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Some novel exact solutions and approximations to the damped Du�ng–Mathieu-type oscillator with cubic nonlinearity are
obtained. �is work is divided into two parts: in the �rst part, some exact solutions to both damped and undamped Mathieu
oscillators are obtained. �ese solutions are expressed in terms of the Mathieu functions of the �rst kind. In the second part, the
equation of motion to the damped Du�ng–Mathieu equation (dDME) is solved using some e�ective and highly accurate
approaches. In the �rst approach, the nonintegrable dDME with cubic nonlinearity is reduced to the integrable dDME with linear
term having undermined optimal parameter (maybe called reduced method). Using a suitable technique, we can determine the
value of the optimal parameter and then an analytical approximation is obtained in terms of the Mathieu functions. In the second
approach, the ansatz method is employed for deriving an analytical approximation in terms of trigonometric functions. In the
third approach, the homotopy perturbation technique with the extended Krylov–Bogoliubov–Mitropolskii (HKBM) method is
applied to �nd an analytical approximation to the dDME. Furthermore, the dDME is solved numerically using the Runge–Kutta
(RK) numerical method. �e comparison between the analytical and numerical approximations is carried out. All obtained
approximations can help a large number of researchers interested in studying the nonlinear oscillations and waves in plasma
physics andmany other �elds because many evolution equations related to the nonlinear waves and oscillations in a plasma can be
reduced to the family of Mathieu-type equation, Du�ng-type equation, etc.

1. Introduction

Several physical and natural phenomena related to biology,
chemistry, physics, engineering problems, and so on can be
modelled by both ordinary di�erential equations (ODEs)
and partial di�erential equations (PDEs) for studying the
nonlinear self-excited oscillators [1–12]. Also, in many real-
life problems, some internal and external forces that can
a�ect the system under consideration cannot be neglected.
For example, the friction and collisional force and many

others that a�ect on themotion of particles, whether in solid,
liquid, gas or plasma physics, cannot be neglected.�erefore,
these forces must be included in the mathematical models
that will be used for studying the natural and physical
problem, such as investigating the nonlinear oscillations in
various plasma models [13–23]. Interest in the study of
nonlinear oscillations in a plasma is due to its many potential
applications. Nowadays, plasma processing is seen as an
important and e�ective technology which has been able to
enter into all modern industries. In addition, plasma had a
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great credit for the modern technology in electronics,
medicine, agriculture, biomedicine, automobiles, optics,
aerospace, telecommunications, solar energy, polymers,
papers, textiles, etc. [16, 24]. ,erefore, we focus our at-
tention on the applications of the family of Duffing-type
equation for modelling the nonlinear oscillations in a
plasma. ,e Duffing-type oscillator is one of the most
popular differential equations that has spread widely due to
its ability to explain many nonlinear phenomena in various
fields of science and in mechanical systems and engineering.
,is equation is a mathematical model described by a second
order of ODEs with a nonlinear spring force. It is used for
describing the motion of (un)damped oscillator rather than
simple harmonic motion. Motivated by potential engi-
neering and plasma physics applications in addition to many
others applications in electronic circuits and micro-
controller, the family of Duffing equation such as (un)
damped Duffing equation with lower and higher-order
nonlinearities, (un)damped Duffing–Helmholtz equation,
and (un)damped Mathieu–Duffing equation have received
wide attention due to their ability for investigating the
mechanism of a rigid pendulum oscillator, oscillations in
different plasma models, and so on. ,is family of second-
order differential equations has provided useful and suc-
cessful models for investigating the nonlinear oscillations
and chaotic nature. ,e biggest challenge in the study of the
dynamics of nonlinear mechanical systems is to find some
real solutions (including the analytical and numerical so-
lutions) to the evolution equations that are used for de-
scribing the characteristics of nonlinear phenomena under
consideration. Accordingly, studying the solutions of many
equations of motion to various oscillators is one of the most
difficult tasks facing many researchers.

,e solutions associated to mentioned evolution equa-
tions and many other related equations have been studied
extensively due to the fact that such equations arise in a
variety of realistic problems. For instance, the fluid equa-
tions of electron-ion unmagnetized cold plasma were re-
duced to Mathieu equation in order to investigate the
electron waves [13]. During this study, the authors assumed
that the density perturbations of the plasma species are only
time-dependent functions and do not depend on space. Also,
the basic set of fluid equations to amulticomponent complex
plasma consisting of inertial two types of dust grains (both
positive and negative charges) as well as inertialess Max-
wellian species including electrons and ions were reduced to
a Mathieu-type equation for studying the excitation of dust-
acoustic oscillations [14]. Moreover, a nonlinear Van der
Pol–Mathieu-type equation was derived for the dust grain
density in order to investigate the dynamics of dust-acoustic
oscillations in a dusty plasma consisting of inertial Boltz-
mann distributed species (electrons and ions) and inertialess
dust grains [15]. A modified Van der Pol–Duffing oscillator
with forced term was used in the study and was used in
modelling the dynamics of nonlinear oscillations in different
plasma models [16]. More recently, the multistage method
was used for solving the damping Duffing equation with
forced term in order to model the oscillations in a complex
unmagnetized plasma [17].

Due to the importance of the family of Duffing-type
equation and motivated by the mentioned studies, we focus
our attention on the analysis of the so-called (un)damped
Mathieu–Duffing oscillator with a twin-well potential [25].

R ≡ €x + α − Q0 cos(Ωt)( 􏼁x + βx
3

� 0, (1)

and

R1 ≡ €x + ε _x + α − Q0 cos(Ωt)( 􏼁x + βx
3

� 0, (2)

for studying the vibrating/oscillating behavior of systems
described by (1) and (2), where (α, β)> 0 are, respectively,
the stiffness coefficients of the linear and nonlinear terms
and ε represents the coefficients of damping term. ,e
longitudinal loading is periodic, Ω and Q0 are the fre-
quency and excitation strength of the periodic loading,
respectively. ,e total energy of the undamped
Mathieu–Duffing oscillator (DMO) according to (1) is
defined by H � H0 + H1, where H0 � 1/2 _x2 − 1/2αx2+

1/4βx4 and H1 � −1/2x2Q0 cos(Ωt) are, respectively, the
unperturbed and perturbation in the Hamiltonian of (1).
,ere is another form to the equation of periodic motion
which is called (un)damped Mathieu–Helmholtz
oscillator.

€x + α − Q0 cos(Ωt)( 􏼁x + βx
2

� 0,

€x + ε _x + α − Q0 cos(Ωt)( 􏼁x + βx
2

� 0.

⎧⎨

⎩ (3)

,e analytical solution to the damped
Mathieu–Helmholtz oscillator (3) was obtained using the
finite Fourier series expansion [26]. Note that in evolution
equation (3), the nonlinear term βx2 is different from the
nonlinear term in equations (1) and (2).

,e objectives of our study are to find some novel
solutions to the (un)damped Duffing–Mathieu-type os-
cillator, under the initial conditions x(0) � 0 and
x′(0) � _x0. Two cases for Duffing–Mathieu-type oscillator
will be discussed. In the first case, we will get some exact
solutions to (un)damped Mathieu equation in terms of the
Mathieu functions of the first kind. In the second case, the
damped Duffing–Mathieu oscillator (dDMO) will be
solved analytically and numerically using some different
approaches. In the first approach, the cubic nonlinear
term in equation (1) βx3 is replaced by the linear term βκx,
where the constant κ≥ 0 represents an optimal parameter.
,en, the nonintegrable dDMO reduces to an integrable
one which has an exact solution but with undermined
parameter κ. Using a suitable technique, we can determine
the value of the optimal parameter κ. ,us, we can get an
analytical approximation to the dDMO (2) in terms of the
Mathieu functions. For the second approach, the ansatz
method with the help of the solution to the undamped
Duffing oscillator is employed to derive an analytical
approximation to the dDMO (2) in the form of trigo-
nometric functions. Furthermore, the homotopy pertur-
bation technique with the extended
Krylov–Bogoliubov–Mitropolskii (KBM) which is called
HKBM method is also devoted for solving the dDME (2)
for arbitrary physical parameters [27, 28].
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2. Mathematical Analysis

Here, we proceed to find some approximate solutions to
both undamped and damped Duffing–Mathieu oscillators
(1) and (2), respectively. Below we discuss the different
approaches for solving the mentioned equations.

2.1. An Exact Solution to (Un)damped Mathieu Equation.
Both undampedMathieu equation, i.e., (1) for β � 0, and the
damped Mathieu equation, i.e., (2) for β � 0, have exact

solutions in the form of Mathieu functions. First, let us find
the solution of the following damped Mathieu equation:

€x + ε _x + α − Q0 cos(Ωt)( 􏼁x � 0, (4)

with subjected to the initial conditions (ICs): x(0) � x0 and
x′(0) � _x0.

Using the following MATHEMATICA command

g[t ] ≔ x′′[t] + 2ε x′[t] − α − Q0Cos[Ωt]( 􏼁x[t]

NDSolve g[t] �� 0&&x[0] �� x0&&x′[0] �� _x0, x[t], t􏼂 􏼃[1, 1, 2]//FullSimplify( 􏼁
1
,

(5)

we can get the exact solution to (4) as follows:

x(t) � e
− εt x0MC1(t, ε)

MC1(0, ε)
+
2 εx0 + _x0( 􏼁

Ω
MS1(t, ε)

MathieuSPrime 4 α − ε2􏼐 􏼑/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

⎛⎝ ⎞⎠, (6)

with

MC1(t, ε) � MathieuC
4 α − ε2􏼐 􏼑

Ω2
,
2Q0

Ω2
,
Ω
2

t⎡⎣ ⎤⎦,

MS1(t, ε) � MathieuS
4 α − ε2􏼐 􏼑

Ω2
,
2Q0

Ω2
,
Ω
2

t⎡⎣ ⎤⎦,

(7)

where MathieuS and MathieuC are the Mathieu functions of
the first kind or sometimes called sine-elliptic and cosine-
elliptic, respectively. For ε � 0, the damped Mathieu equa-
tion (4) reduces to the following undamped Mathieu
equation:

€x − α + Q0 cos(Ωt)( 􏼁x � 0, (8)

and solution (6) reduces to the following one:

x(t) �
x0MC1(t, 0)

MC1(0, 0)
+

2 _x0MS1(t, 0)

ΩMathieuSPrime 4α/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

.

(9)

,e exact solution (6) is compared with RK numerical
solution as shown in Figures 1(a) and 1(b) for different
values of x0.

2.2. Some Analytical Approximations to the Damped Duf-
fing–Mathieu Oscillator. Here, we proceed to discuss two
techniques (the hybrid p−expansion method and the ansatz
method) for finding some analytical approximations to
dDMO (2). For studying dDMO (2), first we rewrite
equation (2) in the following new i.v.p.

R1 � 0,

x(0) � x0 & x′(0) � _x0.
􏼨 (10)

2.2.1. First Approach: Reduced Method. For β≠ 0 and α> 0,
we may obtain simple approximation to the i.v.p. (10) by
replacing the cubic term βx3 by the linear term βκx, where
the constant κ≥ 0 which is used as an optimal parameter to
reduce the residual error. Accordingly, dDMO (2) of cubic
nonlinearity reduces to the following dDMO with linear
term. ,us, we can replace the i.v.p. (10) by the following
new i.v.p.

€x + 2ε _x + α − Q0 cos(Ωt)( 􏼁x + β κx � 0,

x(0) � x0 and x′(0) � _x0.
􏼨 (11)

,us, the exact solution to the i.v.p. (11) is expressed by

xκ ≡ xκ(t) � e
− εt x0MC2(t, ε, κ)

MC2(0, ε, κ)
+
2 εx0 + _x0( 􏼁

Ω
MS2(t, ε, κ)

MathieuSPrime 4 βκ − ε2 + α􏼐 􏼑/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

⎛⎝ ⎞⎠, (12)
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with

MC2(t, ε, κ) � MathieuC
4 βκ − ε2 + α( )
Ω2

,
2Q0

Ω2
,
Ω
2
t ,

MS2(t, ε, κ) � MathieuS
4 βκ − ε2 + α( )
Ω2

,
2Q0

Ω2
,
Ω
2
t .

(13)

�e residual is de�ned as

Rκ(t) � €xκ + ε _xκ + α − Q0 cos(Ωt)( )xκ + βx3κ. (14)

A suitable value of κ can be obtained by solving the
equation Rκ(t0) � 0 for some t0 > 0, say t0 � 1. Making use
of the Padé approximate technique, for 0< t0 ≤ 1 and x0 ≈ 0,
we get

κsuitable �
Y1

Y2
, (15)

with

Y1 � 3x20 Q0t0x
2
0 − αt0x

2
0 − 2εt0 _x0x0 − 4t0 _x

2
0 − 2 _x0x0( )

× 4Q0t0x
2
0 − 4αt0x

2
0 + 3βt0x

4
0 − 8εt0 _x0x0 − 6t0 _x

2
0 − 8 _x0x0( ),

Y2 � −26αQ0t
2
0x

4
0 + 12βQ0t

2
0x

6
0 − 52εQ0t

2
0 _x0x

3
0 + 13Q2

0t
2
0x

4
0

− 52Q0t0 _x0x
3
0 − 30Q0t

2
0 _x

2
0x

2
0 + 13α2t20x

4
0 − 12αβt20x

6
0

+ 52αεt20 _x0x
3
0 + 52αt0 _x0x

3
0 + 30αt20 _x

2
0x

2
0 + 9β2t20x

8
0

− 24βεt20 _x0x
5
0 − 24βt0 _x0x

5
0 + 12βt20 _x

2
0x

4
0 + 52ε2t20 _x

2
0x

2
0

+ 104εt0 _x
2
0x

2
0 + 60εt20 _x

3
0x0 + 60t0 _x

3
0x0 + 12t20 _x

4
0 + 52 _x20x

2
0.

(16)

For a given κ, the residual error LR(κ) of the approxi-
mation (12) to the i.v.p. (10) is de�ned as

LR(κ) � max
0≤t≤T

Rκ(t)
∣∣∣∣

∣∣∣∣ � max
0≤t≤T

€xκ + 2ε _xκ + α − Q0 cos(Ωt)( )xκ
∣∣∣∣

+ βx3κ
∣∣∣∣.

(17)

�e optimal value of κoptimal for the parameter κ on the
interval 0≤ t≤T is de�ned as

κoptimal � min
κ≥0

LR(κ). (18)

Let us apply the obtained approximation (12) for in-
vestigating the properties of the damping oscillations to the
dDMO (2) at di�erent values to the physical parameters
(α, β, ε,Ω, Q0, x0, _x0). �e pro�le of the approximation (12)
using the values of κsuitable (given in equation (15)) and
κoptimal (given in (18)) is displayed in Figures 2 and 3 at
(α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0, 0.2) and
(α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, π/6, 0.2), respec-
tively. �e obtained results showed that this approximation
gives results with good and acceptable accuracy.

2.2.2. �e Ansatz Method for Solving dDMO. Now, we can
summarize the main points to get some approximations to
the i.v.p. (10) in the following steps.

Step 1. Let us assume the following ansatz:

x(t) � y(f(t)), (19)

where the time-dependent function f ≡ f(t) can be de-
termined later and the function y ≡ y(t) represents the
solution of the following i.v.p.

RK (t)
Exact

0 5 10 15 20 25 30

-0.05

0.00

0.05

0.10

t

x
(α,β,⋲,Ω,Q0,x0,ẋ0) = (4,1,0.1,0.5,0.1,0,0.2)

(a)

RK (t)
Exact

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

t

x

(α,β,⋲,Ω,Q0,x0,ẋ0) = (4,1,0.1,0.5,0.1,π/6,0.2)

(b)

Figure 1: Both exact solution (6) and RK numerical solution to the dampedMathieu equation (4) are compared with each other for di�erent
values to the initial amplitude x0.
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€y + 2ε _y + α − Q0( )y + βy3 � 0, y(0) � x0 &y′(0) � _x0.{
(20)

Step 2. Inserting ansatz (19) into i.v.p. (10), we get

R1 � y′(f) −2εf′
2 + 2εf′ + f′′( )

+ y(f) α − Q0 cos(Ωt) + f′
2
Q0 − α( )( )

+ βy3(f) 1 − f′2( ).

(21)

Step 3. For vanishing the coe�cient of y(f) in equation
(21), we get

f′
2 �

−α + Q0 cos(Ωt)
Q0 − α( )

. (22)

Step 4. Integrating equation (22) and with the help of
f(0) � 0, we have

f(t) �
2
Ω
E
Ω
2
t,

2Q0

Q0 − α
( ), (23)

where E stands for the EllipticE function.
Now, the value of f(t) has been determined but the

solution of the i.v.p. (20) needs to be determined. �us, we
are faced with two things: either we use one of the solutions
found in the literature [29] or try to �nd another solution in
the form of trigonometric functions.

RK (t)
Approx. (10)

(α,β,⋲,Ω,Q0,x0,ẋ0) = (4,1,0.1,0.5,0.1,0,0.2)

0 5 10 15 20 25 30

-0.05

0.00

0.05

0.10

t

x

Error κsuitable = 0.000364143κsuitable = 0.

(a)

RK (t)
Approx. (10)

(α,β,⋲,Ω,Q0,x0,ẋ0) = 4,1,0.1,0.5,0.1,0,0.2)

0 5 10 15 20 25 30

-0.05

0.00

0.05

0.10

t

x

Error κoptimal = 0.000118921κoptimal = 0.0036

(b)

Figure 2: �e pro�le of the approximation (12) using the values of κsuitable (given in equation (15)) and κoptimal (given in (18)) is plotted
against t for (α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0, 0.2).

RK (t)
Approx. (10)

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

t

x

(α,β,⋲,Ω,Q0,x0,ẋ0) = (4,1,0.1,0.5,0.1,π/6,0.2)

Error κsuitable = 0.0925855κsuitable = 0.278752

(a)

RK (t)
Approx. (10)

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

t

x
(α,β,⋲,Ω,Q0,x0,ẋ0) = (4,1,0.1,0.5,0.1,π/6,0.2)

Error κoptimal = 0.0193099κoptimal = 0.108898

(b)

Figure 3: �e pro�le of the approximation (12) using the values of κsuitable (given in equation (15)) and κoptimal (given in (18)) is plotted
against t for (α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, π/6, 0.2).
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Step 5. In this step, we proceed to find a solution to i.v.p.
(20) in the form of trigonometric functions. Without loss of
generality, i.v.p. (20) can be redefined as

R2 � €v + 2ε _v + pv + qv
3

� 0,

v(0) � v0&v′(0) � _v0,

⎧⎨

⎩ (24)

where i.v.p. (24) is the same as i.v.p. (20) with p � (α − Q0),
q � β, and v(t) � y(t).

Step 6. Our objective here is to derive another solution that
does not involve elliptic functions but an elementary so-
lution. To do that, we assume ε> 0, and for limt⟶∞v(t) � 0,
we get

v(t) � c0e
− ρt cos h(t) + arccos

x0

c0
􏼠 􏼡􏼠 􏼡, (25)

where h(0) � 0 and h(t) is undermined function.

Step 7. By substituting solution (25) into i.v.p. (24), we have

R2 � c0 sin(θ)e
− ρt

−2εh′ + 2ρh′ − h′′( 􏼁 +
1
4
c
3
0q cos(3θ)e

− 3ρt

+
1
4
c0 cos(θ)e

− 3ρt 3c
2
0q + 4e

2ρt
−2ερ − h′

2
+ p + ρ2􏼒 􏼓􏼔 􏼕.

(26)

Step 8. For vanishing the coefficient of cos(θ) in equation
(26): 3c20q + 4e2ρt(−2ερ − h′

2
+ p + ρ2) � 0, we have

h′ � ±
1
2

���������������������

4p − 8ερ + 4ρ2 + 3c
2
0qe

− 2ρt
􏽱

, (27)

and by solving (27) with h(0) � 0, we get

h(t) � H(t) − H(0), (28)

with

H(t) �
1
ρ

��
Π

√
tanh− 1

�����������

1 +
3c

2
0qe

− 2ρt

4Π

􏽳

⎛⎜⎝ ⎞⎟⎠ −

�����������
3
4
c
2
0qe

− 2ρt
+Π

􏽲

⎛⎜⎝ ⎞⎟⎠,

H(0) �
1
ρ

��
Π

√
tanh− 1

�������

1 +
3c

2
0q

4Π

􏽳

⎛⎜⎝ ⎞⎟⎠ −

��������
3
4
c
2
0q + Π

􏽲

⎛⎜⎝ ⎞⎟⎠,

(29)

where Π � (p − 2ερ + ρ2).

Step 9. ,e number c0 is obtained from the condition
v′(0) � _v0 and it is a solution to the quartic

3qc
4
0 + 4p − 8ερ + 4ρ2 − 3qv

2
0􏼐 􏼑c

2
0 − 4 pv

2
0 − 2ερv

2
0􏼐

+ 2ρ2v20 + 2ρv0 _v0 + _v
2
0􏼑 � 0,

(30)

where the number ρ is a free/optimal parameter that is
chosen in order to minimize the residual error. Its default
value is ρ � ε.

Step 10. Finally, the trigonometric approximation to i.v.p.
(10) is obtained:

x(t) � y(f(t)) � c0e
− ρf(t) cos h(f(t)) + arccos

x0

c0
􏼠 􏼡􏼠 􏼡.

(31)

Step 11. Also, we can solve i.v.p. (20) using RK numerical
method and then replacing t⟶ f(t) (given in equation
(23)). ,e following MATHEMATICA command is intro-
duced for this purpose:

g[t ] ≔ y′′[t] + 2 ε y′[t] + α − Q0( 􏼁 y[t] + βy[t]
3
;

RK[t ] ≔ NDSolve g[t] �� 0&&y[0] �� x0&&y′[0]􏼂

�� _x0, y[t], t􏼃[1, 1, 2],

(32)

x[t ] ≔ RK[f[t]]. (33)

Both analytical and numerical approximations (31) and
(33) to i.v.p. (10) are, respectively, plotted against the RK
numerical solution as illustrated in Figures 4 and 5. Also, at
(α, β, ε,Ω, Q0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0.2), the maximum
global distance of both approximations (31) and (33) is
estimated for different values to x0 as

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)Approx.(26)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000506901,

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)Approx.(28)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000482946,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)Approx.(26)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00415468,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)Approx.(28)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00266014.

(34)

,e obtained results show the high accuracy and effi-
ciency of the obtained approximations (31) and (33).
Moreover, these approximations are stable against long time
and for arbitrary values of the physical parameters.

2.3.AeHomotopyExtendedKrylov–Bogoliubov–Mitropolskii
Method. ,e homotopy extended Kry-
lov–Bogoliubov–Mitropolskii (HKBM)methodmay be used
for solving both conservative and nonconservative oscilla-
tors. Based on this method (more details can be found in
[27, 28]), i.v.p. (10) can be redefined as

€x + α − Q0( 􏼁x + p ε _x + Q0(1 − cos(Ωt))x + βx
3

􏽨 􏽩 � 0,

x(0) � x0 and x′(0) � _x0, 0≤ t≤T,

⎧⎨

⎩

(35)

where xp ≡ xp(t) indicates the solution of i.v.p. (35) while
the solution of the dDMO (2) is obtained for p � 1. For
ω0 �

������
α − Q0

􏽰
, ϕ(t) � Q0(1 − cos(Ωt)) and α − Q0 > 0, i.v.p.

(35) can be written in the following reduced form:
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€x + ω2
0x + p ε _x + ϕ(t)x + βx3( ) � 0,

x(0) � x0 andx′(0) � _x0, 0≤ t≤T.


 (36)

According to the HKBM method, the following ansatz
solution is introduced:

xp � a cos(ψ) +∑
N

n�1
pnun(a,ψ) + O pN+1( ), (37)

where each un ≡ un(a,ψ) is a periodic function in ψ, and
both amplitude a and phase ψ are assumed to vary with time
and subject to the conditions

da

dt
≡ _a � ∑

N

n�1
pnAn(a) + O pN+1( ),

dψ
dt
≡ _ψ � ω0 +∑

N

n�1
pnψn(a) + O pN+1( ),

(38)

where a ≡ a(t) and ψ ≡ ψ(t).
Inserting ansatz solution (37) and using (38) and after

several tedious calculations, we can determine the unknown
time-dependent functions (un,ψn, An, a). To avoid the so-
called secularity, we choose only the solution that does not
contain cos ψ nor sin ψ. For N � 1, we get
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Figure 4: Both trigonometric approximation (31) and RK numerical simulation to the damped Du�ng–Mathieu problem (10) are
compared with each other for di�erent values to the initial amplitude x0.
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Figure 5: Both RK numerical simulation (32) and RK numerical simulation (33) using the de�nition of t⟶ f(t) to the damped
Du�ng–Mathieu problem (10) are compared with each other for di�erent values to the initial amplitude x0.
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_a � −εa(t),

_ψ �
3βa(t)2 + 4ϕ(t)

8ω0
+ ω0,

u1(a,ψ) �
a3β cos(3ψ)

32ω2
0

,

(39)

and

xp(t) � a cos(ψ) + p
β

32ω2
0
a3 cos(3ψ). (40)

By solving system (39), we have

a � c0e
− εt,

ψ �
e− 2εt

16εΩω0
8εe2εt 2c1Ωω0 − Q0(Ωt + sin(Ωt)) + 2αΩt( )[

+ 3βc20Ω e
2εt − 1( )].

(41)

�e �rst-order approximate solution is obtained for
p � 1:

x(t) � x1(t) � a cos(ψ) +
β

32ω2
0
a3 cos(3ψ), (42)
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Figure 6: Both HKBM �rst-order approximate solution (42) and RK numerical simulation are plotted against di�erent values of the initial
angle x0.
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Figure 7: Both HKBM �rst-order approximate solution (42) and RK numerical simulation are plotted against di�erent values of the
damping parameter ε.
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where the values of (a,ψ) are defined in (41) while the
constants c0 and c1 can be obtained from the initial
conditions.

,e comparison between the HKBM first-order ap-
proximate solution (37) and the RK numerical simulation is
reported as shown in Figures 6(a) and 6(b) for x0 � 0 and
x0 � π/6, respectively. Also, both HKBM first-order ap-
proximate solution (42) and RK numerical simulation are,
respectively, compared with each other for weak (ε � 0.1)

and strong (ε � 0.5) damping as illustrated in Figures 7(a)
and 7(b). Furthermore, at (α, β,Ω, Q0, _x0) �

(4, 1, 0.5, 0.1, 0.2) and for different values to (x0, ε), the
maximum global distance error to the HKBM first-order
approximate solution (42) is estimated as

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00110165,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0061929,

Ld(ε � 0.1) � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00110165,

Ld(ε � 0.5) � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00493896.

(43)

It is clear that the HKBM first-order approximate so-
lution (42) is characterized by high accuracy and more
stability at long time.

3. Conclusion

Given the importance of nonlinear oscillations in plasma
physics and engineering and their strong connection to the
family of the Duffing-type oscillator, in this work, some exact
solutions to the damped and undamped Mathieu equations
as well as some analytical approximations to the damped
Duffing–Mathieu oscillator (dDMO) using different ap-
proaches have been obtained. ,e exact solutions to both
damped and undamped Mathieu equation have been ob-
tained in the terms of Mathieu functions of the first kind.
,ese solutions are numerically compared with the Run-
ge–Kutta (RK) numerical simulation. It was observed that
both exact and numerical solutions are completely matched
with each other in the whole time interval. On the other
hand, the dDMO has been solved using some different
approaches. In the first one, the nonintegrable dDMO with
cubic nonlinear term (βx3) has been reduced to an inte-
grable dDMO with linear term (β κx) in which κ is
undermined optimal parameter. ,e kappa optimal pa-
rameter κ has been determined using a suitable technique as
we discussed in the text above. After determining the kappa
optimal parameter, a highly accurate analytical approxi-
mation has been obtained in terms of the Mathieu functions.
In the second approach, a highly accurate analytical ap-
proximation has been derived in detail in terms of trigo-
nometric functions using the ansatz method. In the third
technique, the homotopy extended Kry-
lov–Bogoliubov–Mitropolskii (HKBM)method was used for

getting an effective analytical approximation. Furthermore,
the dDMO has been analyzed numerically using the RK
numerical method. ,e comparison between all obtained
approximations and the RK numerical solutions has been
carried out. Moreover, themaximum global distance error in
the whole time interval to all obtained approximations has
been estimated. All obtained approximations are charac-
terized by the high accuracy and efficiency in addition to
being more stable for a long time.

3.1. Future Work. We may solve the following oscillators
using of the methods described in this paper:

3.1.1. Future Idea I. Cubic-quintic Duffing–Mathieu
equation:

€x + ω2
0x + 2ε _x + ϕ(t)x + βx

3
+ cx

5
� 0,

x(0) � x0 & x′(0) � x0, 0≤ t≤T.

⎧⎨

⎩ (44)

3.1.2. Future Idea II. Forced damped Duffing–Mathieu
equation:

€x + ω2
0x + 2ε _x + ϕ(t)x + βx

3
� F(t),

x(0) � x0 & x′(0) � x0, 0≤ t≤T.

⎧⎨

⎩ (45)

3.1.3. Future Idea III. ,e forced Van der Pol–Duffing
oscillator:

€x − ε 1 − x
2

􏼐 􏼑 _x + ω2
0x + βx

3
� F(t),

x(0) � x0 & x′(0) � x0, 0≤ t≤T,

⎧⎨

⎩ (46)

and many others oscillators.
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