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Diagnosability is an important metric parameter for measuring the reliability of multiprocessor systems. The pessimistic
diagnosis strategy is a classic diagnostic model based on the PMC model. The class of folded Petersen cubes, denoted by FPQn,k,
where n, k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ, is introduced as a competitive model of the hypercubes, which is constructed by iteratively
applying the Cartesian product operation on the hypercube Qn and the Petersen graph P. In this paper, by exploring the
structural properties of the folded Petersen cubes FPQn,k, we first prove that FPQn,k is ðn + 3kÞ diagnosable under the PMC
model. Then, we completely derive that the pessimistic diagnosability of FPQn,k is 2n + 6k − 2 under the PMC model.
Furthermore, the diagnosability and the pessimistic diagnosability of the class of folded Petersen cubes, including the hypercube,
folded Petersen graph, and hyper Petersen graph, are obtained.

1. Introduction

A multiprocessor system can be modeled as a graph, in
which nodes (vertices) and edges correspond to processor
and communication links, respectively. Throughout the
paper, a graph and a system, a vertex and a processor, and
an edge and a link are interchangeable.

The multiprocessor system has been increasingly adopted
in the semiconductor technology, and the system reliability is
crucial for multiprocessor systems. To maintain high reliabil-
ity, multiprocessor systems should differentiate between
fault-free processors and faulty ones. Determining all faulty
processors is known as fault diagnosis. When all faulty proces-
sors can be evaluated precisely and t is an upper bound of the
number of faulty processors, we call themultiprocessor system
as t -diagnosable. The largest cardinality of the faulty set is
named as the diagnosability of this system. Diagnosability of
many famous networks had been studied; see [1–5] etc.

For the purpose of self-diagnosis of a system, several
models have been proposed for diagnosing faulty processors
in a multiprocessor system. Among the proposed models,
the PMC model [6] was widely used. The PMC model allows
each processor to perform diagnosis by testing the neighbor-
ing processors and observing their responses.

Observe that under a t-diagnosable system, a node can
only be tested by its neighbors. It is impossible to determine
whether some processor v is fault free or not when all the
neighbors of v are faulty. To improve the diagnosability,
Kavianpour and Friedman [7] proposed the pessimistic
diagnosis strategy, which is a classic strategy based on the
PMC model. In this strategy, all faulty processors can be iso-
lated within a set which has at most one fault-free processor.

Definition 1. Let G = ðVG, EGÞ be a system. G is t/t -diagnos-
able if all faulty processors can be isolated within a set of size
at most t such that at most, one fault-free processor is mis-
taken as a faulty one and the number of faulty processors is
bounded by t. The pessimistic diagnosability of G is tpðGÞ =
max ft : G is t/t- diagnosable}.

Using the PMC model with a pessimistic strategy, the
pessimistic diagnosability has been receiving much attention
for many well-known multiprocessor systems, such as
hypercubes Qn, M€obius cubes MQn, enhanced hypercubes
EQn,s, k-ary n-cubes Qk

n, alternating group graphs AGn,
hypercube-like network HLn, star graph Sn, and split-star
networks S2n; see Table 1. More desired results can be found
in [8–14] and the references therein.
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Network topology is an important factor because it
affects the performance of the network. Hypercubes [26]
have been recognized as topologies of multiprocessor sys-
tems. The class of folded Petersen cubes, proposed by €O
hring and Das [27], is constructed by iteratively applying
the Cartesian product operation on hypercubes and the
Petersen graph [28–30]. For recent research about folded
Petersen cubes, please refer to [31–33] etc.

Although there are many results about diagnosability
and the pessimistic diagnosability of many multiprocessor
systems, little is known for folded Petersen cubes. In this
paper, by exploring the structural properties of the folded
Petersen cubes FPQn,k, we prove that FPQn,k is ðn + 3kÞ diag-
nosasable under the PMC model. Then, we completely
determine the pessimistic diagnosability of FPQn,k under
the PMC model. Furthermore, the diagnosability and the
pessimistic diagnosability of the class of folded Petersen
cubes, including the hypercube, folded Petersen graph, and
hyper Petersen graph, are obtained.

2. Preliminaries

2.1. Terminologies and Notations. We provide Table 2 that
contains most of the important notations used in this paper.

Let G = ðVG, EGÞ describe the link situation for a simple
multiprocessor system. The processors in this system are
denoted by an vertex set VG, and the links between each pair

of processors are denoted by an edge set EG. Let c be a pro-
cessor. Denote by NGðcÞ the set of processors which have a
link to c. For a set V ′ ⊆ VG, define NGðV ′Þ =S

v∈V ′NGðvÞ
−V ′, named as the neighborhood of V ′.

A graph H is a subgraph of a graph G if VH ⊆VG and
EH ⊆ EG. We say that a simple graph is k regular when each
processor has exactly k neighbors. For any V ′ ⊆VG with j
V ′j ≤ k − 1, if G −V ′ is still connected, then, G is k -con-
nected. The maximally connected subgraphs of a graph G
are its components. If a component has only one vertex, it
is called trivial; otherwise, it is called nontrivial. Let V ′ ⊆
VG be a vertex cut, the biggest component of G −V ′ is called
a large component, and the remaining ones are called small
components. Let κðGÞ =min fjSj: G − S is disconnected} be
the connectivity of G.

Suppose that G and H are two graphs with jVGj = jVH j.
Let M be a perfect matching between the nodes of G and H.
Then, GðG,H : MÞ is the graph with node set VG ∪VH and
edge set EG ∪ EH ∪M.

2.2. Folded Petersen Cube. Let G = ðVG, EGÞ and H = ðVH ,
EHÞ be two graphs. The Cartesian product of G and H,
denoted by G□H, is the graph with node set VG ×VH =
fðg, hÞ: g ∈ VG, h ∈ VHg, and the vertices ðg1, h1Þ and ðg2,
h2Þ are adjacent if and only if g1 = g2 and ðh1, h2Þ ∈ EH or
h1 = h2 and ðg1, g2Þ ∈ EG. Under isomorphism, the operator

Table 1: Pessimistic diagnosability of several main multiprocessor systems.

Multiprocessor systems G Degree tp Gð Þ
Hypercubes Qn n 2n − 2 [15]

M€obius cubes MQn n 2n − 2 [16]

Enhanced hypercubes EQn,s n 2n − 2 [17]

3-Ary n-cubes Q3
n 2n 4n − 3 [8]

k-Ary n-cubes Qk
n, k ≥ 4 2n 4n − 2 [8]

Alternating group graphs AGn 2n − 4 4n − 11 [18]

Hypercube-like network HLn n 2n − 2 [19]

Star graph Sn n − 1 2n − 4 [20]

Split-star networks S2n 2n − 3 4n − 9 [11, 21]

Alternating group networks ANn n − 1 2n − 5 [21]

n, kð Þ arrangement graphs An,k k n − kð Þ 2k − 1ð Þ n − kð Þ − 1 [9]

n, kð Þ star graphs Sn,k n − 1 n + k − 3 [9]

Balanced hypercubes BHn 2n 2n [9]

Data center networks Dk,n n + k − 1 n + 2k − 2 [22]

Cayley graphs generated Γn Sð Þ E Að Þj j 2 E Að Þj j − 2 (A is triangle free) [23]

By transposition graph A 2 E Að Þj j − 3 (A has a triangle) [23]

Bubble-sort star graphs BSn 2n − 3 4n − 9 [24]

Augmented cubes AQn 2n − 1 4n − 8 [25]

Augmented 3-ary n-cubes AQn,3 4n − 2 8n − 11 [24]

Augmented k-ary n-cubes AQn,k, k ≥ 4 4n − 2 8n − 10 [24]

⋯ ⋯ ⋯

2 Journal of Mathematics



□ is associative and commutative. For any graph G and any
positive integer k, we define G1 = G and Gk = Gk−1

□G if k >
1. The hypercube Qn (where n ≥ 1) is defined as Q1 = K2
and Qn =Qn−1□Q1. Thus, we also write Qn = Kn

2 .
The Petersen graph P was introduced by Chartrand and

Wilson [28]; see Figure 1. Obviously, the Petersen graph has
an outer 5 cycle, an inner 5 cycle, and five spokes joining
them. For k ≥ 1, FPk = Pk represents the k -dimensional
folded Petersen graph and HPn = P□Qn−3 (where n ≥ 3) rep-
resents the hyper Petersen graph [34].

For any i ∈ f0, 1,⋯, 9g, denote by iFPk−1 the subgraph of
FPk induced by the node set fixk−2xk−3 ⋯ x0 : xj ∈ f0, 1,⋯
, 9g and 0 ≤ j ≤ k − 2g. Thus, FPk is recursively con-
structed from iFPk−1 for 0 ≤ i ≤ 9. For any two nodes x and
y of FPk, suppose that x = x1x2 ⋯ xk and y = y1y2 ⋯ yk. If x
, y ∈ ViFPk−1 , then, x and y are adjacent if and only if x2 ⋯
xk and y2 ⋯ yk are adjacent in FPk−1; otherwise, x and y
are adjacent if and only if x1 is adjacent to y1 in P and x2
⋯ xk = y2 ⋯ yk.

From the construction of folded Petersen graphs, it is
obvious that any node of ViFPk−1 has 3ðk − 1Þ neighbors in i
FPk−1 and other three neighbors (called extra neighbors) in
V jFPk−1 , where i and j are adjacent in P.

Lemma 2 (see [27]). The folded Petersen graph FPk is a node
and edge transitive regular graph of degree 3k and of node
connectivity κðFPkÞ = 3k. For a node x ∈ ViFPk−1

, the three
extra neighbors of x are in distinct jFPk−1, where i and j are
adjacent in P. Furthermore, for any two nodes u, v ∈ ViFPk−1

,
N �iFPk1

ðuÞ ∩N �iFPk1
ðuÞ =∅, where �iFPk1 = FPk − iFPk−1.

The class of folded Petersen cubes FPQn,k = Pk
□Qn, where

n ≥ 0, k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ, was introduced as a competi-
tive model of the hypercubes. In particular, FPQ0,k = Pk and
FPQn,0 =Qn. Clearly, FPQn,k is a triangle-free ðn + 3kÞ-regu-
lar graph with 10k2n vertices.

Lemma 3 (see [27]). The folded Petersen cube FPQn,k is a reg-
ular graph with degree n + 3k and connectivity κðFPQn,kÞ =
n + 3k. Furthermore, FPQn,kðn ≥ 1Þ can be viewed as GðFP
Qn−1,k, FPQn−1,k : MÞ, where M is a perfect matching between
two FPQn−1,k ’s.

2.3. PMC Model. In self-diagnosable systems, there are sev-
eral methods which had been introduced to diagnose faulty
processors. The PMC model [6] allows each processor to
perform diagnosis by testing the neighboring processors
and observing their responses. In the PMC model, a test syn-
drome σ collects all test results. Let S ⊆VG. S is said to be
compatible with a syndrome σ if σ can be produced from
the condition that all nodes in S are faulty and all nodes in
VG \ S are fault free. Let σS = fσ : σ is compatible with Sg.
Two distinct sets S1, S2 ⊆VG are indistinguishable if σS1 ∩
σS2

≠∅ and distinguishable otherwise. The symmetric differ-
ence of two sets L1 and L2 is L1ΔL2 = ðL1 \ L2Þ ∪ ðL2 \ L1Þ.

Dahbura and Masson [35] proposed a characterization
for a pair of sets to be distinguishable under the PMC model.

Lemma 4 (see [35]). Let G = ðVG, EGÞ be a graph. For any
two distinct sets S1, S2 ⊆VG, ðS1, S2Þ is a distinguishable pair
under the PMC model if and only if there exist two nodes u
∈ VG \ ðS1 ∪ S2Þ and v ∈ S1ΔS2 satisfying ðu, vÞ ∈ EG; see
Figure 2.

3. Main Results

In this section, we first study the structure properties of FP
Qn,k. Using the structural properties and some basic lemmas,
we can obtained the diagnosability and the pessimistic diag-
nosability of the folded Petersen cube network FPQn,k.

The following inequalities are useful for our proof.

Table 2: Notations.

Symbol Meaning

G = VG, EGð Þ
An undirected graph, where VG

is the set of processors and
EG is the set of communication
links between two processors

NG cð Þ The set of all nodes adjacent
to c in G

NG V ′
� �

=
[

v∈V′
NG vð Þ −V ′ The neighborhood of a set

V ′ of nodes in G

G V ′
h i The subgraph of G induced

by a subset V ′ ⊆VG

G − S
A graph obtained from G by
removing a node (edge) set S

κ Gð Þ The connectivity of G

G□H
The Cartesian product of
two graphs G and H

S1ΔS2
The symmetric difference of

two sets S1 and S2
t Gð Þ The diagnosability of G

tp Gð Þ The pessimistic diagnosability of G

Figure 1: The Petersen graph P:
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Lemma 5. Let n and k be non-negative integers with n ≥ 0,
k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ. The following inequalities hold.

10k2n−1 ≥ 3n + 9k − 5,
10k2n ≥ 2n + 6k + 1,
10k2n ≥ 5n + 15k − 6:

ð1Þ

Proof. Since the proof for the three statements are similar, we
just prove (1), and the proof for (2) and (3) are left for
readers.

The following is the proof by induction on k.
The initial step is as follows: if k = 0, then, 2n−1 ≥ 3n − 5

holds for any integer n ≥ 1. If k = 1, then, 10 × 2n−1 ≥ 3n + 4
holds for any integer n ≥ 0.

The induction step is as follows: assume that k ≥ 2 and
the statement holds for k − 1, i.e., 10k−12n−1 ≥ 3n + 9ðk − 1Þ
− 5. Then,

10k2n−1 − 3n + 9k − 5ð Þ
≥ 10 3n + 9 k − 1ð Þ − 5ð Þ − 3n + 9k − 5ð Þ
= 27n + 81k − 135 > 0:

ð2Þ

Hence, the statement holds for k as well.

3.1. Structure Properties of FPQn,k

Lemma 6 (see [16]). Let G be a connected graph and S ⊆VG.
If jVðGÞ − Sj ≥ κðGÞ, then, jNGðSÞj ≥ κðGÞ; otherwise, jNGðS
Þj = jVG − Sj.

Lemma 7. If u and v are two distinct nodes in FPQn,k with
n ≥ 0, k ≥ 0, and ðn, kÞ ≠ ð0, 0Þ, then, jNFPQn,k

ðfu, vgÞj ≥ 2n
+ 6k − 2.

Proof. If u and v are adjacent, then, jNFPQn,k
ðfu, vgÞj = 2ðn

+ 3kÞ − jfu, vgj = 2n + 6k − 2 by Lemma 3; otherwise, since
FPQn,k has no triangles, any two nonadjacent nodes have
at most one common neighbor, and therefore, jNFPQn,k

ðfu,
vgÞj ≥ 2ðn + 3kÞ − 1 > 2n + 6k − 2.

Lemma 8. Let S be a subset of VðFPkÞ for k ≥ 1. If 2 ≤ jSj ≤
6k − 4, then, jNFPk

ðSÞj ≥ 6k − 2.

Proof. The lemma is proved by the induction on k. If k = 1,
then, jSj = 2; the result holds by Lemma 7. Assume that the
lemma is true for FPm, where m is an integer with 2 ≤m ≤

k − 1. In the following, we consider FPk. Recall that FPk is
constructed by 10 disjoint FPk−1s, denoted by iFPk−1 for i ∈
f0, 1,⋯, 9g. Let Si = S ∩ ViFPk−1 and

�iFPk1 = FPk − iFPk−1 for
i ∈ f0, 1,⋯, 9g. W.l.o.g., we may assume that jS0j =
max

i∈f0,1,⋯,9g
jSij. There are the following cases.

Case 1. jS0j = 1.

In this case, for all i ∈ f0, 1,⋯, 9g, jSij ≤ 1. Clearly, 2 ≤ jSj
≤ 10 because of i ≤ 9. If jSj = 2, then, by Lemma 7, we know
the result holds. Now, assume that 3 ≤ jSj ≤ 10 and Si ≠∅ for
i ∈ f0, 1, 2g. By Lemma 2, jN �0FPk1∪1FPk1∪2FPk1

ðS0Þj ≥ 1.
Since FPk is 3k regular and iFPk−1 is isomorphic to FPn−1,
we have

NFPk Sð Þ�� �� ≥ 3κ iFPk−1ð Þ + N �0FPk1∪1FPk1∪2FPk1
S0ð Þ

���
���

= 3 3k − 3ð Þ + 1 = 9k − 8 ≥ 6k − 2,
ð3Þ

for k ≥ 2.

Case 2. 2 ≤ jS0j ≤ 6k − 10.

By inductive hypothesis in 0FPk−1, jN0FPk−1ðS0Þj ≥ 6ðk −
1Þ − 2 = 6k − 8. We distinguish the following two cases.

Case 2.1. S = S0.

By Lemma 2, we know

NFPk
Sð Þ�� �� = N0FPk−1

S0ð Þ�� �� + N �0FPk1
S0ð Þ

���
���

≥ 6k − 8 + 3 S1j j ≥ 6k − 2:
ð4Þ

Case 2.2. S ≠ S0.

There exists a j ∈ f1, 2,⋯, 9g such that jSjj ≠ 0. By
Lemma 2,

N �0FPk1∪jFPk1
S0ð Þ

���
��� ≥ 2 S0j j ≥ 4: ð5Þ

If jSjj = 1, then, jNjFPk−1ðSjÞj = κðjFPk−1Þ = 3k − 3. Note
that 0FPk−1 and jFPk−1 are node disjoints; we have

NFPk Sð Þ�� �� ≥ N0FPk−1 S0ð Þ�� �� + NjFPk−1 Sj
À Á�� ��

+ N �0FPk1∪jFPk1
S0ð Þ

���
���

≥ 6k − 8 + 3k − 3ð Þ + 4 = 9k − 7 ≥ 6k − 2,

ð6Þ

for k ≥ 2.
Now, consider 2 ≤ jSjj ≤ jS0j ≤ 6k − 10. By induction

hypothesis in jFPk−1,

NjFPk−1 Sj
À Á�� �� ≥ 6 k − 1ð Þ − 2 = 6k − 8: ð7Þ

S1 S2

v

u

S1 S2

v

u

Figure 2: A distinguishable pair ðS1, S2Þ.
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Thus,

NFPk Sð Þ�� �� ≥ N0FPk−1 S0ð Þ�� �� + NjFPk−1 Sj
À Á�� ��

+ N �0FPk1∪jFPk1
S0ð Þ

���
���

≥ 2 6k − 8ð Þ + 4
= 12k − 12 ≥ 6k − 2,

ð8Þ

for k ≥ 2.

Case 3. 6k − 9 ≤ jS0j ≤ 6k − 4.

Since κð0FPk−1Þ = 3k − 3 and

10k−1 − S0j j ≥ 10k−1 − 6k − 4ð Þ ≥ 3k − 3 = κ 0FPk−1ð Þ: ð9Þ

For k ≥ 2, we have jN0FPk−1ðS0Þj ≥ 3k − 3 by Lemma 6 and
jN �0FPk1ðS0Þj = 3jS0j by Lemma 2. We distinguish the fol-

lowing two cases.

Case 3.1. S = S0.

By Lemma 2, we know

NFPk Sð Þ�� �� = N0FPk−1 S0ð Þ�� �� + N �0FPk1
S0ð Þ

���
���

≥ 3k − 3 + 3 6k − 9ð Þ = 21k − 30 ≥ 6k − 2,
ð10Þ

for k ≥ 2.

Case 3.2. S ≠ S0.

There exists j ∈ f1, 2,⋯, 9g such that jSjj ≠ 0. Since jSj
≤ 6k − 4 and jSj − jS0j ≤ 5, we have 1 ≤ jSjj ≤ 5. Recall that
κðjFPk−1Þ = 3k − 3. If jSjj = 1, then,

NjFPk−1 Sj
À Á�� �� = κ jFPk−1ð Þ = 3k − 3: ð11Þ

If 2 ≤ jSjj ≤ 5, then,

10k−1 − Sj
�� �� ≥ 10k−1 − 5 ≥ 3k − 3 = κ 0FPk−1ð Þ, ð12Þ

for k ≥ 2, and therefore, jNjFPk−1ðSjÞj ≥ 3k − 3 by Lemma 6.
Hence, we have

NFPk Sð Þ�� �� ≥ N0FPk−1 S0ð Þ�� �� + NjFPk−1 Sj
À Á�� ��

+ N �0FPk1∪jFPk1
S0ð Þ

���
���

≥ 3k − 3ð Þ + 3k − 3ð Þ + 2 S0j j
≥ 6k − 6 + 2 6k − 9ð Þ = 18k − 24 ≥ 6k − 2,

ð13Þ

for k ≥ 2.

Lemma 9. For S ⊆ VðQnÞ with n ≥ 3 and 2 ≤ jSj ≤ 2n − 4, it
holds that jNQn

ðSÞj ≥ 2n − 2.

Proof. Proof by induction on n.
If n = 3, then jSj = 2 and the result holds by Lemma 7.

Assume that the lemma is true for Qm with 4 ≤m ≤ n − 1.
Now, we consider Qn as follows. Recall that Qn is con-
structed by two disjoint Qn−1s, denoted by Q½0� and Q½1�.
For i ∈ f1, 2g, let Si = S ∩ VQ½i�. W.l.o.g., we may assume that
jS0j ≥ jS1j. Since Qn is n regular and triangle free, if jSj = 2,
then, jNQn

ðSÞj ≥ 2n − 2. Next, let 3 ≤ jSj ≤ 2n − 4. It follows
that jS0j ≥ 2. We distinguish the following two cases.

Case 1. 2 ≤ jS0j ≤ 2n − 6.

By the induction hypothesis in Q½0�, jNQ½0�ðS0Þj ≥ 2n − 4.
If jS1j = 0, thenm S = S0.Thus,

NQn
Sð Þ�� �� ≥ NQ 0½ � S0ð Þ

���
��� + N �Q 0½ � S0ð Þ

���
��� ≥ 2n − 4ð Þ + 2 = 2n − 2:

ð14Þ

If jS1j = 1, then, jNQ½1�ðS1Þj = κðQ½1�Þ = n − 1.Thus,

NQn
Sð Þ�� �� ≥ NQ 0½ � S0ð Þ

���
��� + NQ 1½ � S1ð Þ

���
���

≥ 2n − 4ð Þ + n − 1ð Þ = 3n − 5 ≥ 2n − 2:
ð15Þ

It remains to assume that 2 ≤ jS1j ≤ jS0j ≤ 2n − 6. Then,
jNQ½1�ðS1Þj ≥ 2n − 4. Thus,

NQn
Sð Þ�� �� ≥ NQ 0½ � S0ð Þ

���
��� + NQ 1½ � S1ð Þ

���
���

≥ 2 2n − 4ð Þ = 4n − 8 ≥ 2n − 2:
ð16Þ

Case 2. 2n − 5 ≤ jS0j ≤ 2n − 4.

Since κðQ½0�Þ =Q½0� is n − 1 and jVðQ½0�Þj − ð2n − 4Þ ≥
κðQ½0�Þ = n − 1 for n ≥ 4, Lemma 6 implies that jNQ½0�ðS0Þj
≥ n − 1.

If S = S0, then,

NQn
Sð Þ�� �� = NQ 0½ � S0ð Þ

���
��� + NQ 1½ � S0ð Þ

���
���

≥ n − 1 + 2n − 5ð Þ = 3n − 6 ≥ 2n − 2:
ð17Þ

If S ≠ S0, then, jS1j = 1. Thus,

NQn
Sð Þ�� �� ≥ NQ 0½ � S0ð Þ

���
��� + NQ 1½ � S1ð Þ

���
���

≥ n − 1 + n − 1ð Þ = 2n − 2:
ð18Þ

Therefore, the lemma is true for Qn as well.

Lemma 10. For S ⊆VFPQn,k
with 2 ≤ jSj ≤ 2n + 6k − 4, n ≥ 0,

k ≥ 0, and ðn, kÞ ≠ ð0, 0Þ, it holds that jNFPQn,k
ðSÞj ≥ 2n + 6k

− 2.

Proof. Proof by induction on n.
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If n = 0, then, k ≥ 1 and 2 ≤ jSj ≤ 6k − 4; the lemma holds
by Lemma 8.

Assume n ≥ 1 and the result holds for FPQn−1,k. We con-
sider the result for FPQn,k as follows.

If k = 0, then, 2 ≤ jSj ≤ 2n − 4, the lemma holds by
Lemma 9. So, let k ≥ 1.

By Lemma 3, we know that FPQn,k can be viewed as Gð
FPQn−1,k, FPQn−1,k : MÞ, where M is a perfect matching
between two FPQn−1,k’s. In other words, FPQn,k contains
two copies of FPQn−1,k, denoted by FPQ0

n−1,k and FPQ1
n−1,k,

respectively. For i ∈ f0, 1g, let Si = S ∩VFPQi
n−1,k

. W.l.o.g., we

may assume that jS0j ≥ jS1j.
If jSj = 2, the result holds by Lemma 7. Next, let 3 ≤ jSj

≤ 2n + 6k − 4. It implies that jS0j ≥ 2. We distinguish the fol-
lowing two cases.

Case 1. Let 2 ≤ jS0j ≤ 2n + 6k − 6.

By the induction hypothesis in FPQ0
n−1,k,

NFPQ0
n−1,k

S0ð Þ
���

��� ≥ 2n + 6k − 4: ð19Þ

If jS1j = 0, then, S = S0. It leads to

NFPQn,k
Sð Þ

���
��� ≥ NFPQ0

n−1,k
S0ð Þ

���
��� + N �FPQ0

n1,k
S0ð Þ

����
����

≥ 2n + 6k − 4ð Þ + 2 = 2n + 6k − 2:
ð20Þ

If jS1j = 1, then jNFPQ1
n−1,k

ðS1Þj = κðFPQ1
n−1,kÞ = n + 3k − 1

.Thus,

NFPQn,k
Sð Þ

���
��� ≥ NFPQ0

n−1,k
S0ð Þ

���
��� + NFPQ1

n−1,k
S1ð Þ

���
���

≥ 2n + 6k − 4ð Þ + n + 3k − 1ð Þ
≥ 2n + 6k − 2:

ð21Þ

It remains to assume that 2 ≤ jS1j ≤ jS0j ≤ 2n + 6k − 6.
Then,

NFPQ1
n−1,k

S1ð Þ
���

��� ≥ 2n + 6k − 4: ð22Þ

Thus,

NFPQn,k
Sð Þ

���
��� ≥ NFPQ0

n−1,k
S0ð Þ

���
��� + NFPQ1

n−1,k
S1ð Þ

���
���

≥ 2 2n + 6k − 4ð Þ ≥ 2n + 6k − 2:
ð23Þ

Case 2. Let 2n + 6k − 5 ≤ jS0j ≤ 2n + 6k − 4.

In this case, we have

VFPQ0
n−1,k

���
��� − 2n + 6k − 4ð Þ

= 10k2n−1 − 2n + 6k − 4ð Þ
≥ n + 3k − 1 = κ FPQ0

n−1,k
À Á

,

ð24Þ

where the inequality follows from Lemma 5 (1). By Lemma
6, jNFPQ0

n−1,k
ðS0Þj ≥ n + 3k − 1.

If S = S0, then,

NFPQn,k
Sð Þ

���
��� = NFPQ0

n−1,k
S0ð Þ

���
��� + NFPQ1

n−1,k
S0ð Þ

���
���

≥ n + 3k − 1 + 2n + 6k − 5ð Þ
= 3n + 9k − 6 ≥ 2n + 6k − 2:

ð25Þ

If S ≠ S0, then, jS1j = 1. Thus,

NFPQn,k
Sð Þ

���
��� ≥ NFPQ0

n−1,k
S0ð Þ

���
��� + NFPQ1

n−1,k
S1ð Þ

���
���

≥ n + 3k − 1 + n + 3k − 1ð Þ = 2n + 6k − 2:
ð26Þ

3.2. T-Diagnosability of FPQn,k. In what follows, we will dis-
cuss the diagnosability of FPQn,k under the PMC model.

Lemma 11. Let FPQn,k be the folded Petersen cube for n ≥ 0,
k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ. Then, tðFPQn,kÞ ≤ n + 3k under the
PMC model.

Proof. Let v0 be any vertex in FPQn,k. Let L1 =NFPQn,k
ðv0Þ

and L2 =NFPQn,k
ðv0Þ ∪ fv0g. Assume that both L1 and L2

are faulty sets. Obviously, jL1j = n + 3k < n + 3k + 1, jL2j = n
+ 3k + 1, L1 ∪ L2 = L2 ≠VFPQn,k

, and L1ΔL2 = fv0g. If L1
and L2 are distinguishable under the PMC model, then,
there exists some vertex x ∈ VðFPQn,kÞ \ ðF1 ∪ F2Þ such that
ðx, v0Þ ∈ EðFPQn,kÞ, a contradiction. Thus, L1 and L2 are
indistinguishable under the PMC model. It leads to tðFP
Qn,kÞ ≤ jL2j − 1 = n + 3k.

Lemma 12. Let FPQn,k be the folded Petersen cube for n ≥ 0,
k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ. Then, tðFPQn,kÞ ≥ n + 3k under the
PMC model.

Proof. Let L1 and L2 be two distinct faulty sets such that j
L1j, jL2j ≤ n + 3k. Since L1 and L2 are distinct, L1ΔL2 ≠∅,
which implies that L2 \ L1 ≠∅ or L1 \ L2 ≠∅. W.l.o.g., let
L1 \ L2 ≠∅. To complete the proof, it is sufficient to show
that L1 and L2 are distinguishable under the PMC model.

Suppose to the contrary that L1 and L2 are indistinguish-
able. If VFPQn,k

\ ðL1 ∪ L2Þ =∅, then, L1 ∪ L2 = VFPQn,k
. Since

jVFPQn,k
j = 10k2n, we have jL1j + jL2j ≥ jL1 ∪ L2j = 10k2n > 2ð

n + 3kÞ, a contradiction to the assumption. Thus, VFPQn,k
\ ð

L1 ∪ L2Þ ≠∅. Since the assumption that L1 and L2 are indis-
tinguishable under the PMC model, there exist no edges
between L1ΔL2 and VFPQn,k

\ ðL1 ∪ L2Þ. Note that FPQn,k is
connected. So, L1 ∩ L2 is a vertex cut of FPQn,k and jL1 ∩
L2j ≥ κðFPQn,kÞ = n + 3k. Recall that L1 \ L2 ≠∅, i.e., jL1 \
L2j ≥ 1. Thus,

L1j j = L1 \ L2j j + L1 ∩ L2j j ≥ n + 3k + 1, ð27Þ

a contradiction.
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The following theorem follows directly from the previ-
ous two lemmas.

Theorem 13. Let FPQn,k be the folded Petersen cube for n ≥ 0,
k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ. Then, tðFPQn,kÞ = n + 3k under the
PMC model.

The following corollaries are a straightforward conse-
quence of Theorem 13.

Corollary 14. Let Qn be the n -dimensional hypercube. Then,
tðQnÞ = n under the PMC model.

Corollary 15. Let FPk be the k-dimensional folded Petersen
graph. Then, tðFPkÞ = 3k under the PMC model.

Corollary 16. Let HPn = P□Qn−3 (where n ≥ 3) be the hyper
Petersen graph. Then, tðHPnÞ = n under the PMC model.

3.3. Pessimistic Diagnosability of FPQn,k. Chwa and Hakimi
[36] derived a characterization for a graph to be t/t
diagnosability.

Lemma 17 (see [36]). Let G = ðVG, EGÞ be the representation
of a system. G is t/t diagnosable if and only if for each integer
p with 1 ≤ p ≤ t − 1 and each S∗ ⊆VG with jS∗j = 2ðt − pÞ; it
holds that jNGðS∗Þj > p.

Tsai and Chen [37] further derived another characteriza-
tion for a graph to be t/t diagnosability.

Lemma 18 (see [37]). A graph G = ðVG, EGÞ is t/t diagnos-
able if and only if for each set S∗ ⊆VG with 0 ≤ jS∗j = p ≤ t
− 1; the graph G − S∗ has at most one trivial component,
and each nontrivial component C of G − S∗ satisfies jVðCÞj
≥ 2ðt − pÞ + 1.

Lemma 19. Let FPQn,k be the folded Petersen cube for n ≥ 0,
k ≥ 0, and ðn, kÞ ≠ ð0, 0Þ. Then, for each S∗ ⊆VFPQn,k

with j
S∗j = 2ð2n + 6k − 2 − pÞ and 1 ≤ p ≤ 2n + 6k − 3, it holds that
jNFPQn,k

ðS∗Þj > p.

Proof. We consider the following two cases according to the
value of p.

Case 1. Let 1 ≤ p ≤ n + 3k − 1.

By the assumption, 2ðn + 3k − 1Þ ≤ jS∗j ≤ 2ð2n + 6k − 3Þ.
Moreover, κðFPQn,kÞ = n + 3k and 10k2n − 2ð2n + 6k − 3Þ ≥
ðn + 3kÞ by Lemma 5 (3). Hence, we can deduce that

VFPQn,k

���
��� − S∗j j ≥ 10k2n − 2 2n + 6k − 3ð Þ ≥ n + 3k = κ FPQn,kð Þ:

ð28Þ

By Lemma 6, jNFPQn,k
ðS∗Þj ≥ κðFPQn,kÞ = n + 3k > p.

Case 2. Let n + 3k ≤ p ≤ 2n + 6k − 3.

By the assumption, 2 ≤ jS∗j ≤ 2n + 6k − 4. By Lemma 8,
jNFPQn,k

ðS∗Þj ≥ 2n + 6k − 2 > p.

Theorem 20. Let FPQn,k be the folded Petersen cube for n ≥ 0,
k ≥ 0 and ðn, kÞ ≠ ð0, 0Þ. Then, tpðFPQn,kÞ = 2n + 6k − 2.

Proof. By Lemmas 17 and 19, tpðFPQn,kÞ ≥ 2n + 6k − 2. It
remains to show that tpðFPQn,kÞ ≤ 2n + 6k − 2 for n ≥ 0, k
≥ 0 and ðn, kÞ ≠ ð0, 0Þ.

Suppose to the contrary that tpðFPQn,kÞ ≥ 2n + 6k − 1. Let
ðu0, v0Þ be an edge in FPQn,k and let S =NFPQn,k

ðfu0, v0gÞ.
Since FPQn,k has no triangles, jSj = 2n + 6k − 2 ≤ tpðFPQn,kÞ
− 1. The subgraphC induced by fu0, v0g is a connected com-
ponent of FPQn,k − S. By Lemma 18,

VCj j ≥ 2 tp FPQn,kð Þ − Sj jÀ Á
+ 1

≥ 2 2n + 6k − 1ð Þ − 2n + 6k − 2ð Þð Þ + 1 = 3,
ð29Þ

a contradiction.
The following corollaries are obvious from Theorem 20.

Corollary 21. Let Qn be the n-dimensional hypercube. Then,
tpðQnÞ = 2n − 2.

Corollary 22. Let FPk be the k-dimensional folded Petersen
graph. Then, tpðFPkÞ = 6k − 2.

Corollary 23. Let HPn = P□Qn−3 (where n ≥ 3) be the hyper
Petersen graph. Then, tpðHPnÞ = 2n − 2.

4. Concluding Remarks

In this paper, by exploring structural properties of the folded
Petersen cubes FPQn,k, we prove that FPQn,k is ðn + 3kÞ diag-
nosasable under the PMC model. Moreover, we study the
pessimistic diagnosability of folded Petersen cubes and
obtain tpðFPQn,kÞ = 2n + 6k − 2 for n ≥ 0, k ≥ 0 and ðn, kÞ ≠
ð0, 0Þ. As corollaries, the diagnosability and the pessimistic
diagnosability of hypercube, folded Petersen graph, and the
hyper Petersen graph are obtained. Another direction of
our study in this paper is to investigate the conditional diag-
nosability of these graphs.
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