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Let L be a multiplicative lattice and M be a lattice module over L. In this paper, we assign a graph to M called residual division
graph RG(M) in which the element N ∈M is a vertex if there exists 0M ≠P ∈M such that NP � 0M and two vertices N1, N2 are
adjacent if N1N2 � 0M (where N1N2 � (N1: IM)(N2: IM)IM). It is proved that such a graph with the greatest element IM which
does not belong to the vertex set is nonempty if and only if M is a prime lattice module. Also, we provide conditions such that
RG(M) is isomorphic to a subgraph of Zariski topology graph ĢX(M) with respect to X.

1. Introduction

In our everyday life, we found that numerous issues are dealt
with the assistance of graphs. Extraordinarily, the idea of the
coloring of graphs assumes a significant function in com-
puter sciences. To examine the coloring of rings, I. Beck first
presented the zero-divisor graphs of a commutative ring
with unity (see [1]). 'is examination of the coloring of a
commutative ring was further studied by Anderson and
Naseer (see [2]).

'e ring structure is firmly associated with ideals more
than elements and so it has the right to present a graph with
vertices as ideals instead of elements. In this direction,
M. Behboodi et al. studied the annihilating-ideal graph
AG(R) with vertex set V(AG(R)) contain all those ideals of
ring R whose annihilators are nonzero(see [3, 4]).'ereafter,
Ansari-Toroghy et al. expanded this work for R-module M,
where R is a commutative ring. 'ey studied the algebraic as
well as topological properties of M with the help of anni-
hilating-submodule graph and the Zariski topology graph
(see [5]). Recently, the idea of the zero divisor has likewise
been applied in Boolean algebra, poset, and lattices (see [6, 7,
78]).

A complete lattice L � (L,∨,∧, 0L, 1L) is a multiplicative
if there is a defined binary operation called multiplication,

denoted by “·”, which is commutative and associative such
that the greatest element 1L works as the multiplicative
identity and for an arbitrary index set
I a.(∨α∈Ibα) � ∨α∈Ia.bα, where a, bα∈L and 0L is the least
element of L. It is interesting to note that the purpose behind
the development of multiplicative lattice is to generalize
lattices of ring ideals (see [9, 10]). Also, it is observed that the
annihilating-ideal graph of a commutative ring R with unity
has close ties with a multiplicative lattice of ideals of R. As far
as the study of Johnson [11] is concerned, a lattice module is
just an extension of a multiplicative lattice. It becomes
worthy to study the graph AG(R) over a commutative ring R

with unity with the help of a lattice module M over L.

Definition 1 (see [12]). A lattice module M over the mul-
tiplicative lattice L is a complete lattice with least element 0M

and greatest element IM if a multiplication between elements
of L and M, represented by xN ∈M, where x ∈ L and
N ∈M, which satisfies the following properties:

(1) (xy)N � x(yN)

(2) (∨αxα)(∨βNβ) � (∨αβxαNβ)

(3) 1LN � N

(4) 0LN � 0M, for all x, y, xα ∈ L and for all N, Nβ ∈M
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Note that, for P, Q ∈M and x ∈ L, we define (P: Q) �

∨ a ∈ L ∣ aQ≤P{ } and (P: x) � ∨ K ∈M|xK≤P{ }. Here, the
operation″: ″ is called residual division (see [12]). Also, note
that A, C ∈M with A≤C; the interval B ∈M|A ≤B≤C{ }

which is denoted by C/A is a lattice module over a multi-
plicative lattice L with the multiplication a · B � aB∨A,
where a ∈ L (see [12]).

Furthermore, for more definitions and concept of lattice
modules and multiplicative lattice, see [9–19].

'e semicomplement graph Γ(M) of lattice module M

introduced and investigated by Phadatare et al. (see [20]). In
the recent paper [5], Ansari-Toroghy and Habibi have
highlighted the closed sets in Zariski topology on prime
spectrum Spec (M) of R-module M and defined new graph
called Zariski topology graph G(τT), where T ⊆ Spec(M)

which is nonempty. 'ey studied the relationship between
G(τT) and annihilating-submodule graph AG(M/∩ (T))

(see [5]). 'ereafter, this graph G(τT) generalized to lattice
modules M over a C-lattice L and the Zariski topology graph
ĢX(M) was studied (see [21]).

'roughout the paper, M denotes a lattice module over a
multiplicative lattice L, and for N, K ∈M, we define
NK � (N: IM)(K: IM)IM.

'e aim of this paper is to generalize the annihilating-
submodule graph of a module to the lattice module M over a
multiplicative lattice L and introduce the residual division
graph RG(M) whose vertex set is N ∈M|there{

exists 0M ≠K ∈M such thatNK � 0M} and in RG(M); two
vertices A, B are adjacent if and only if AB � 0M. Apart from
this, we will investigate interrelationship between ĢX(M) and
RG(M/∧(X)), where ∧(X) is the meet of all elements in X.

'roughout the paper, M denotes a lattice module over a
multiplicative lattice L.

2. Some Graph Theoretic Notions

We consider only undirected graphs. 'us, we adopt the
notation G � (V, E), where V � V(G) is the set of vertices
and E � E(G) is the set of edges of G. A graph G is an empty
if |V(G)| � ∅. 'e number of edges incident on a vertex v is
called a degree of vertex v and it is denoted by d(v). A graph
G is said to be k-regular if the degree of each vertex in G is k.
Distance between the vertices a and b is the length of the
shortest path between them, which is denoted by d(a, b).
Consider d(a, b) �∞ if there is no path between a and b.
diam (G) � sup d(a, c)|a, c ∈ V(G){ } is the diameter of a
graph G. Length of shortest cycle in G is called the girth of G,
denoted by gr(G). A clique of graph G is its maximal
complete subgraph, and the minimum number of cliques
required to cover all the vertices of graph G is called the
partition number, denoted by θ(G). In a graph G, a subset
S⊆V(G) is supposed to be independent if no two vertices in
S are adjacent. 'e size of maximum independent set in a
graph G called as independence number, denoted by α(G).
For a vertex x ∈ V(G), ΓG(x) � y|xy ∈ E(G)  denotes the
set of all neighbors of x′ inG. A graphG is said to be perfect if
θ(H) � α(H), for every induced subgraph H of G. Strongly
perfect and very strongly perfect graphs are the classes of the
perfect graph.

For further information, the reader may refer [22, 23].

3. Residual Division Graph RG(M)

Definition 2. 'e residual division graph RG(M) of M is a
graph with vertices V(RG(M)) � N ∈M| there exists{

0M ≠K ∈M such thatNK � 0M}, where distinct vertices P

and Q are adjacent if and only if PQ � 0M.

Example 1. Figure 1 represents the residual division graph
RG(M) of M with the vertex set V(RG(M)) �

0M, A, B, C, Q , where M represents lattice module over L

(see Figure 2 and 3).
We essentially need the following two Lemmas

throughout this article.

Lemma 1 (see [12]). For x ∈ L and P, Q, R ∈M, the fol-
lowing holds:

(1) If P≤Q, then (P: R)≤ (Q: R)

(2) (Q∧R: P) � (Q: P)∧(R: P)

(3) x≤ (xP: P)

(4) x(P: x)≤P

(5) (P: Q)Q≤P

(6) If P≤Q, then (R: Q)≤ (R: P)

Lemma 2 (see [12]). For N ∈M, ((N: IM)IM: IM) �

(N: IM).

'e following lemma gives a condition under which a
nonzero proper element of lattice module M is a vertex of
RG(M).

Lemma 3. Let 0M ≠N be a proper element of M. 9en, N ∈ V

(RG(M)) if (0M: N)≠ (0M: IM) or (0M: (N: IM))≠ 0M.

Proof. Suppose that 0M ≠N is a proper element of M and
(0M:N)≠(0M:IM). 'en, (0M:N)IM≠0M. Now, let K� (0M:

N)IM.'erefore,NK�(N:IM)((0M:N)IM:IM) IM≤(N:IM)

(0M:N)IM�(0M:N)(N:IM)IM≤(0M:N) N�0M. 'is im-
plies that NK�0M; consequently, N∈V(RG(M)). □

Callialp and Tekir [14] introduced the notion of mul-
tiplication lattice modules.

Definition 3 (see [14]). A lattice module M is said to be
multiplication lattice module if for each K ∈M there exists
an element x ∈ L such that K � xIM.

Lemma 4 (see [14]). A lattice module M is a multiplication
lattice module if and only if K � (K: IM)IM, for all K ∈M.

Lemma 5. Let 0M ≠N be a proper element of multiplication
lattice module M. 9en, N ∈ V(RG(M)) if and only if
(0M: (N: IM))≠ 0M.
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Proof. Suppose that 0M ≠N ∈M is a vertex of RG(M).
'en, by definition, there exists 0M ≠K ∈M such that
NK � 0M. 'erefore, (N: IM)(K: IM)IM � 0M. Since M is
multiplication, by Lemma 4, (K: IM)IM � K; therefore,
(N: IM)(K: IM)IM � (N: IM)K � 0M. 'is implies (0M:

(N: IM)) � K. However, K≠ 0M; therefore, (0M: (N:

IM))≠ 0M. Converse part follows from Lemma 3. □

Co-multiplication lattice module is introduced and
characterized by F. Callialp et al. (see [16]).

Definition 4 (see [16]). Lattice module M is called a co-
multiplication lattice module if for each P ∈M, there exists
an element x ∈ L such that P � (0M: x).

'e following characterization plays an important role in
the study of residual division graph RG(M).

Lemma 6 (see [16]). Lattice module M is a co-multiplication
if and only if K � (0M: (0M: K)) for every element K ∈M.

'e following theorem is the immediate consequence of
Lemma 6.

Theorem 1. Every proper element 0M ≠N of a co-multi-
plication lattice module M is a vertex of RG(M).

Proof. Let 0M ≠N is a proper element of co-multiplication
lattice module M. By Lemma 3, to prove N ∈ V(RG(M)),
we have to show that (0M: N)≠ (0M: IM) or (0M:

(N: IM))≠ 0M. Suppose that (0M: N) � (0M: IM). 'en, by
Lemma 1(6), (0M: (0M: N)) � (0M: (0M: IM)). Since M is
a co-multiplication lattice module over a C-lattice L, by

Lemma 6, N � (0M: (0M: N)) � (0M: (0M: IM)) � IM

which is contradiction to N< IM; consequently,
(0M: N)≠ (0M: IM). □

In the above three results, we studied various conditions
on lattice module M under which proper elements
0M ≠N ∈M becomes a vertex. However, then the natural
question arises: can the greatest element IM be a vertex in
residual division graph RG(M)?

'e following lemma answers the above question.

Lemma 7. Greatest element IM of M is a vertex if and only if
there exists a proper element 0M ≠N ∈M such that
(N: IM) � (0M: IM).
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Figure 2: Lattice module M over L.
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Proof. Suppose that greatest element IM of a lattice module
M is a vertex. 'en, there exists a 0M ≠P ∈M such that
PIM � 0M. 'erefore, (P: IM)(IM: IM)IM � 0M. However,
(IM: IM)IM � IM; therefore, (P: IM)IM � 0M, and hence,
(P: IM) � (0M: IM). Conversely, suppose that (N: IM) �

(0M: IM), where N is a proper element of M with 0M ≠N.
'en, NIM � (N: IM)(IM: IM)IM � (N: IM)IM because
of (IM: IM)IM � IM. Since (N: IM) � (0M: IM), we have
NIM � (N: IM)IM � (0M: IM)IM ≤ 0M. By Lemma 1(5),
(0M: IM)IM ≤ 0M; therefore, NIM � 0M; hence, the greatest
element IM is a vertex. □

Theorem 2. Let the greatest element IM of M is not a vertex
of RG(M). 9en, 0M ≠N ∈M is a vertex if and only if
(0M: (N: IM))≠ 0M.

Proof. Suppose that 0M ≠N ∈M is in V(RG(M)). 'en,
there exists 0M ≠P ∈M such that NP � 0M. 'erefore,
NP � (N: IM)(P: IM)IM � 0M and so (P: IM)IM ≤
(0M: (N: IM)). Since IM is not a vertex, by Lemma 7,
(P: IM)IM ≠ 0M, and hence, (0M: (N: IM))≠ 0M. Converse
follows from Lemma 3. □

In [13], Al-Khouja studied the relationship between the
maximal (prime) elements of lattice module M and the
maximal (prime) elements of multiplicative lattice L. “If N is
a prime element of a lattice module M over a multiplicative
lattice L, then (N: IM) is a prime element of multiplicative
lattice L (see [13]).”

According to Callialp et al. (see [15]), a lattice module M

over a multiplicative lattice L is prime if the least element 0M

is prime element of M.
'e following characterization is done by Callialp et al.

(see [15]).

Lemma 8 (see [15]). Least element 0M of M is a prime if and
only if (0M: IM) � (0M: N), for all 0M ≠N ∈M.

Lemma 8 helps us to characterize the prime lattice
module.

Theorem 3. Let the greatest element IM of M is not a vertex
of RG(M). 9en, RG(M) � ∅ if and only if M is a prime
lattice module.

Proof. Suppose that RG(M) � ∅ and M is not a prime
lattice module over L. 'en, least element 0M is not a prime
element of M. 'erefore, by Lemma 8, there exists proper
element 0M ≠N ∈M such that (0M: IM)≠ (0M: N), and
hence, by Lemma 3, N is in V(RG(M)), contradiction to
RG(M) � ∅; consequently, M is prime. Conversely, M is a
prime, and there exists N ∈M such that N ∈ V(RG(M)).
'en, by definition, there exists 0M ≠K inM such that
NK � 0M. 'is implies that (N: IM)(K: IM)IM � 0M, so
(N: IM)(K: IM) � (0M: IM). Since 0M is a prime element
of M, (0M: IM) prime element of L. 'erefore, (N: IM) �

(0M: IM) or (K: IM) � (0M: IM). 'is follows by Lemma 7
that IM is a vertex, a contradiction. Consequently,
RG(M) � ∅. □

Theorem 4. For given M, RG(M) is connected and
diam (RG(M)) ≤ 3.

Proof. Suppose that P, Q ∈ V(RG(M)) such that P≠Q. If
PQ � 0M, by definition, we have a path P − Q of length one.
Now, suppose that PQ≠ 0M.

Case (1): if P2 � PP � 0M and Q2 � QQ � 0M, then
PPQ � (P: IM)(P: IM)(Q: IM)IM � 0M and PQQ �

(P: IM)(Q: IM)(Q: IM)IM � 0M.'is implies that P is
adjacent toPQ and PQ is adjacent toQ, i.e.,P − PQ − Q

is a path of length equal to 2.
Case (2): if P2 � 0M and Q2 ≠ 0M, since
Q ∈ V(RG(M)), there exists 0M ≠Q1 ∈M such that
QQ1 � 0M. If PQ1 � 0M, then we have a path P − Q1 −

Q with d(P, Q) � 2. Suppose that PQ1 ≠ 0M. 'en,
PPQ1 � P2Q1 � 0M, and therefore, P − PQ1 − Q is a
path of length 2 because QQ1 � 0M. Similarly, if Q2 �

0M and P2 ≠ 0M, then we have a path with length 2.
Case (3): if PQ≠ 0M, P2 ≠ 0M, and Q2 ≠ 0M, by defi-
nition, there exist 0M ≠N, K such that PN � 0M � QK.
If N � K, then P − N � K − Q is a path of length 2.
Now, suppose that N≠K and NK � 0M. Since
PN � 0M � QK, we have a path P − N − K − Q of
length 3, i.e., d(P, Q) � 3. Above cases implies that
d(P, Q)≤ 3; consequently, diam(RG(M)) ≤ 3. □

Corollary 1. If RG(M) contain a cycle, then
gr(RG(M)) ≤ 4.

In [21], Phadatare et al. introduced the quasi-prime
element of M.

Definition 5 (see [21]). A proper elementN ∈M is said to be
quasi-prime if (N: IM) is a quasi-prime element of L.

'e following lemma follows from 'eorem 3.

Lemma 9. Let the greatest element IM of M is not a vertex of
RG(M). If RG(M) � ∅, then the least element 0M is a quasi-
prime element of M.

Specq(M) is a collection of all quasi-prime elements of M

and for N ∈M, set D(N) � K ∈ Specq(M)|(N: IM)≤(K:

IM)} (see [21]).
We basically need the following lemma.

Lemma 10 (see [21]). Let M be a lattice module and Y⊆
Specq(M). 9en, Y⊆D(N) if and only if (N: IM)≤ (∧
(Y): IM).

Phadatare et al. [21] employed closed set D(N) to in-
troduce the Zariski topology graph ĢX(M) with respect to
X⊆ Specq(M).

Definition 6. For X⊆ Specq(M), we define an undirected
graph ĢX(M) associated with X, called Zasiski topology graph
with respect to X with vertex set V(ĢX(M)) � N ∈M|{

there exists 0M ≠K ∈M such that D(N)∪D (K) � X andD
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(N)≠X, D(K)≠X} and distinct vertices N and K are adja-
cent if and only if D(N)∪D(K) � X.

Remark 1. By Proposition 3.1 of [21] and Lemma 2, for N,

K ∈M, D(NK) � D((N: IM)(K: IM)IM) � D(N)∪ D (K).
Note that, for Y⊆ Specq(M), an interval K ∈M: ∧{

(Y)≤K≤M} denoted by M/∧(Y) � M is a lattice module
over a multiplicative lattice L with the multiplication
a · K � aK∨∧(Y), where a ∈ L.

Theorem 5. Let M be a lattice module, and M/∧(Y) � IM is
not a vertex of RG(M/∧(Y)). 9en, RG(M/∧(Y)) is iso-
morphic to subgraph of ĢY(M).

Proof. Suppose that N � N/∧(Y) ∈ V(RG(M/∧(Y))). By
definition, there exists∧(Y)≠K/∧(Y) ∈M/∧(Y) such thatN/
∧(Y) is adjacent to K/∧(Y). 'erefore, NK � N/∧(Y)K/
∧(Y) � (N/∧(Y): IM/∧(Y)) (K/∧(Y): IM/∧ (Y))IM/∧ (Y)

� ∧(Y). Note that (N/∧(Y): IM/∧(Y)) (K/∧(Y): IM/∧
(Y)) � ((N: IM) (K: IM)IM∨∧(Y))/∧(Y). 'erefore, we
have NK � N/∧(Y)K/∧(Y) � ((N: IM)(K: IM)IM ∨∧(Y))/
∧(Y) � ∧(Y). 'is impies that NK � (N: IM) (K: IM) IM

≤∧(Y)); therefore, by Lemma 1(1), (NK: IM)≤ (∧(Y): IM),
and hence, by Lemma 10, D(NK) � Y. Since D(NK)

� D(N) ∪D(K), we have Y � D(N)∪D(K). If D(N) � Y,
then (N: IM) � (∧(X): IM); therefore, by Lemma 7, IM is a
vertex of RG(M/∧(Y)) which is a contradiction; consequently,
D(N)≠Y. In the same line, we have D(K)≠Y. 'us,
N ∈ V(ĢY(M)) such that N is adjacent to K. □

Corollary 2 (see [21]). For X⊆ Specq(M), ĢX(M) is non-
empty if and only X � D(∧(X)) and ∧(X) ∉ Specq(M).

'e following is the characterization of nonempty re-
sidual division graph RG(M/∧(Y)).

Theorem 6. If M/∧(Y) � IM is not a vertex of
RG(M/∧(Y)), then RG(M/∧(Y)) � ∅ if and only if
ĢY(M) � ∅.

Proof. Suppose that IM is not a vertex of RG(M/∧(Y)) and
RG(M/∧(Y)) � ∅. 'en, by Lemma 9, ∧(Y) is a quasi-
prime element of M; therefore, by Corollary 2, ĢY(M) � ∅.
Converse follows from 'eorem 6. □

Theorem 7. 9e greatest element M/∧(Y) � IM is a vertex
in RG(M/∧(Y)) if there exists N< IM such that ∧(Y)<N

and D(N) � Y.

Proof. Suppose there exists N< IM such that ∧(Y)<N and
D(N) � Y. To prove that IM∈ V(RG(M/∧(Y))), it suffices
to prove that there exists ∧(Y)≠K such that KIM � ∧(Y).
Note that ∧(Y)<N< IM. By definition, NIM �

N/∧(Y)IM/∧(Y) � (N/∧(Y): IM/∧(Y))(IM/∧(Y): IM/∧
(Y)) IM/∧(Y) � (N: IM)IM∨∧(Y)/∧(Y). Since D(N) � Y,
we have, for all P ∈ Y, (N: IM)≤ (P: IM); therefore,
(N: IM)≤∧P∈Y(P: IM), and hence, by Lemma 1(2),
(N: IM)≤ (∧P∈YP: IM). 'is implies that (N: IM)≤

(∧(Y): IM), i.e., (N: IM)IM ≤∧(Y); therefore, (N: IM)IM

∨∧(Y)/∧(Y) � ∧(Y); consequently, IM is a vertex in
RG(M/∧(Y)).

For N< IM,
��
N

√
represents q-radical of N, and it is

defined as
��
N

√
� ∧D(N). If

��
N

√
� N, then N is said to be

q-radical element of M.
“If the natural map ψ: Specq(M)⟶ Specq

(L/(0M: IM)) defined by ψ(N) � (N: IM) surjective, then�������
(N: IM)


� (

��
N

√
: IM) (see [24]).” □

Theorem 8. If the natural map ψ is surjective and A, B are
adjacent vertices in ĢY(M). 9en,

��
A

√
/∧(Y) and

��
B

√
/∧(Y)

are adjacent in RG(M/∧(Y)).

Proof. To show that
��
A

√
/∧(Y) and

��
B

√
/∧(Y) are adjacent in

RG(M/∧(Y)), we have to prove that
���������
(A: IM)IM


/∧ (Y)≠∧

(Y) and
���������
(B: IM)IM


/∧(Y)≠∧(Y) with

���������
(A: IM)IM


/∧ (Y)

���������
(B: IM)IM


/∧(Y) �∧(Y). Suppose that A,B are adjacent

vertices in ĢY(M). 'en, we have D(A)∪D(B) � Y with D

(A), D(B)≠Y. However, D(A)∪ D(B) � D((A: IM) (B: IM)

IM); therefore, Y � D((A: IM) (B: IM)IM), and hence, ∧(Y)�

∧D((A:IM)(B:IM)IM)�
���������������
(A:IM)(B:IM)IM


≤

���������
(A:IM)IM



∩
���������
(B:IM)IM


. 'us, ∧(Y)≤

���������
(A:IM)IM


∩

���������
(B:IM)IM


. Also,

note that
���������
(A: IM)IM


/∧(Y)

�������
(B: IM)


IM/∧(Y) �

(
���������
(A: IM)IM


/∧(Y): IM/∧(Y)) (

���������
(B: IM)IM


/∧(Y): IM/ ∧

(Y))IM /∧(Y) � ((
���������
(A: IM)IM


: IM) (

���������
(B: IM)IM


: IM))IM

∨∧ (Y)/∧(Y). Since ψ is surjective and D(N) � D((N: IM)

IM), we have (
���������
(A: IM)IM


: IM) � (

��
A

√
: IM) �

�������
(A: IM)


;

therefore,
���������
(A: IM)IM


/∧(Y)

���������
(B: IM)IM


/∧(Y) � ((

����
(A:



IM) IM : IM) (
���������
(B: IM)IM


: IM))IM∨∧(Y)/∧(Y) �

����
(A:



IM)
�������
(B: IM)


IM∨IM/∧(Y). However,

�������
(A: IM)

 �������
(B: IM)



IM≤
�������������
(A: IM)(B: IM)


IM≤

���������������
(A: IM)(B: IM)IM


�

���
AB

√
�

∧Y); therefore,
���������
(A: IM)IM


/∧(Y)

���������
(B: IM)IM


/∧(Y) �

�������
(A: IM)

 �������
(B: IM)


I M∨IM/∧(Y) � ∧(Y). Now, it remains to

prove that
���������
(A: IM)IM


/∧(Y)≠∧(Y) and

���������
(A: IM)IM


/ ∧(Y)

≠∧(Y). If
���������
(A: IM)IM


/∧(Y) � ∧ (Y), then

���������
(A: IM)IM


�

∧(Y). 'erefore, (A: IM)IM ≤
���������
(A: IM)IM


�∧(Y), and

hence, (A: IM)≤(∧ (Y): IM). By Lemma 10, D(N) � Y, a
contradiction. Consequently,

���������
(A: IM)IM


/∧(Y)≠∧(Y).

Similarly, we have
���������
(B: IM)IM


/ ∧(Y)≠∧(Y). □

4. Conclusion

In this paper, we introduced the residual division graph of
the lattice module and characterized the co-multiplication
lattice module and prime lattice module. Also, we charac-
terized vertex set of residual division graph of the multi-
plication lattice module. We found that the residual division
graph of an interval lattice module is isomorphic with the
Zariski topology graph.
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