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In this study, we prove the existence of a positive solution for a p-Kirchhoff-type problem with Sobolev exponent.

1. Introduction and Main Results

In this study, we are concerned with the following
p-Kirchhoff-type problem:

− a‖u‖
(θ− 1)p

+ b div |∇u|
p− 2∇u  � |u|

p∗ − 2
u + λ|u|

p− 2
u, inΩ,

u � 0, on zΩ,

⎧⎨

⎩ Pλ(  (1)

where Ω ⊂ RN is a bounded domain, 1<p<N, a, b> 0,
θ> 1, ‖.‖ is the usual norm in W

1,p
0 (Ω) given by

‖u‖p � Ω|∇u|pdx, λ is a parameter, and p∗ � pN/(N − p)

is the critical Sobolev exponent corresponding to the
noncompact embedding of W

1,p
0 (Ω) into Lp∗(Ω).

Since equation (Pλ) contains an integral over Ω, it is no
longer a pointwise identity; therefore, it is often called a
nonlocal problem. It is called also nondegenerate if b> 0 and
a≥ 0, while it is named degenerate if b � 0 and a> 0.

Such nonlocal elliptic problem such as (Pλ) is related to
the original Kirchhoff’s equation in [1] which was first in-
troduced by Kirchhoff as an extension of the classical
D’Alembert wave equation for free vibrations of elastic

strings. Kirchhoff’s model takes into account the changes in
length of the strings produced by transverse vibrations.

Much interest has grown on problems involving critical
exponents, starting from the celebrated paper by Brézis and
Nirenberg [2]. )ey considered problem (Pλ) with a � 0,
b � 1, and p � 2. From their results, it came out that the
space dimension N was going to play a crucial role. )ey
established existence results in dimension N � 3 whenΩ is a
ball, namely, they ensure the existence of a positive constant
λ0 such that problem (P)0,1 admits a positive solution for
λ ∈ (λ0/4, λ1), where λ1 is the first eigenvalue of the operator
− Δ. In higher dimensions, N≥ 4, they proved the existence
of a positive solution for λ ∈ (0, λ1) and no positive solution
for λ> λ1 or λ≤ 0 and Ω is a starshaped domain.
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Moreover, by using the concentration compactness
principle [3], the results of [2] were extended to the quasi-
linear cases by Guedda and Veron [4]. Precisely, they proved
that if N≥p2, then the quasi-linear Brezis–Nirenberg
problem,

div |∇u|
p− 2∇u  � |u|

p∗− 2
u + λ|u|

p− 2
u, inΩ,

u � 0, on zΩ,

⎧⎨

⎩ (2)

has a positive solution if λ ∈ (0, λ1), where λ1 is the first
eigenvalue of

− div |∇u|
p− 2∇u  � λ|u|

p− 2
u, inΩ, (3)

with Dirichlet boundary condition and no positive solution
for λ≥ λ1 or and Ω star shaped.

In the last few years, great attention has been paid to the
study of Kirchhoff problems involving critical nonlinearities.
)is problems create many difficulties in applying varia-
tional methods, we refer the readers to [5–13] and the
references therein. More precisely, Naimen in [10] gener-
alized the results of [2] for 3- and 4-dimensional Kirchhoff-
type equations. For larger dimensional case, Figueiredo [7]
considers the case N≥ 3 if λ> 0 is sufficiently large.

)e main results in the present paper can be considered
as the extension of the work of [4] for a p-Kirchhoff problem
with large range of N. )e competing effect of the nonlocal
term with the critical nonlinearity and the lack of com-
pactness of the embedding of W

1,p
0 (Ω) into Lp∗(Ω), prevents

us from using the variational methods in a standard way. So,
we need more delicate estimates.

To the best of our knowledge, many of the results are new
for p> 1 and even in the case θ � 2. Our results and setting
are more general and delicate, it is difficult to obtain the
solution in the degenerate case when θ < (p∗/p).

Our technique is based on variational methods and
concentration compactness argument [3], and we need to
estimate the energy levels.

In this paper, we define the best Sobolev constant for the
imbedding W

1,p
0 (Ω) ↪Lp∗(Ω) as

S ≔ inf
u∈W1,p

0 (Ω) 0{ }

‖u‖
p

Ω|u|
p∗dx 

p/p∗ . (4)

)en, we obtain the following existence result.

Theorem 1. Let b> 0, N≥p2, and λ ∈ (0, bλ1). If
θ � N/(N − p) and 0< a< S− θ or θ<N/(N − p) and a> 0,
then (Pλ) has a positive solution.

Remark 1. If u is a solution of (Pλ), we obtain

− div |∇u|
p− 2∇u  � g(x, u), (5)

where g(x, u) � M(‖u‖)f(x, u) with M(‖u‖) �

(a‖u‖(θ− 1)p + b)− 1 and f(x, u) � |u|p
∗− 2u + λ|u|p− 2u. By the

extended Pohozaev identity in [4], we can get a nonexistence
solutions for λ≤ 0 and Ω is starshaped.

2. Preliminary Results

In this study, we use the following notation: ⟶ (resp⇀)
denotes strong (resp. weak) convergence, on(1) denotes
on(1)⟶ 0 as n⟶ +∞, λ1 is the first eigenvalue of

− div |∇u|
p− 2∇u , (6)

with Dirichlet boundary condition, and BR(x0) is the ball
centered at x0 and of radius R, u− � max − u, 0{ }.

Recall that the infimum S is attained in RN by the
functions of the form

vε(x) ≔ Nε
N − p

p − 1
 

p− 1
⎛⎝ ⎞⎠

(N− p)/p2

ε +|x|
p/(p− 1)

 
(p− N)/p

, ε> 0. (7)

Moreover, vε satisfies


RN
∇vε



pdx � 

RN
vε



p∗dx � S

p∗/ p∗ − p( ). (8)

Let R be a positive constant and set φ ∈ C∞0 (Ω) such that
0≤φ(x)≤ 1 for |x|≤R and φ(x) ≡ 1 for |x|≤ (R/2) and
BR(0) ⊂ Ω. Set vε(x) � φ(x)vε(x), by taking
zε � vε(Ω|vε|

p∗dx)− 1/p∗ so that Ω|zε|
p∗dx � 1.

We have the well-known estimates as ε⟶ 0:

zε
����

����
p

� S + O ε(N− p)/p
 


Ω

zε



pdx≥

Cεp− 1
, if N>p

2
,

CεN− p
|ln ε|, if N � p

2
,

Cε(N− p)/p
, if N<p

2
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

(see [14]).
)e energy functional Iλ: W

1,p
0 (Ω)⟶ R, corre-

sponding to the problem (Pλ), is given by

Iλ(u) �
a

θp
‖u‖

θp
+

b

p
‖u‖

p
−

1
p
∗ 
Ω

|u|
p∗dx −

λ
p


Ω

|u|
pdx, ∀u ∈W

1,p
0 (Ω). (10)
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Notice that Iλ is well defined in W
1,p
0 (Ω) and belongs to

C1(W
1,p
0 (Ω),R). We say that u ∈W

1,p
0 (Ω)\ 0{ } is a weak

solution of (Yλ) if, for any v ∈W
1,p
0 (Ω), there holds

〈Iλ′(u), v〉 � a‖u‖
(θ− 1)p

+ b 
Ω

|∇u|
p− 2∇u∇vdx − 

Ω
|u|

p∗ − 2
uvdx − λ

Ω
|u|

p− 2
uvdx

� 0.

(11)

Hence, a critical point of functional Iλ is a weak solution
of problem (Pλ).

Definition 1. Let c ∈ R; a sequence (un) ⊂W
1,p
0 (Ω) is called

a (PS)c sequence (Palais–Smale sequence at level c) if

Iλ un( ⟶ c and Iλ′ un( ⟶ 0 as n⟶ +∞. (12)

Let c ∈ R. We say that Iλ satisfies the Palais–Smale
condition at level c if any (PS)c sequence contains a con-
vergent subsequence in W

1,p
0 (Ω).

Lemma 1. Let a, b> 0, θ > 1, σ ≥ 0, and y � ((a/σ)Sθ)1/(σ− 1),
for σ > 1. For y≥ 0, we consider the function Ψ: R+⟶ R∗,
given by

Ψ(y) � S
− 1

y
σ

− aS
θ− 1

y − b. (13)

)en,

(1) If σ � 1, 0≤ a< S− θ, and b> 0, then the equation
Ψ(y) � 0 has a unique positive solution,

y1 �
b

S
θ− 1

S
− θ

− a 
, (14)

and Ψ(y)≥ 0, for all y≥y1.
(2) If σ > 1, then the equation Ψ(y) � 0 has a unique

positive solution y2 > y and Ψ(y)≥ 0, for all y≥y2.

Proof

(1) For σ � 1, 0< a< S− θ, and b> 0, we have

Ψ(y) � S
θ− 1

S
− θ

− a y − b, (15)

that is, the equation Ψ(y) � 0 has a unique positive
solution,

y1 �
b

S
− θ

− a S
θ− 1, (16)

and Ψ(y)≥ 0, for all y≥y1.
(2) For σ > 1, we have Ψ′(y) � σS− 1yσ− 1 − aSθ− 1 and

Ψ′′(y) � σ(σ − 1)S
− 1

y
σ− 2 > 0, ∀y> 0. (17)

)en, Ψ′(y) � 0, Ψ′(y)< 0, for y< y, and Ψ′(y)> 0, for
y> y. Hence, Ψ is concave function and

min
y≥0
Ψ(y) � Ψ(y) � − (σ − 1)S

− 1 a

σ
S
θ

 
σ/(σ− 1)

< 0. (18)

Moreover, we have Ψ(y)< 0 and limy⟶+∞Ψ(y) � +∞;
thus, from (18) and the concavity of Ψ, we can conclude that
the equation Ψ(y) � 0 has a unique positive solution y2 > y

and Ψ(y)≥ 0, for all y≥y2.
Now, we will verify that the functional Iλ exhibits the

Mountain Pass geometry. □

Lemma 2. Assume N>p> 1, b> 0, and λ ∈ (0, bλ1). Sup-
pose that θ � N/(N − p) and 0< a< S− θ or
1< θ <N/(N − p) and a> 0. :en, there exist positive
numbers δ1 and ρ1 such that, for all λ ∈ (0, bλ1), we have

(1) Iλ(u)≥ δ1 > 0, with ‖u‖ � ρ1
(2) :ere exists e ∈W

1,p
0 (Ω)\ 0{ } such that ‖e‖> ρ1 and

Iλ(e)< 0

Proof

(1) Let u ∈W
1,p
0 (Ω)\ 0{ }; by Sobolev and Young in-

equalities, it holds that

Iλ(u) �
a

θp
‖u‖

θp
+

b

p
‖u‖

p
−

1
p
∗ 
Ω

|u|
p∗dx −

λ
p


Ω

|u|
pdx

≥ −
1

p
∗S

− p∗/p
‖u‖

p∗
+

a

θp
‖u‖

θp
+

b

p
‖u‖

p
−

λ
pλ1

‖u‖
p

� −
1

p
∗S

− p∗/p
‖u‖

p∗
+

a

θp
‖u‖

θp
+

bλ1 − λ
pλ1

‖u‖
p
.

(19)

Let ρ � ‖u‖; since a> 0, b> 0, and λ< bλ1 and from
(19), one has

Iλ(u)≥ −
1

p
∗S

− p∗/pρp∗
+

a

θp
ρθp

+
bλ1 − λ

pλ1
ρp

. (20)

Let us define

h(ρ) � −
1

p
∗S

− p∗/pρp∗
+

a

θp
ρθp

+
bλ1 − λ

pλ1
ρp

,

g(ρ) � − S
− p∗/pρp∗− p

+ aρ(θ− 1)p
+

bλ1 − λ
λ1

.

(21)
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)en,

h′(ρ) � − S
− p∗/pρp∗− 1

+ aρθp− 1
+

bλ1 − λ
λ1

ρp− 1

� − S
− p∗/pρp∗− p

+ aρ(θ− 1)p
+

bλ1 − λ
λ1

 ρp− 1
.

(22)

(i) Let 1< θ<N/(N − p) and a> 0. We have g is
strictly increasing on the interval:

0,
a(θ − 1)p

p∗ − p( 
S

p∗/p
 

1/ p∗− θp( )
⎡⎢⎢⎣ ⎤⎥⎥⎦, (23)

and it is strictly decreasing on the interval

a(θ − 1)p

p∗ − p
S

p∗/p
 

1/ p∗− θp( )

, +∞⎡⎢⎢⎣ ⎡⎢⎢⎣, (24)

with g(0) � (bλ1 − λ)/λ1, limx⟶+∞g(x) � − ∞,
and

g
a(θ − 1)p

p∗ − p
S

p∗/p
 

1/ p∗ − θp( )
⎛⎝ ⎞⎠ �

p
∗

− θp

(θ − 1)p
S

− p∗/p

a(θ − 1)p

p∗ − p
S

p∗/p
 

p∗ − p( )/ p∗− θp( )

+
bλ1 − λ
λ1
> 0.

(25)

)en, direct calculation shows that

max
ρ≥0

h(ρ) � h ρ1( > 0,

h(ρ)≥ 0 for all ρ≤ ρ1 with ρ1 >
a(θ − 1)p

p∗ − p
S

p∗/p
 

1/ p∗− θp( )

.

(26)

So, for all λ ∈ (0, bλ1), we have

Iλ(u)≥ h ρ1(  � δ1 > 0, with ‖u‖ � ρ1. (27)

(ii) When N � θp/(θ − 1), one obtains p∗ � θp. Let
ρ � ‖u‖; from (20), one has

If 0< a< S− θ, similar to (i), there exist ρ1, δ1 > 0 such
that

ρ1 �
bλ1 − λ

λ1 S− θ − a( 
 

1/(θ− 1)p

,

δ1 � h ρ1(  �
θ − 1
θp

S
− θ

− a 
− p/(θ− 1)p bλ1 − λ

λ1
 

θp/(θ− 1)p

.

(29)

(2) For u ∈W
1,p
0 (Ω)\ 0{ }, t> 0, we have

Iλ(tu)≤ −
t
p∗

p
∗ 
Ω

|u|
p∗dx +

at
θp

θp
‖u‖

θp
+

bt
p

p
‖u‖

p
. (30)

(i) If θ<N/(N − p) and t⟶ +∞, then
Iλ(tu)⟶ − ∞. So, we can easily find
e ∈W

1,p
0 (Ω)\ 0{ } with ‖e‖> ρ1, such that

Iλ(e)< 0.
(ii) If θ � N/(N − p) and 0< a< S− θ, using (9) and

taking ε1 > 0 small enough, then

Iλ tzε( ≤
at

θp

θp
zε

����
����
θp

+
bt

p

p
zε

����
����

p
−

t
p∗

p
∗ 
Ω

zε



p∗dx

≤
1
θp

a zε
����

����
θp

− 
Ω

zε



p∗dx t

θp
+

bt
p

p
zε

����
����

p

≤
1
θp

a S
p∗/ p∗− p( ) + O ε(N− p)/(p− 1)

  
θ

− S
p∗/ p∗ − p( ) + O εN/(p− 1)

   t
θp

+
bt

p

p
S

p∗/ p∗− p( ) + O ε(N− p)/(p− 1)
  

≤
1
θp

aS
θp∗/ p∗− p( ) − S

p∗/ p∗− p( ) t
θp

+
b

p
S

p∗/ p∗− p( )t
p

+ O ε(N− p)/(p− 1)
 

≤
1
θp

a − S
− θ

 S
θp∗/ p∗− p( )t

θp
+

b

p
S

p∗/ p∗− p( )t
p

+ O ε(N− p)/(p− 1)
 ,

(31)
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for all ε ∈ (0, ε1). )en, it follows from the above inequality,
Iλ(tzε)⟶ − ∞ as t⟶ +∞. )us, choosing t0 > 0 suf-
ficiently large and putting e: � t0zε, we have a function
e ∈W

1,p
0 (Ω)\ 0{ } satisfying ‖e‖> ρ1, such that Iλ(e)< 0. □

Proof. )e proof is complete. □

Lemma 3. Assume N>p> 1, a, b> 0, λ ∈ (0, bλ1), and
θ≤N/(N − p). Let c ∈ R+ and (un) ⊂W

1,p
0 (Ω) be a (PS)c

sequence for Iλ; then, there exists a subsequence of (un) which
we still denote by (un) and u ∈W

1,p
0 (Ω) such that

un⇀u inW
1,p
0 (Ω), (32)

with Iλ′(u) � 0.

Proof. We have

Iλ un( ⟶ c,

Iλ′ un( ⟶ 0,
(33)

that is,

c + on(1) � Iλ un( ,

on(1)‖v‖ �〈Iλ′ un( , v〉,
(34)

for any v ∈W
1,p
0 (Ω).

)en, as n⟶∞, it follows that

c + on(1) −
1

p
∗on(1) un

����
���� � Iλ un(  −

1
p
∗ 〈Iλ′ un( , un〉

� a
p
∗

− θp

θpp
∗ un

����
����
θp

+ b
p
∗

− p

pp
∗ un

����
����

p
− λ

p
∗

− p

pp
∗ 
Ω

un



pdx,

≥ a
p
∗

− θp

θpp
∗ un

����
����
θp

+ b
p
∗

− p

pp
∗ un

����
����

p
−

λ
λ1

p
∗

− p

pp
∗ un

����
����

p

≥ a
p
∗

− θp

θpp
∗ un

����
����
θp

+ b −
λ
λ1

 
p
∗

− p

pp
∗ un

����
����

p
.

(35)

As λ< bλ1, we obtain that (un) is bounded in W
1,p
0 (Ω).

Up to a subsequence if necessary, there exists a function
u ∈W

1,p
0 (Ω) such that

un⇀u inW
1,p
0 (Ω),

un⇀u inL
p∗

(Ω),

un⟶ u in L
r
(Ω), for all r<p

∗

un⟶ u a.e onΩ.

(36)

)en,

〈Iλ′ un( , v〉 � 0, for all v ∈ C
∞
0 (Ω), (37)

and thus, Iλ′(u) � 0. )is completes the proof of Lemma 4.
Now, we prove an important lemma which ensures the

local compactness of the Palais–Smale sequence for Iλ.
For i � 1, 2, yi is defined in Lemma 2, and we define

Ci ≔ a
1
θp

−
1

p
∗  Sy

1/(θ− 1)
i 

θ
+ b

1
p

−
1

p
∗ Sy

1/(θ− 1)
i , a> 0, b> 0, (38)

C
∗ ≔

C1, if θ �
N

N − p
and 0< a< S

− θ
,

C2, if θ <
N

N − p
and a> 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

□
Lemma 4. Let b> 0 and λ< bλ1, and suppose θ � N/(N − p)

and 0≤ a< S− θ or θ<N/(N − p) and a> 0. If
un  ⊂W

1,p
0 (Ω) is a (PS)c sequence for Iλ with c<C∗, then

un  contains a subsequence converging strongly in W
1,p
0 (Ω).

Proof. By the proof of Lemma 3, we have un  is a bounded
sequence in W

1,p
0 (Ω). Hence, by the concentration com-

pactness principle due to Lions [3], there exists a subse-
quence, still denoted by un , such that
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∇un



p⇀dη≥ |∇u|

p
+ 

j∈J
ηj

δj,

un



p∗⇀dc � |u|

p∗
+ 

j∈J
cj

δj,
(40)

where J is an at most countable index set, δj is the Dirac
mass at xj and xj ∈ Ω, and ηj 

j∈J∪ 0{ }
and cj 

j∈J∪ 0{ }
are sets

of nonnegative real numbers. Moreover,

ηj ≥ Sc
p/p∗
j for all j ∈ J. (41)

For ε> 0, let ϕε,j(x) be a smooth cut-off function cen-
tered at xj such that 0≤ϕε,j(x)≤ 1, and

ϕε,j(x) �

1, inB xj, ε ,

0, inΩ\B xj, 2ε ,

⎧⎪⎪⎨

⎪⎪⎩

∇ϕε,j(x)


≤
2
ε
.

(42)

Since ϕε,jun  is bounded in W
1,p
0 (Ω) and Iλ′(un)⟶ 0

as n⟶∞, it holds by Hölder’s inequality:

0 � lim
ε⟶0

lim
n⟶∞
〈Iλ′ un( , ϕε,jun〉

� lim
ε⟶0

lim
n⟶∞

a un

����
����

(θ− 1)p
+ b 

Ω
∇un



p− 2∇un∇ ϕε,jun dx 

− 
Ω

un



p∗

un ϕε,jun dx − λ
Ω

un



p− 1 ϕε,jun dx

≥ b + aηθ− 1
j ηj − cj.

(43)

)en, cj ≥ bηj + aηθj . )erefore, by (41), we deduce that

cj � 0 or S
− 1

cj 
p∗− p( )/p∗

− aS
θ− 1

cj 
p/p∗( )(θ− 1)

− b≥ 0.

(44)

Assume by contradiction that there exists j0 ∈ J such
that cj0

≠ 0. Set y � (cj0
)(p/p∗)(θ− 1) and

σ � (p∗ − p)/(θ − 1)p; then, by (44), we obtain

S
− 1

y
σ

− aS
θ− 1

y − b≥ 0. (45)

It is clear that σ ≥ 1, thanks to θ≤N/(N − p). So, from
(45) and the definition of Ψ in Lemma 1, we obtain

Ψ(y) � S
− 1

y
σ

− aS
θ− 1

y − b≥ 0. (46)

We will discuss it in two cases:

Case 1: θ � N/(N − p) and 0< a< S− θ.
According to Lemma 1, we have Ψ(y1) � 0 and
Ψ(y)≥ 0 if y≥y1 with

y1 �
b

S
− θ

− a S
θ− 1, (47)

which implies that

S cj0
 

p/p∗( ) ≥ Sy
1/(θ− 1)
1 ≕K1. (48)

Case 2: θ<N/(N − p) and a> 0. In this case, from
Lemma 2, we getΨ(y2) � 0 andΨ(y)≥ 0 if y≥y2 with

y2 >
a(θ − 1)p

p∗ − p
S
θ

 

(θ− 1)p/ p∗ − θp( )

, (49)

which implies that

S cj0
 

p/p∗
≥ Sy

1/(θ− 1)
2 ≕K2. (50)

Hence, using (41), we deduce

ηj0
≥ Sc

p/p∗
j0
≥

K1, if θ �
N

N − p
and 0< a< S

− θ
,

K2, if θ<
N

N − p
and a> 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

By Young inequality, we have

c � lim
n⟶∞

Iλ un(  −
1
θp
〈Iλ′ un( , un〉

� lim
n⟶∞

θ − 1
θp

b un

����
����

p
+

p
∗

− θp

θpp
∗ 
Ω

un



p∗

− λ
θ − 1
θp


Ω

un



pdx

≥
θ − 1
θp

b ‖u‖
p

+ ηj0
  +

p
∗

− θp

θpp
∗ 

Ω
|u|

p∗
+ cj0

  − λ
θ − 1
θp


Ω

|u|
pdx

≥
θ − 1
θp

b −
λ
λ1

 ‖u‖
p

+
p
∗

− θp

θpp
∗ 
Ω

|u|
p∗

+
θ − 1
θp

bηj0
+

p
∗

− θp

θpp
∗ cj0

.

(52)

We observe that (θ − 1)/θp(b − (λ/λ1))> 0, p∗ − θp≥ 0,
and thus, for i ∈ 1, 2{ }, we obtain
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c≥
θ − 1
θp

bηj0
+

p
∗

− θp

θpp
∗ cj0

≥
1
p

−
1
θp

 bKi +
p
∗

− θp

θpp
∗ K

p∗/p( )
i S

− p∗/p( )

≥
1
p

−
1
θp

 bKi +
p
∗

− θp

θpp
∗ K

p∗/p( )
i S

− p∗/p( )+

+
p
∗

− θp

θpp
∗ aK

θ
i −

p
∗

− θp

θpp
∗ aK

θ
i +

1
p
∗ bKi −

1
p
∗ bKi

≥
p
∗

− θp

θpp
∗ aK

θ
i +

1
p

−
1

p
∗ bKi  −

p
∗

− θp

θpp
∗ bKi+

+
p
∗

− θp

θpp
∗ K

p∗/p( )
i S

− p∗/p( ) −
p
∗

− θp

θpp
∗ aK

θ
i

≥
p
∗

− θp

θpp
∗ aK

θ
i +

1
p

−
1

p
∗ bKi +

+
p
∗

− θp

θpp
∗ Ki K

p∗ − p( )/p
i S

− p∗/p( ) − aK
θ− 1
i − b 

≥
p
∗

− θp

θpp
∗ a Sy

1/(θ− 1)
i 

θ
+

1
p

−
1

p
∗ bSy

1/(θ− 1)
i +

+
p
∗

− θp

θpp
∗ Sy

1/(θ− 1)
i S

− 1
y

p∗− p( )/p(θ− 1)

i − aS
θ− 1

yi − b 

≥C
∗

+
p
∗

− θp

θpp
∗ Sy

1/(θ− 1)
i Ψ yi( 

≥C
∗
,

(53)

since Ψ(yi) � 0 for i ∈ 1, 2{ } and C∗ is defined in (39). It is a
contradiction with c<C∗. )en, J is empty, which implies
that


Ω

un



p∗dx⟶ 

Ω
|u|

p∗dx. (54)

Now, set l � lim‖un‖ as n⟶ +∞; then, we have

〈Iλ′ un( , un〉 � a un

����
����

(θ− 1)p
+ b  un

����
����

p
− 
Ω

un



p∗dx

− λ
Ω

un



pdx � on(1),

(55)

〈Iλ′ un( , v〉 � a un

����
����

(θ− 1)p
+ b  

Ω
∇un



p− 2∇un∇vdx 

+
�
2

√
,

(56)

− 
Ω

un



p∗

unvdx − λ
Ω

un



p− 2

unvdx � on(1), (57)

for any v ∈W1,p(Ω).
Let n⟶ +∞; then, from (55) and (56), we deduce that

al
(θ− 1)p

+ b l
p

− 
Ω

|u|
p∗dx − λ

Ω
|u|

pdx � 0, (58)

al
(θ− 1)p

+ b  
Ω

|∇u|
p− 2∇u∇vdx  − 

Ω
|u|

p∗ − 2
uvdx

− λ
Ω

|u|
p− 2

uvdx � 0.

(59)

Taking the test function v � u in (59), we obtain

al
(θ− 1)p

+ b ‖u‖
p

− 
Ω

|u|
p∗dx − λ

Ω
|u|

pdx � 0. (60)

)erefore, equalities (58) and (59) imply that ‖u‖ � l.
Consequently un  converges strongly in W1,p(Ω), which is
the desired result. □

2.1. Proof of the Main Result. By Lemma 4, Iλ satisfies the
Palais–Smale condition at level c for any c<C∗. So, the
existence of the positive solution follows immediately from
the following estimates.

Lemma 5. Let N≥p2, b> 0, and λ< bλ1. Suppose that θ �

N/(N − p) and 0< a< S− θ or θ <N/(N − p) and a> 0.
:en,

sup
t≥0

Iλ tzε( <C
∗
. (61)

Proof. Employing estimate (9), we define the following
functions:

g(t) � Iλ tzε( 

�
a

θp
t
θp

zε
����

����
θp

+
b

p
t
p

zε
����

����
p

−
1

p
∗t

p∗

Ω

zε



p∗dx −

λ
p

t
p

Ω

zε



pdx

�
a

θp
t
θp

zε
����

����
θp

+
b

p
t
p

zε
����

����
p

−
1

p
∗S

− p∗/p( ) zε
����

����
p∗

t
p∗

−
1

p
∗ 
Ω

zε



p∗dx − S

− p∗/p( ) zε
����

����
p∗

 t
p∗

−
λ
p

t
p

Ω

zε



pdx,

h(t) � −
1

p
∗S

− p∗/p( ) zε
����

����
p∗

t
p∗

+
a

θp
t
θp

zε
����

����
θp

+
b

p
t
p

zε
����

����
p
.

(62)

Note that limt⟶∞g(t) � − ∞ and g(t)> 0 when t is
close to 0 so that supt≥0g(t) is attained for some Tε > 0.
Furthermore, from g′(Tε) � 0, it follows that

− T
p∗− p
ε 

Ω
zε



p∗dx + aT

(θ− 1)p
ε zε

����
����
θp

+ b zε
����

����
p

− λ
Ω

zε



pdx � 0,

(63)

and therefore,
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T
p∗ − p
ε 

Ω
zε



p∗dx � aT

(θ− 1)p
ε zε

����
����
θp

+ b zε
����

����
p

− λ
Ω

zε



pdx

≥ b −
λ
λ1

  zε
����

����
p
.

(64)

Choose ε small enough so that, by (9), we have Tε ≥ t0, for
some t0 > 0.

Besides, it holds

T
p∗− θp
ε 

Ω
zε



p∗dx � a zε

����
����
θp

+
b

T
(θ− 1)p
ε

zε
����

����
p

−
λ

T
(θ− 1)p
ε


Ω

zε



pdx

≤ a zε
����

����
θp

+
b

T
(θ− 1)p
ε

zε
����

����
p
.

(65)

For θ<p∗/p, a> 0, and b> 0, we have by (9)

T
p∗− θp
ε 

Ω
zε



p∗dx≤ a zε

����
����
θp

+
b zε
����

����
p

t
(θ− 1)p
0

. (66)

)en, for ε small enough, the above estimates yield
Tε < t1 for some t1 > 0 (independently of ε).

For θ � p∗/p, 0< a< S− θ, and b> 0 and for ε small
enough, we have, by (63),

T
(θ− 1)p
ε �

b zε
����

����
p

− λΩ zε



pdx 

Ω zε



p∗dx − a zε

����
����
θp

 

, (67)

which implies that Tε is bounded above, for all ε> 0, that is,
there exists a positive real number t2 > 0 (independently of
ε).

Now, we estimate g(Tε). It follows from h′(t) � 0 that

− S
− p∗/p( ) zε

����
����

p∗

t
p∗− 1

+ at
θp− 1

zε
����

����
θp

+ bt
p− 1

zε
����

����
p

� 0, (68)

that is,

− S
− p∗/p( ) zε

����
����

p∗ − p
t
p∗− p

− at
(θ− 1)p

zε
����

����
(θ− 1)p

− b  � 0. (69)

Set y � t(θ− 1)pS1− θ‖zε‖
(θ− 1)p, σ � (p∗ − p)/(θ − 1)p≥ 1,

and

y∗ �
y1, if p

∗
� θp and 0≤ a< S

− θ
,

y2, if p
∗ > θp and a≥ 0.

⎧⎨

⎩ (70)

)en, by (69) and the definition of Ψ, we obtain

− S
− 1

y
σ

− aS
θ− 1

y − b  � − Ψ(y) � 0, (71)

which implies from the proof of Lemma 1 that Ψ(y∗) � 0.
)erefore, h′(t∗) � 0, where t∗ � S1/p‖zε‖

− 1(y∗)
1/(θ− 1)p. As

Ψ(y) is concave, then h′(t) is convex, so

max
t≥0

h(t) � h t∗(  � −
1

p
∗S

− p∗/p( ) zε
����

����
p∗

t
p∗

∗

+
a

θp
zε

����
����
θp

t
θp
∗ +

b

p
zε

����
����

p
t
p
∗.

(72)

By h′(t∗) � 0, we have

S
− p∗/p( ) zε

����
����

p∗

t
p∗

∗ � a zε
����

����
θp

t
θp
∗ + b zε

����
����

p
t
p
∗. (73)

So, from (73), we deduce that

max
t≥0

h(t) � −
1

p
∗ a zε

����
����
θp

t
θp
∗ + b zε

����
����

p
t
p
∗  +

a

θp
zε

����
����
θp

t
θp
∗ +

b

p
zε

����
����

p
t
p
∗

� a
1
θp

−
1

p
∗ t

θp
∗ zε

����
����
θp

+ b
1
p

−
1

p
∗ t

p
∗ zε
����

����
p

� a
1
θp

−
1

p
∗ S

θ
y
θ/(θ− 1)
∗ + b

1
p

−
1

p
∗ Sy

1/(θ− 1)
∗

� C
∗
.

(74)

Consequently, by (9),

sup
t≥0

Iλ tzε( ≤ sup
t≥0

h(t) +
1

p
∗ S

− p∗/p( ) zε
����

����
p∗

− 
Ω

zε



p∗dx t

p∗

1 −
λ
p

t
p
0
Ω

zε



pdx

≤C
∗

+ C1 S
− p∗/p( )S

p∗/p( ) + O ε(N− p)/p
  − 1 +

− C2

Cε(N− p)/p
|ln ε|, if N � p

2
,

Cε(N− p)/p
, if N<p

2
,

⎧⎪⎪⎨

⎪⎪⎩

≤C
∗

+ O ε(N− p)/p
  −

Cε(N− p)/p
|ln ε|, if N � p

2
,

Cε(N− p)/p
, if N<p

2
,

⎧⎪⎪⎨

⎪⎪⎩

<C
∗
.

(75)
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which is the desired result.
Now, we can proof the existence of aMountain Pass-type

solution. □

Proof of :eorem 1. Note that Iλ(0) � 0, so from Lemma 2,
Iλ satisfies the geometry conditions of the Mountain Pass
)eorem [15]. )en, there exists a Palais–Smale sequence
(un) at level c, such that

Iλ un( ⟶ c, Iλ′ un( ⟶ 0, as n⟶ +∞, (76)

with

0< c � inf
c∈Γ

max
t∈[0,1]

Iλ(c(t))≤ sup
t≥0

Iλ(te)<C
∗
, (77)

where

Γ � c ∈ C [0, 1], W
1,p
0 (Ω) , c(0) � 0, c(1) � e . (78)

Using Lemma 3, we have that (un) has a subsequence,
still denoted by (un), such that un⇀u in W

1,p
0 (Ω) as

n⟶ +∞. Hence, from Lemma 4 and 5, we have un⟶ u

in W
1,p
0 (Ω) as n⟶ +∞. Hence, Iλ′(u) � 0 and

Iλ(u) � c> 0. So, as c> 0 � Iλ(0), we can conclude that u is a
nonzero solution of (Yλ) with positive energy. Now, we
show that u> 0 because

0 �〈Iλ′(u), u
− 〉

� a‖u‖
(θ− 1)p

+ b  
Ω

|∇u|
p− 2∇u∇u− dx +

− 
Ω

|u|
p∗− 2

uu
− dx − λ

Ω
|u|

p− 2
uu

− dx

≥ a‖u‖
(θ− 1)p

+ b  
Ω
∇u−

| |
pdx  + 

Ω
|u|

p∗dx + λ
Ω

|u|
pdx

≥ b u
−

‖ ‖
p
,

(79)

which implies that u− � 0. By the strongmaximum principle
[16], one has u> 0. )is completes the Proof of )eorem
1. □
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