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A function h is mentioned as a C-exponential mean labeling of a graph GðV , EÞ that has s vertices and r edges if h : VðGÞ
⟶ f1, 2, 3,⋯, r + 1g is injective and the generated function h∗ : EðGÞ⟶ f2, 3, 4,⋯, r + 1g defined by h∗ðabÞ = d1/e
ððhðbÞhðbÞÞ/ðhðaÞhðaÞÞÞ1/ðhðbÞ−hðaÞÞe, for all ab ∈ EðGÞ, is bijective. A graph which recognizes a C-exponential mean labeling is
defined asC-exponential mean graph. In the following study, we have studied the exponential meanness of the path, the
graph triangular tree of Tn, C

Pn
m , cartesian product of two paths Pm▫Pn, one-sided step graph of STn, double-sided step graph

of 2ST2n, one-sided arrow graph of As
r , double-sided arrow graph of DAs

r , and subdivision of ladder graph SðLtÞ.

1. Introduction

In the field of mathematics, along with some areas of sci-
ences, graph theory has become an interesting topic of study.
A graph labeling is considered as an integer’s assignment to
the edges or vertices, or vice versa, subjected to particular
conditions. Many mathematicians and scientists have con-
tributed and introduced different kinds of labeling [1–6].

In the present study, the graphs considered here are
undirected, simple, and finite graphs G = ðV , EÞ that have s
vertices and r edges. Referring to the graph labeling intro-
duced by Gallain, a detailed survey is conducted on graph
labeling [4]. Somasundaram and Ponraj [7] originated the
theory of mean labeling of graphs. Many mathematicians
introduced different aspects of mean labeling. The study of
Kannan et al. on the exponential mean labeling of a few dif-
ferent graphs studied through duplicate operations is exam-
ined for the present study [8]. Barrientos’ study on alpha
graphs has demonstrated the presence of α-labeling of a tree
using various vertices and lengths of base path and proved
that these trees can be utilized to demonstrate unicycle
graphs with α-labeling [9]. Studies on cordial labeling
between paths and cycles for a Cartesian product have dem-

onstrated that these Cartesian products, under any condi-
tions, are always cordial and even proved that two path
Cartesian products are always cordial [10].

Sumathi and Rathi introduced the quotient labeling
number for a wide family of ladder graphs, namely, closed
triangular ladder, open triangular ladder, closed ladder, open
ladder, step ladder, slanting ladder, and open diagonal lad-
der [11]. Baskar, referring to the flooring function edge
labels, defined the logarithmic mean labeling on graphs
and studied the logarithmic meanness of different ladder-
related graphs [12].

Traditionally, the logarithmic mean of any two positive
integers is not necessary to be an integer. And, if the loga-
rithmic mean is considered an integer, the flooring of ceiling
function is used. The edge label is set through flooring or a
ceiling function, which is defined to be the logarithmic mean
labeling of graphs. Baskar defined logarithmic mean labeling
on graphs by setting the edge labels from flooring function
[12]. A graph is considered a logarithmic mean graph if it
recognizes logarithmic mean labeling. In 1967, Rosa pro-
posed graceful labeling, known as β-valuation [13], and
later, Golomb represented it as graceful labeling [1]. Kaneria
et al., in 2010, introduced arrow graph ðAk

nÞ and double
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arrow graph ðDAk
nÞ [14]. And, in 2015, step grid ðStnÞ graph

and double step grid graph ðDStnÞwere introduced [15].
These graphs were defined to be graceful graphs.

Motivated by such works, in this study, we aimed to
work to introduce a new class of C-exponential mean label-
ing for different ladder graphs, looking at the ceiling func-
tion. A graph which recognizes a C-exponential mean
labeling is defined as C-exponential mean graph. In the pres-
ent study, we have examined the exponential meanness of
the path, the graph triangular tree of Tn, C

Pn
m , cartesian prod-

uct of two paths Pm▫Pn, one-sided step graph of STn,
double-sided steps graph of 2ST2n, one-sided arrow graph
of As

r , double-sided arrow graph of DAs
r , and subdivision of

ladder graph SðLtÞ.
A function h is mentioned as a C-exponential mean

labeling of a graph GðV , EÞ that possess s vertices and r
edges if h∗ : VðGÞ⟶ f1, 2, 3,⋯, r + 1g is injective and
the generated function h∗ : EðGÞ⟶ f2, 3, 4,⋯, r + 1g
defined by

h∗ abð Þ = 1
e

h bð Þh bð Þ

h að Þh að Þ

 !1/ h bð Þ−h að Þð Þ2
666

3
777, ð1Þ

for all ab ∈ EðGÞ, is bijective.
1.1. Preliminaries. The below-mentioned definitions are
essential for the present study.

Definition 1. Let v1, v2,⋯, vn be the consecutive vertices of
Pn; a triangular tree is calculated by amalgamating each vi
with a leaf (or vertex of degree 1) of Pi. We denote this tree
by Tn and refer to Pn as the base of Tn. Note that Tn has size
nðn + 1Þ/2, which means that its order is a triangular num-
ber. We say that the first vertex of Pi leaf is amalgamated
with the vertex of Pn:

Definition 2. Let Pn be a path on n vertices represented by
u1,1, u1,2, u1,3,⋯, u1,n and with n − 1 edges signified by e1
, e2, e3,⋯, en−1, where ei represents the edge con-
necting u1,i and u1,i+1, the vertices. On every edge ei, erect
a ladder that has n − ðn − 1Þ steps counting the edge ei,
for i = 1, 2, 3,⋯, n − 1. The graph hence drawn is defined
as a one-sided step graph, and it is represented by STn.

Definition 3. Let P2n be a path on 2n vertices w1,1,w1,2,w1,3
,⋯,w1,2n with 2n − 1 edges u1, u2, u3,⋯, u2n−1, where ui
represents the edge connectingw1,i and w1,i+1, the vertices;
on every edge ui, we erect a ladder that has i + 1 steps count-
ing the edge ui, for i = 1, 2, 3,⋯, n, and on every ui, erect a
ladder that has 2n + 1 − i steps counting ui, for i = n + 1, n
+ 2,⋯, 2n − 1. The graph hence drawn is defined as dou-
ble-sided step graph, and it is represented by 2ST2n.

Definition 4. An arrow graph As
r with breadth s and length r

is acquired by joining a vertex w with superior vertices of
Ps × Pr by r new edges from one end.

Note. In the graph, Ps × Pr (grid graph on mn vertices) ver-
tices v1,1, v2,1, v3,1,⋯, vm,1 and vertices v1,n, v2,n, v3,n,⋯, vm,n
are known as superior vertices (Figure 1) from both ends.

Definition 5. A double arrow graph DAs
r with breadth s and

length r is calculated by joining a vertex w with superior ver-
tices of Ps × Pr by s + r new edges from both ends.

Definition 6. A graph, which can be formed from an identi-
fied graph G G by dividing up each edge into exactly two
segments by positioning intermediate vertices between its
two ends, is called a subdivision graph. It is represented
by SðGÞ.

2. Main Results

Theorem 8. Each triangular tree Tn is a C-exponential mean
graph, for n ≥ 1.

Proof. Assume v1, v2,⋯, vn denote the vertices of the path Pn
and each vertex adjoining the path that is represented by vij,
for i = 1, 2,⋯, n, j < i.

Define f : VðTnÞ⟶ f1, 2,⋯, nðn + 1Þ/2g as follows:

f við Þ =
i i + 1ð Þ

2 , if i = odd,

i2 − i + 2
2 if i = even,

8>>><
>>>:

f vij
À Á

=

i2 + i − 2
2 − j − 1ð Þ, if i = odd, j < i,

i2 − i + 4
2 + j = 1ð Þ, if i = even, j < i:

8>>><
>>>:

ð2Þ

Then, the generated edge labeling is calculated as follows:

v1,1

v2,1

v3,1

vm,1

v1,n

v2,n

v3,n

vm,n

v1,2 v1,3

vm,2 vm,3

Figure 1: Representation of superior vertex graph.
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Define f ∗ : EðTnÞ⟶ f2, 3, 4,⋯, nðn + 1Þ/2g as follows:

f ∗ vi, vi+1ð Þ =
vi i+1ð Þ + 1, if i = even,

vi + 1, if i = odd,

(

f ∗ vi, vij
À Á

=
vi + 1, if i = even, j < i,

vi − j − 1ð Þ, if i = odd, i < j:

( ð3Þ

Hence, f is a C-exponential mean labeling of the triangular
tree graphTn, for n ≥ 1: A typical example is illustrated in
Figure 2.

Theorem 9. The graph CPn
m is a C-exponential mean graph,

form ≥ 3, n ≥ 1.

Proof. Assume v1,j, v2,j, v3,j ⋯ , vm,j denote the vertices of the
cycle Cn for j = 1, 2,⋯, n + 1. Then, path Pn extended from
the cycle through the vertices vi,1, vi,2, vi,3 ⋯ , vi,n+1 for i = 1,
2,⋯,m:

Define f : VðCPn
m Þ⟶ f1, 2,⋯,mðn + 1Þ + 1g as follows:

f vi, vj
À Á

=

n + 1ð Þi − j − 1ð Þ, if i is odd, and i ≤ m − 1
2

� �
,

n + 1ð Þi + 1 − j + 1ð Þ, if i is odd, and i > m − 1
2

� �
,

n i − 1ð Þi + i + j − 1ð Þ, if i is even, and i < m
2
h i

,

n i − 1ð Þ + i + 1 + j − 1ð Þ, if i is even, and i ≥ m
2
h i

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Hence, the generated edge labeling is calculated as
follows:

Define f ∗ : EðCPn
m Þ⟶ f2, 3, 4,⋯,mðn + 1Þ + 1g as

follows:

f ∗ vi+1, vi+1,1ð Þ =
i + 1ð Þi + 1, if i ≤ m − 1

2

� �
,

n + 1ð Þi + 2, if i > m − 1
2

� �
and m − 1

2

� �
< i ≤m − 1,

8>>>><
>>>>:

f ∗ vm,1, v1,1ð Þ = m + 1
2

� �
n + 1ð Þ + 1,

ð5Þ

when j = 1, 2,⋯, n.

f ∗ vi,j, vij+1
À Á

=

n i + 1ð Þ + i + j, if i is even, and i ≤ m − 1
2

� �
,

n i − 1ð Þ + i + j + 1, if i is even, and i > m − 1
2

� �
,

n + 1ð Þi − j − 1ð Þ, if i is odd, and i ≤ m
2
h i

,

n + 1ð Þi − j + 2, if i is even, and i > m
2
h i

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

Hence, f is a C-exponential mean labeling of the
graphCPn

n , for n ≥ 3: Figure 3 depicts an example of the
aforementioned labeling.

Theorem 10. The graph Pm▫Pn is a C-exponential mean
graph, for m, n ≥ 1

Proof. The Cartesian product of the graphs G and H is the
graph G▫H that has vertex set VðGÞ and edge set EðGÞ. In
this article, the vertices of the graph Pm▫Pn are presented
as a matrix with n rows and m columns. Moreover, we
denote vi,j as the vertex which lies at the i-th row and j-th
column where 1 ≤ i ≤m and 1 ≤ j ≤ n.

Define f : VðPm▫PnÞ⟶ f1, 2,⋯,mð2n − 1Þ − n + 1g as
follows:

f vi, vj
À Á

= 2m j − 1ð Þ − j − 2ð Þ + i − 1ð Þ,
for 1 ≤ i ≤m and 1 ≤ j ≤ n:

ð7Þ

Then, the generated edge labeling is calculated as follows:
Define f ∗ : EðPm▫PnÞ⟶ f2, 3, 4,⋯,mð2n − 1Þ − n + 1g

as follows:

1 2 6 7 15 16 28

3
5

4

10

11

21

22

2 4
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7
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9
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8
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20

23

24

25

26

27
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22
28

27

26

25

24

23

3

Figure 2: A C-exponential mean labeling of T7
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f ∗ vij, vij+1
À Á

= 2m j − 1ð Þ − j − 3ð Þ + i − 1ð Þ,
for 1 ≤ i ≤m and 1 ≤ j ≤ n:

f vij, vij+1
À Á

=m 2j − 1ð Þ − j − 2ð Þ + i − 1ð Þ,
for 1 ≤ i ≤m and 1 ≤ j ≤ n:

ð8Þ

Hence, f is a C-exponential mean labeling of the
graphPm▫Pn, for n ≥ 2: Figure 4 illustrates a representative
example of the labeling described above.

Theorem 11. The graph STn is a C-exponential mean graph,
for n ≥ 2:

Proof.
Assumev1,1, v1,2, v1,3,⋯⋯ v1,n, v2,1, v2,2, v2,3,⋯⋯ v2,n, v3,1,
v3,2, v3,3,⋯⋯ v3,n−1, v4,1, v4,2, v4,3,⋯⋯ v4,n−2,⋯:vn,1, vn,2
denote the vertices of the step graph STn.

Let G = STn be the step ladder graph with n − ði − 1Þ
steps for 1 ≤ i ≤ n:

Let v1,j be the n vertices on the base where 1 ≤ j ≤ n:
Let v2,j be the n vertices on the second stage above the

base for 1 ≤ j ≤ n:
Let v3,j be the n − 1 vertices on the third step for 1 ≤ j

≤ n − 1:
Proceeding like this, we have vertices for n − ði − 1Þ

steps.
Now the vertices of STn is denoted by vi,j.
In vi,j, i signifies the row (calculated through bottom to

top) and j signifies the column (calculated through left to
right) in which the vertex occurs.

Now, the graph STn of vertices and edges are n2 + n − 1
with deg ðv1,1Þ = deg ðv1,nÞ = deg ðv2,nÞ = deg ðvn,1Þ = 2; deg
ðvi,n−i+2Þ = 2 for 3 ≤ i ≤ n; deg ðvi,1Þ = 3 for 2 ≤ i ≤ n − 1; deg
ðv1,jÞ = 3 for 2 ≤ j ≤ n − 1; and deg ðv1,jÞ = 4 for 1 ≤ i ≤ n −
1,1 ≤ j ≤ n − 1, and j ≠ n − i + 2:

But, G, SðGÞ = 2 and ΔðGÞ = 4.
Define f : VðSTnÞ⟶ f1, 2,⋯, n2 + n − 1g as follows:

f vi,1ð Þ = n − i − 1ð Þf g, for 1 ≤ i ≤ n,

f vij1
À Á

= 3n − 3j + 5 + 2〠
n

j≥3
n − j + 3ð Þ − i − 1ð Þ

( )
,

for 1 ≤ i ≤ n and 2 ≤ j ≤ n:

ð9Þ

Hence, the generated edge labeling is calculated as
follows:

Define f ∗ : EðSTnÞ⟶ f2, 3, 4,⋯, n2 + n − 1g as fol-
lows:

f ∗ vi,1, vi+1,1ð Þ = n − i − 1ð Þ, for 1 ≤ i ≤ n,

f ∗ vi,j, vi+1,j
À Á

= 3n − 3j + 5 + 2〠
n

j≥3
n − j + 3ð Þ − i − 1ð Þ,

for 1 ≤ i ≤ n − 1 and 2 ≤ j ≤ n:

ð10Þ

Hence, f is a C-exponential mean labeling of the graph
STn: Thus, the graph STn is a C-exponential graph for n ≥
2. A characteristic example of the labeling mentioned above
is shown in Figure 5.

Theorem 12. The graph 2ST2n is a C-exponential mean
graph, for n ≥ 2:

Proof. Assume w1,1,w1,2,w1,3,⋯,w1,n,w2,n,w3,n,⋯,w2,2n,
w3,1,w3,2,w3,3,⋯,w3,2n−2,⋯:;w4,1,w4,2,w4,3, ⋯ ,w4,2n−4,⋯
::;wn+1,1,wn+1,2 denote the vertices of the double-sided step
graph 2ST2n. Inwi,j, i signifies the row (calculated through
bottom to top) and j signifies the column (calculated
through left to right) in which the vertex occurs.
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Figure 3: A C-exponential mean labeling of CPn
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Figure 4: A C-exponential mean labeling of Pm▫Pn
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Define l : Vð2ST2nÞ⟶ f1, 2,⋯, nð2n + 3Þg as follows:

l w1,j
À Á

=

2, j = 1,

wi,j−1 + n + 2 j − 3ð Þ, 1 < j ≤ n,

wi,j−1 + 4n + 3 − 2j, 1 < j ≤ n,

8>>><
>>>:

l w2,j
À Á

= wi−1,j − i − 1ð Þ, for 1 ≤ j ≤ 2n, 2 < i
È

≤ n + 1 and 1 ≤ j ≤ 2n + 4 − 2i,

l wi,j
À Á

=wi−1,j+1 − 1:

ð11Þ

The above-defined labeling pattern gives rise to l as
an injective map and defines l∗ : Eð2ST2nÞ⟶ f2, 3,⋯, n
ð2n + 3Þg as follows:

f ∗ uvð Þ = 1
e

f vð Þf vð Þ

f uð Þf uð Þ

 !1/ f vð Þ−f uð Þð Þ2
666

3
777, ð12Þ

for all uv ∈ Eð2ST2nÞ, is defined as bijective.

l∗ w1,j,wi, j+1
À Á

=
wi,j + j + 1ð Þ, 1 ≤ j ≤ n,

wi,j + 2n − j + 1, n + 1 ≤ j ≤ 2n,

8<
:

l∗ w2,j,wi, j+1
À Á

=

wi,jw1,j+1 − 1, for 1 ≤ j < 2n,

wi,j + 2n − j + 1, n + 1 ≤ j ≤ 2n,

for i > 2, 1 ≤ j < 2n + 4 − 2i,

8>>><
>>>:

l∗ wi, jwi, j+1
À Á

=wi−1,j+1wi−1,j+2 − 1,

l∗ w1,j,w2, j
À Á

=

w1,j, for 1 ≤ j ≤ 2n,

wi,j + 2n − j + 1, n + 1 ≤ j < 2n,

for i > 1, 1 ≤ i < n, 2 ≤ j ≤ 2n + 4 − 2i,

8>>><
>>>:

l∗ wi, jwi+1, j−1
À Á

=wi,j:

ð13Þ

Hence, l is a C- exponential mean labeling of 2ST2n,
Hence, the graph, for 2ST2n, is a C-exponential mean
graph for n ≥ 2: Figure 6 displays a distinctive illustration
of the labeling stated before.

Theorem 13. The graph As
r is a C-exponential mean graph,

where r ≥ 2 and s ≥ 2:

Proof. AssumeH = As
r is an arrow graph calculated by con-

necting a vertex w with superior vertices of Ps × Pr by two
new edges.

Let xi,jði = 1, 2 ; j = 1, 2,⋯,mÞ be vertices of Ps × Pr .
Join w with xi,1ði = 1, 2Þ by 2 new edges to obtain H:Vð

HÞj = 2m + 1 and jEðHÞj = 3m.
ξ : VðAs

rÞ⟶ f1, 2,⋯, 2rs − r − s + 3g by using C-expo-
nential mean labeling formula for all uv ∈ EðHÞ is defined
as bijective.

ξ wð Þ = 1,

ξ xi,j
À Á

= 3 + i − 1ð Þ + 2s − 1ð Þ j − 1ð Þ, i
= 1, 2,⋯, s and j = 1, 2,⋯, r − 1:

ð14Þ

The above-defined labeling pattern gives rise to ξ as an
injective map and defines ξ∗ : EðAs

rÞ⟶ f2, 3,⋯, 2rs − r −
s + 3g as follows:
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Figure 5: A C-exponential mean labeling of ST7
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ξ∗ w, x1,1ð Þ = 2, ξ∗ w, x2,1ð Þ = 3,

ξ∗ xi,j, xi+1,j
À Á

= 3 + i + 2s − 1ð Þ j − 1ð Þ, i
= 1, 2,⋯, s and j = 1, 2,⋯, r,

ξ∗ xi,j, xi,j+1
À Á

= 3 − s + j 2s − 1ð Þ + i, i
= 1, 2,⋯, s and j = 1, 2,⋯, r − 1:

ð15Þ

Hence, the graph As
r is a C-exponential mean graph, for

r ≥ 2 and s ≥ 2: A sample example of the previously men-
tioned labeling is shown in Figure 7.

Theorem 14. The graph DAs
r is a C-exponential mean graph,

where r ≥ 2 and s ≥ 2:

Proof. Assume H =DAs
r is a double arrow graph calculated

by joining two vertices w, y with Ps × Pr by four new edges
on both sides.

Let xi,jði = 1, 2,⋯, s ; j = 1, 2,⋯, rÞ be vertices of Ps ×
Pr . Join w with xi,1ði = 1, 2,⋯, sÞ and y with xi,rði = 1, 2,
⋯, sÞ by four new edges to obtainH. jVðGÞj = 2rs − r − s
+ 5 and jEðGÞj = 2rs − r − s + 5.

Define ξ : VðDAs
rÞ⟶ f1, 2,⋯, 2rs − r − s + 5g as fol-

lows:

ξ wð Þ = 1,

ξ yð Þ = 2rs − r − s + 5,

ξ xi,j
À Á

= 3 + i − 1ð Þ + 2s − 1ð Þ j − 1ð Þ, i
= 1, 2,⋯, s and j = 1, 2,⋯, r − 1,

ξ x1,rð Þ = 2rs − r − 2s + 4,

ξ xi,rð Þ = 2rs − r − 2s + 4 + i, i = 2, 3,⋯, s:

ð16Þ

Then, the generated edge labeling is calculated as
follows:

ξ∗ : EðDAs
rÞ⟶ f2, 3, 4,⋯, 2rs − r − s + 5gby using C

-exponential mean labeling formula, for all uv ∈ EðHÞ, is
defined as bijective.

ξ∗ w, x1,1ð Þ = 2, ξ∗ = w, xs,1ð Þ = 3,

ξ∗ xi,j, xi+1,j
À Á

= 3 + i + 2s − 1ð Þ j − 1ð Þ, i
= 1, 2,⋯, s − 1 ; j = 1, 2,⋯, r − 1,

ξ∗ x1,r , x2,rð Þ = 2rs − r − 2s + 5,

ξ∗ xi,r , xi+1,rð Þ = 2rs − r − 2s + 7 + i − 2ð Þ, i = 2, 3,⋯, r,

ξ∗ xi,j, xi,j+1
À Á

= 3 − s + j 2s − 1ð Þ + i, i
= 1, 2,⋯, s ; j = 1, 2,⋯, r − 1,

ξ∗ x1,r , yð Þ = ξ x1,rð Þ + 2,

ξ∗ xs,r , yð Þ = ξ xs,rð Þ + 1:
ð17Þ

Hence, the graph DAs
r is a C-exponential mean graph,

for r ≥ 2: Figure 8 displays an illustration of the labeling
from earlier as an example.

Theorem 15. The subdivision of ladder graph SðLtÞ is a C
-exponential mean graph, for t ≥ 2:

Proof. AssumeH = Lt: The ladder graph Lt is defined as Lt
= Pt × K2, where Pt is a path with × signifing the cartesian
product. Let r1, r2,⋯, rt , s1, s2, s3,⋯, st be the ladder vertices
Lt . Let si′ be the lately added vertex joining si and si+1, ri′ be
the newly added vertex between ri and ri+1 and qi be the
lately added vertex joining ri and si. Clearly, G = SðLtÞ has
5t − 2 vertices and 6t − 4 edges.

Define ψ : VðSðLtÞÞ⟶ f1, 2,⋯, 6t − 4 + 1g as follows:

ψ r1ð Þ = 1,

ψ r1ð Þ =
6 i − 1ð Þ i = odd and 1 < i < t,

2 3i − 2ð Þ i = even and 1 ≤ i ≤ t,

(

ψ s1ð Þ = 3,

ψ r1ð Þ =
6 i − 1ð Þ i = even and 1 ≤ i ≤ t,

2 3i − 2ð Þ i = odd and 1 < i ≤ t,

(

ψ q1ð Þ = 2, ψ qið Þ = 6i − 5, 1 < i ≤ t,

ψ ri′
� �

=
3 2i + 1ð Þ, i = odd and 1 ≤ i < t,

6i − 1, i = even and 1 ≤ i < t,

(

ψ si′
� �

=
6i − 1, i = odd and 1 ≤ i < t,

3 2i + 1ð Þ, i = even and 1 ≤ i < t:

(

ð18Þ

Hence, the generated edge labeling is calculated as
follows:
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Figure 8: A C-exponential mean labeling of DA2
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Define ψ∗ : EðSðLtÞÞ⟶ f2, 3,⋯, 6t − 4 + 1g as follows,
for 1 ≤ i < t.

ψ ri, ri′
� �

=
6i − 1, i = odd,

6i − 2, i = even,

(

ψ ri′, ri+1
� �

=
6i, i = even,

3 2i + 1ð Þ, i = odd,

(

ψ si, si′
� �

=
2 3i − 1ð Þ, i = odd,

6i − 1, i = even,

(

ψ∗ si′, si+1
� �

=max ψ si′
� �

, ψ si+1ð Þ
n o

,

ψ∗ ri, qið Þ =max ψ rið Þ, ψ qið Þf g for i ≤ i ≤ t,

ψ∗ qi, sið Þ =max ψ qið Þ, ψ sið Þf g for i ≤ i ≤ t:

ð19Þ

Hence, ψ is a C-exponential mean graph SðLtÞ, for t ≥ 2:
A representation of the prior labeling is shown as an exam-
ple in Figure 9.

3. Conclusion

The C-exponential mean labeling of tree, cycle-path, step
graph, ladder graphs, arrow graphs, and subdivision of lad-
der graph was introduced and discussed in this work using
graph operations.
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