ll <m1|b|+ S, |b]|)

q[m]qV/m q j=1

(57)

|65|(A=B) (g +1)
= aqim], il vy ZV’j—1|bj'.

j=1
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That is,
|65 (A= B)(g+1) m | ool |< H 2|(A - B)(q+1)dgy; - 4Bq[]]q1//]| )
45][ - 1] [m]qv/m 1 j= 1 J ! ] B [m] 4q[] + l]ql//]+l
Ep(1+392,6,2" ") E
Hence, the consequence is true for n = m + 1. Therefore, = k+1( %"_2 nn—l ) e |
using mathematical induction, we have proved that (37) is 5(1 + Y nabuz ) €
true Vn, n>2. 0 O . ) . (64)
w(z) — 1+ Zn=2b1’lzn_ + |Ek+1/€zzzk+lbnzn_
For ¢ — 17 and A = 0, we have the following known 1+ Y5 b 2!
result, proved in [27]. n=2n
We have
Corollary 3. Let y(z) € f—UCVIA,B], p=0,
-1<B< A<, and be of form (1); then, for n>2, lw(z) - ll Epeor/€X ks |Pal (65)
< . < :
2 '(A B)S; - 23J| hw(z)+ 1172 - 2% o|bu| = Err /€320 |04
DI e (59
ni 2(j+1) Now,
-1
l—w(z )=l (66)
Forq — 17,1 =0,and A =1 -2aand B = -1, we have w(z) +1
the following known result, proved in [29]. if
Corollary 4. Let y(z) € KD(f,a), >0, 0<a <1, and be of o
form (1); then, for n>2, Z |, + =+ Z || <1. (67)
n=2 n=k+1

2|1 - 03+
e H G (60)

Using the already proven results of Silverman [16] and
Silvia [17] on partial sums of holomorphic functions, we will
find the fraction of (1) to its sequence of partial sums y, (z) =
z+ Y*_b,z" when the function y(z) has coefficients small
enough to satisfy condition (28). We will investigate sharp

lower bounds for R{y(2)/y(2)}, R{y' @)y (2)},
R{y(2)/y(2)}, and R{y((2)/y'(z)} in the class
B-UCV,[A,B].
Theorem 3. If y(z) € f— UCV; [A, B), then
y(2) €
m{)’k (Z)} = Erir (61

where Ey,, is defined by (29) and € = (1+q)|B— Al. The
extremal function

k+1

y(z)=z+[E£ Z

k+1

(62)
gives the sharp result.
Proof. Define a function w(z):

"B |y [ e
wi) == ‘[mz) <1 [Ekﬂ)]’ (©

and this will reduce to

It is sufficient to show that the left hand side of (28) is
bounded above by Y °,E, /elb,| if

2 [Ek+1 N N [En
Zz|bn| += ; |b,,| < Zz?|bn|. (68)
n= n=k+1 n=

This leads to the following expression:

£ IEn - ¢ [En B IEkH X
Z( £ )lb”| +< £ >n:%+1

n=2
To ensure that the function defined by (62) gives the
sharp outcome, we note that, for z = re™",

y(z)_1+ £ o

[b,|z0.  (69)

Vi (2) Eri
i
e e
=1+ ren
k+1
er” Vi Vi
=1+ (cos —+1i sin 7> (70)
k+1 n n
n
er
= 1 —
[Ek+1
y(Z) — [Ek+1 - £

whenr — 1.

Y (2) By O
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Theorem 4. If y(z) € f - UCVg [A, B], then

Vi (2) Eii1
m{y = } phe 1)

where Ey,, is defined by (29) and € = (1+q)|B— Al. The
result (71) is sharp with the function given by (62).

Proof. Define the function w(z):

Journal of Mathematics

w(z) = Erir + 8_[J’k(z) _ Era ]

w(z) -1 _ Zﬁ:anZrkl B Z?;anszl - [Ek+1/szzzk+lbnzn71

LU(Z) +1 B 2+ Z:fl:anzni1 + Zg:zbnzrkl - [Ek+1/£222k+llbnlzk71

€ y(z) [Ep,, +e
(72)
_ 1+ Zﬁ:zbnzn_l B [Ek+1/5222k+1bnzn_l
1+ Y% b,2"" '
This will become
(73)

-(1+ Ekﬂ/e)zzkﬂbnzn_l

B 2+ ZZE:anzn_l + (1 - [Ek+1/£)2fzzk+1|bnlzk_l.

This implies that

|w(z) - 1| < (1 + [Ek+1/€)222k+1|bn| (74)
lw(z)+1] 72 - 2Zﬁ:2|bn| -(1- Ek+1/8)2ﬁk+1|bn|-
Now,
w(z)-1
lw(z) +1 <1 (73)
if
k o
Y+ 3 bl<t. (76)
n= n=k+1

It would be enough to show that the left side of (28) is
bounded above by Y °,E, /elb,| if

k 0 © [E
2+ ¥ o< X bl (77)
=2 n=k+1 2 €

which leads to the following expression:

k o
Z(E‘1>|bn|+ > (E—1)|bn|zo (78)
n=2 & n=k+1 £
or

OZO:(E— 1>|bn|20. (79)

n=2 €

w(z)-1

Exa/e(k + DY, b,

Consequently, the equality holds for the extreme func-
tion y(z) given by (62). O O

We now turn to fractions related to the derivatives.

Theorem 5. If y(z) € - UCV; [A, B], then

y'(z)]> By —e(k+1)
R > , 80
{yli(z) g [Ek+1 ( )

where ., is defined by (29) and € = (1 +q)|B - A|. The
result (80) is sharp with the function given by (62).
Proof. Define the function w(z):

[Ek+1 |:y,(z)_[Ek+l_s(k+1):|
e(k+1) | yi(2) Ejr

w(z) =

B (14 Z2m0:2"")  (Egyy —e(k+1))

) e(k+ 1)(1 + Zﬁzznbnz”"l) e(k+1)

(81)
and this will reduce to
wiz) = 1 Do Ealelk+ DYy b,z
1+ anznbnz”*I
(82)
Now, we have

(83)

w(z)+1 2+ 25 b, 2"+ By, le(k+ 1) nb, 2"

This implies that
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|w(z) - 1 Epoi/e(k+ 1)) nb,| (84)
lw(z)+ 155 = 255 b, - Egile (ke + DY, b,
Now,
w(z)-1
w(z) + 1‘ = (85)
if
Zn]b |+ (k+1) Z nlb,| < 1. (86)

n=2

It would be enough to show that the left side of (28) is
bounded above by Y °,E, /elb,| if

k Ey, E
S+ Y Al Y ) @)

n=2 n=k+1 n=2

which leads to the following expression:

11

Theorem 6. If y(z) € f— UCV),[A, B, then

Ji(2) Enr
m{}’,(z)}zf(k+1)+[Ek+l’ (89)

where E,,, is defined by (29) and e = (1+q)|B - A|. The
result (89) is sharp with respect to the function given by (62).

Proof. Define the function w(z):
ew+n+hﬂvmw_ Exni

w@ ="y Y (z) e(k+1)+Eg,
(e(k+1)+ [Ekﬂ)(l + Zﬁ;znbnzml) Eq.,
ek + 1)(1 + Zzznbnzrﬂ) e(k+1)
(90)

This will become

-1

1+ Y b2t~y e(k+ 1Y, nb,2"

d [En D [En n[Ek+1 w(z) = e n-1
;<?—n>|bn| +n_%+l(?—m)|bn| >0. (88) (1 + anznbnz ) ( )
91
The result (80) is sharp with respect to the function given )
by (62). O 0 This leads us to
w(z) -1 _ Y% (L+ Egpy/e(k +1))nb, 2" (92)
w@+1 2425 nb 2"+ Y0 (1 - By /e(k +1))nb,2""
which reduces to
lw(z) -1 (1+ Epy/e(k+ 1) Y025, 1n|b,] (93)

<
lw(@) + 1172 - 255 alb,| - (1 - By, /e (k+ D)X nlbn|

Now,
w(z)-1
lw(z) T 1‘ = 04)
if
k oo
Yoap,|+ ¥ nlb,|<1. (95)
n=k+1

n=2 =

It is sufficient to show that the left hand side of (28) is
bounded above by Y °)E, /elb,| if

k oo
Zn|bn| +

n=2 n=k

© [E
> nlbls 2, (96)

which leads to the following expression:

i(%—n)lbnlzo. (97)

n=2

The result (89) is sharp with respect to the function given
by (62). O O

In the next theorem, we will find the radii of starlikeness
for the class f§ - UCV; [A, B].

Theorem 7. Let y(z) € - UCV’\ [A, B]. Then, y(z) is a
convex function of order « € [0, 1) in |zl <r =r| (a), where

1/n-1
E,(1-a)
= s =2,3,....,
i (@) <e(q[n— 1]q+(1— oc))) "
(98)

where E,, is defined by (29) and ¢ = (1 + q)|B — Al.

Proof. Let y(z) € f— UCVQ [A, B]. Then, by the theorem,
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©E, 9,(z0,R}y (z
Z?lbnl<l’ (99) M <l-a, (100)
n=2 qu (Z)
where E, is defined by (29) and &= (1+q)|B— Al|. For that is
a € [0,1), we need to show that ’
104(20,Ry (2)) = 9, Ryy (2)] _‘ o zq[n gl 102" |
9,R.y (2) | yo z[n]q% b2
<z;22q[n— 11, [y, || 121" (101)
- 1- 2222 [;/l]qvjn—llbnllzln_1
<l-a
Thus, [0, (20,R}y (2)) = 0,R}y (2)/0,R}y (2)| <1 - a if Conflicts of Interest

] + 1>[n]ql//n_1|bn||z|n1 <1 (102)

qln-1],
-«

According to theorem (99), inequality (102) will be true

if
-1 E,
(q[ ] +1)|z| < (103)
1 €
Solving (103) for |z|, we obtain
_ E, (1-«)
21" < 2 : 104
s(q[n—l]q+(l—oc)) (104)
Setting |z| = r («) in (104), we have
E (1 1/n—
o = a{1-0) , (109)
£(q[n— l]q +(1- oc))
which is the required result. O O

3. Conclusion

In this article, we have applied the g-Ruscheweyh differential
operator to define and study a new class 8 — UCV; [A, B] of
g-convex functions associated with the conic domain. This
class generalizes the classes B —UCVI[A,B], C[A,B],
K (B, ), C(a), and C which have been defined and studied
earlier. This fact has been illustrated above with details and
proper referencing. The results presented include sufficiency
criteria related to Taylor series coefficients, the coefficient
bounds, and the ratios of partial sums to their infinite sum
for functions of the class f§ - UCV;} [A, B].

Data Availability

No data were used in this article.

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

All authors contributed equally and approved the final
manuscript.

References

[1] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-
Calculus in Operator Theory, Springer, Berlin, Germany, 2013.

[2] F. H. Jackson, “On g-functions and certain difference oper-
ator,” Transactions of the Royal Society of Edinburgh, vol. 46,
pp. 253-281, 1908.

[3] F. H. Jackson, “On g-definite integrals,” Quarterly Journal of
Pure and Applied Mathematics, vol. 41, pp. 193-203, 1910.

[4] V.Kacand P. Cheung, Quantum Calculus, Springer Science &
Business Media, Berlin, Germay, 2001.

[5] H. M. Srivastava, “Operators of basic (or g-) calculus and
fractional g-calculus and their applications in geometric
function theory of complex analysis. Iran,” Iranian Journal of
Science and Technology Transaction A-Science, vol. 44, no. 1,
pp. 327-344, 2020.

[6] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, and
B. Khan, “Hankel and Toeplitz determinants for a subclass of
g-starlike functions associated with a general conic domain,”
Mathematics, vol. 7, Article ID 181, 2019.

[7] H. M. Srivastava, M. K. Aouf, and A. O. Mostafa, “Some
properties of analytic functions associated with fractional g-
calculus operators,” Miskolc Mathematical Notes, vol. 20,
no. 2, pp. 1245-1260, 2019.

[8] H. M. Srivastava, M. Arif, and M. Raza, “Convolution
properties of meromorphically harmonic functions defined by
a generalized convolution g-derivative operator,” AIMS Math,
vol. 6, pp. 5869-5885, 2021.

[9] H. M. Srivastava, S. Arjika, and A. S. Kelil, “Some homoge-
neous g-difference operators and the associated generalized



Journal of Mathematics

Hahn polynomials,” Applied Set-Valued Analysis and Opti-
mization, vol. 1, pp. 187-201, 2019.

[10] H. M. Srivastava and D. Bansal, “Close-to-convexity of a
certain family of g-Mittag-Leffler functions,” Journal of
Nonlinear and Variational Analysis, vol. 1, pp. 61-69, 2017.

[11] H. M. Srivastava, J. Cao, and S. Arjika, “A note on generalized
g-difference equations and their applications involving g-
hypergeometric functions,” Symmetry, vol. 12, Article ID
1816, 2020.

[12] H. M. Srivastava and S. Arjika, “A general family of g-
hypergeometric polynomials and associated generating
functions,” Mathematics, vol. 9, Article ID 1161, 2021.

[13] H. M. Srivastava, B. Khan, N. Khan, and Q. Z. Ahmad,
“Coeflicient inequalities for g-starlike functions associated
with the Janowski functions,” Hokkaido Mathematical Jour-
nal, vol. 48, pp. 407-425, 2019.

[14] H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, and
N. Khan, “Upper bound of the third Hankel determinant for a
subclass of g-starlike functions associated with the g-expo-
nential function,” Bulletin des Sciences Mathematiques,
vol. 167, Article ID 102942, 2021.

[15] A. W. Goodman, Univalent Functions, Polygonal Publishing
House, New Jersey, NJ, USA, 1983.

[16] H. Silverman, “Partial sums of starlike and convex functions,”
Journal of Mathematical Analysis and Applications, vol. 209,
no. 1, pp. 221-227, 1997.

[17] E. M. Silvia, “Partial sums of convex functions of order %,”
Houston Journal of Mathematics, vol. 11, no. 3, pp. 397-404,
1985.

[18] H. Al dweby and M. Darus, “On harmonic holomorphic
functions associated with basic hypergeometric functions,”
The Scientific World Journal, vol. 2013, Article ID 164287,
7 pages, 2013.

[19] S. Ruscheweyh, “New criteria for univalent functions,” Pro-
ceedings of the American Mathematical Society, vol. 49,
pp. 109-115, 1975.

[20] W. Janowski, “Some extremal problems for certain families of
analytic functions,” Annales Polonici Mathematici, vol. 28,
no. 3, pp. 297-326, 1973.

[21] S. Kanas and A. Wisniowska, “Conic domains and starlike
functions,” Revue Roumaine de Mathématique Pures et
Appliquées, vol. 45, pp. 647-657, 2000.

[22] S. Kanas and A. Wisniowska, “Conic regions and k-uniform
convexity,” Journal of Computational and Applied Mathe-
matics, vol. 105, no. 1-2, pp. 327-336, 1999.

[23] S. Mahmood, M. Arif, and S. N. Malik, “Janowski type close-
to-convex functions associated with conic regions,” Journal of
Inequalities and Applications, vol. 2017, no. 1, p. 259, 2017.

[24] S. N. Malik, M. Raza, M. Arif, and S. Hussain, “Coeflicients
estimates of some subclasses of analytic functions related with
conic domain,” Analele Universitatii “Ovidius” Constanta-
Seria Matematica, vol. 21, no. 2, pp. 181-188, 2013.

[25] S. Kanas, “Coefficient estimates in subclasses of the Car-
atheodory class related to conical domains,” Acta Mathe-
matica Universitatis Comenianae, vol. 74, no. 2, pp. 149-161,
2005.

[26] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava,
R. Manzoor, and S. M. J. Riaz, “Some coefficient inequalities of
g-starlike functions associated with conic domain defined by
q-derivative,” Journal of Function Spaces, vol. 2018, Article ID
8492072, 13 pages, 2018.

[27] K. I. Noor and S. N. Malik, “On coefficient inequalities of
functions associated with conic domains,” Computers &

13

Mathematics with Applications, vol. 62, no. 5, pp. 2209-2217,
2011.

[28] S. Malik, S. Mahmood, M. Raza, S. Farman, and S. Zainab,
“Coeflicient inequalities of functions associated with petal
type domains,” Mathematics, vol. 6, no. 12, p. 298, 2018.

[29] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, “Classes of
uniformly starlike and convex functions,” International
Journal of Mathematics and Mathematical Sciences, vol. 2004,
no. 55, pp. 2959-2961, 2004.

[30] W.Rogosinski, “On the coeflicients of subordinate functions,”
Proceedings of the London Mathematical Society, vol. 48,
pp. 48-82, 1943,



