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A chemical invariant of graphical structure Z is a unique value characteristic that remains unchanged under graph
automorphisms. In the study of QSAR/QSPR, like many other chemical invariants, reciprocal degree distance has played a
significant role to estimate the bioactivity of several compounds in chemistry. Reciprocal degree distance is a chemical
invariant, which is the degree weighted version of Harary index, i.e., RDD(Z) � (1/2)􏽐μ,]∈V(Z)(dZ(μ) + dZ(])/dZ(μ, ])).
Eliasi and Taeri proposed four new graphic unary operations: S(Z),R(Z),Q(Z), and T(Z), frequently implemented in
sum of graphs, symbolized as Z1 + FZ2, i.e., sum of two graphs F(Z1), Z2;F is one of the unary graphic operations
S,R,Q,T. +is work provides constraints for the above-mentioned invariant for this binary graphic operation F-sum
of graphs.

1. Introduction

Graphic structures in this work are all simple, finite, and
directionless. +e collection of nodes and edges in a graph
Z is denoted by V(Z) and Ε(Z), respectively. Let
dZ(μ, ]) be the distance between two vertices μ and ] inZ,
given as the cardinality of lines in shortest path between
the two nodes. dZ(μ) is the degree of a vertex μ. Chemical
invariants have been proven to be beneficial in deter-
mining the correlation between a molecule’s structure and
its features. Quantitative structure-property relationships
(QSPRs) and quantitative structure-activity relationships
(QSARs) [1] are two different sorts of topological in-
variants. Many chemical invariants are focused on de-
grees, while others are focused on distances, eccentricity,
connectivity, and so on.

Under these parameters, numerous graph processes are
executed immediately on basic graphs to examine their
features. For such composite graphs, multiple researchers
estimated topological invariants and put forward a big
collection of results regarding this concept as can be seen

below. Another chemical invariant symbolized by W(Z),
that comprises the length of shortest paths between the two
nodes, and specified as the total of these lengths across all
node combinations for Z is the Wiener index [2–4].

W(Z) � 􏽘

μ,]{ }⊆V(Z)

dZ(μ, ]).
(1)

+e degree-weighted variant of the Wiener index, the
degree distance index, was proposed in 1994. Dobrynin
and Kochetova [5] were the first two to explore it.DD(Z)

is the degree distance invariant of a graph Z, which is
specified as

DD(Z) � 􏽘

μ,]{ }⊆V(Z)

dZ(μ, ]) dZ(μ) + dZ(])􏼂 􏼃,
(2)

where dZ(μ, ]) is the length of the shortest route among μ
and ] and dZ(μ) is the degree of vertex μ [6, 7]. Plavsi’ et al.
[8] proposed the Harary index in 1993, symbolized by
H(Z) and given by
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H(Z) �
1
2

􏽘
μ,]∈V(Z)

1
dZ(μ, ])

. (3)

Das et al. [9] came up with generalized version of Harary
index, i.e., τ-Harary index; τ is some positive real number,
given as

H(Z) �
1
2

􏽘
μ,]∈V(Z)

1
dZ(μ, ]) + τ

. (4)

A new graph invariant named as reciprocal degree dis-
tance index was introduced by Xiong and An [10] in 2015,
defined as

RD(Z) �
1
2

􏽘
μ,]∈V(Z)

dZ(μ) + dZ(])

dZ(μ, ])
. (5)

+e degree distance invariant is the weighted version of
Wiener index; similarly, the reciprocal degree distance is the
weighted version of Harary index. In 2015, Vijayaragavan
[11] introduced reformulated reciprocal degree distance
index, which is defined as

RDDτ(Z) �
1
2

􏽘
μ,]∈V(Z)

dZ(μ) + dZ(])

dZ(μ, ]) + τ
. (6)

Many scientists and researchers have focused on composite
graphs from the past thirty years. Several binary graphic op-
erations like productΠ, join +, composition °, corona product,
cluster, wreath product, and so on were put forward by many
researchers. Now we enlist briefly the work done by several
researchers for the above-mentioned binary graphic processes.
Yeh and Gutman [3] computed sum of distances for every pair
of nodes in the above-mentioned binary graphic operations.
Paulraja and Agnes [7] made computations of accurate values
of degree distance invariant for Cartesian and wreath products.
Moreover, the authors determined the above-mentioned in-
variant for certain commonly known graphic structures like
torus, Hamming, hypercube, and fence structures [12], and
Khalifeh et al. brought into consideration the accurate ex-
pressions for the twoZagreb invariants and computed the same
invariants for certain renowned chemical structures like nano
tubes and nano torus with q multi walled.

Deng et al. [13] determined first two Zagreb invariants
for the four graph operations, i.e.,F−sum of graphs. Shirdel
et al. [14] proposed a new invariant named as hyper-Zagreb
invariant and provided computations for these invariants for
the above-mentioned binary graphic invariants.

Das et al. [9] made computations of Harary invariants
for same binary processes considered in [14]. During this
work, the authors encountered an expression similar to
Harary invariant, and they named it as second and third
Harary invariants.

Eliasi and Taeri [4] introduced four new binary graphic
operations and termed them as F-sum of structures, which
gave a new direction to researchers to work with. Here we
give a brief overview of work done by researchers for this
new kind of operation. Imran and Akhter [15, 16] provided
exact expressions for maximum and minimum value of

general sum connectivity invariant and forgotten invariant,
respectively. Metsidik et al. [17] provided the exact ex-
pressions for hyper and reverse Wiener invariant for F-sum
of structures, and further they presented exact formulas for
later mentioned invariant under certain conditions on the
parameters involved. Basavangoud and Ptail [18] studied
hyper-Zagreb invariant for these four graphic processes
termed as F-sum. Alizadeh et al. [19] put forward a new
invariant obtained by deforming Harary invariant and
termed it as additive weighted Harary invariant. +ey also
investigated this newly defined invariant for many well-
known graphic operations. Pattabiraman and Vijayaraganan
[20] provided exact expressions in terms of other invariants
for reciprocal degree invariant of several graphic binary
operations like join, strong, wreath, and tensor product.
Further, applying their computed results, they computed the
above-mentioned invariant for fan, open, and closed fence
and wheel graph. Xiong and An [10] provided exact for-
mulas of multiplicative weighted Harary invariant for cer-
tain well-known graphic operations like join, symmetric
difference, composition, and disjunction and join. Patta-
biraman and Vijayaraganan [21] put forward formulas of
reformulated reciprocal degree distance invariant for many
existing graphic operations like strong, wreath, and tensor
products and also considered join and composition. Pat-
tabiraman [22] presented mathematical formulas for the
above-mentioned invariant and its multiplicative version for
tensor product of graphic structures. Su et al. [23] observed
the monotonic attitude of reformulated reciprocal degree
distance invariant and determined its maximum values for
graphic structures with one cycle. Novelty of this work lies in
the fact that binary operations give rise to new structures
displaying characteristics of the factors in a more con-
vincible way. So, determining the bounds for reciprocal
degree distance invariant for the binary operation F− sum
enabled us to evaluate the chemical properties of more
complex structures using their binary components. In this
work, we will determine lower and upper bounds for re-
ciprocal degree distance invariant for F−sum of any two
graphs, where F− is one of S,R,Q,T.

2.F-Sum of Graphs with Four
Graph Operations

To begin, consider the Cartesian product ZWY of graphs
Z and Y. \{a � c and bd ∈ E(Y)\} or \{b � d and
ac ∈ E(Z)\} for the set of vertices V(Z) × V(Y); then,
(a, b)(c, d) is a line ofZWY. If the separation between the
two vertices in ZWY is dZWY((a, b), (c, d)), where

dZWY((a, b), (c, d)) � dZ(a, c) + dY(b, d), (7)

ZWY contains a vertex (a, b) of degree

dZWY(a, b) � dZ(a) + dY(b). (8)

Eliasi and Taeri [4] pioneered idea ofF-sums in 2009,
referred to as graphic binary operations, in which F(Z1)

and Z2 are the operands. Z1 + FZ2 represents F-sum of
two graphs Z1 and Z2, and F is one of the graph

2 Journal of Mathematics



operations S,R,Q, or T. Figure 1 likewise shows the
F-sum of C3 and P2. +e graph operations S,R,Q,T are
defined as follows:

(1) S(Z) subdivided structure is generated by inserting
a node in all lines of Z.

(2) If two original nodes are neighbors, line connecting
them is drawn in S(Z). By combining each com-
bination of connected black vertices, R(Z) is
generated from S(Z).

(3) In the same way, two white vertices in S(Z) are
linked if their corresponding edges are neighbors in
Z. By combining each combination of associated
white vertices, Q(Z) is achieved.

(4) +e combination of two graphs Z and Y is rep-
resented asZ∪Y and has the identical vertex setV
and lines E(Z)∪E(Y). +e total graph T(Z) is
the combination of R(Z) and Q(Z) in this
example.

+e above four graph operations can be visualized in
Figure 2, and they are used on the C3 cycle.

For the above-mentioned four graph processes, multiple
writers generated a variety of chemical invariants. +e
Wiener index of all these graph operations was estimated by
Eliasi and Taeri [4]. Two optimum values for degree dis-
tance-based invariant for this new type of graphic binary
operation, F-sums, were considered by the authors in their
work [6]. Findings of Eliasi and Taeri [4] were utilized to
determine length of shortest paths existing in nodes of
graphic structures involved in F-sums. +e authors in
[15, 16] investigated novel results for these four graph op-
erations using the forgotten index and sum-connectivity
index. For each of these procedures, they provided the sharp
value for the F invariant and its exact upper and lower
values attained for the sum connectivity invariant. Khalifeh
et al. computed accurate formulas for both Zagreb invariants
for several of the above-mentioned graphic binary opera-
tions. +e authors in [13] investigated these sums to de-
termine exact solutions for Zagreb invariants. Investigation
of hyper-Zagreb invariants and co-invariants was made in
[14], for various graphic binary operations. For these four
graph operations, they derived the exact formula for hyper-
Zagreb invariant.

Take |V2| � n2 replicas of the graph F(Z1) and mark
them with the nodes of graph Z2 for the F-sum of graphs
Z1 and Z2. +e vertices of Z1 + FZ2 can be divided into
two categories: black vertices (V1) and white vertices (E1).
Just black nodes with the identical name inF(Z1) and tags
that are adjacent inZ2 are now joined. Here we state results
needed in next section.

Lemma 1 (see [4]). For two graphs Z1, Z2, let ] � (]1, ]2)
be a node of Z1 + FZ2. -en, we have

(a) If ]1 ∈ V1 (if ] is a black node), ultimately for every
μ � (μ1, μ2) ∈ V(Z1 + FZ2), then

dZ1+
F
Z2

(μ, ]) � dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁. (9)

C3+SP2

C3+RP2

C3+QP2

C3+TP2

Figure 1: F-sums of C3 and P2, C3 + FP2.

G2G1

S (G1) R (G1)

Q (G1) T (G1)

Figure 2: F(G1 � C3) for F � S,R,Q,T and G2 � P2.
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(b) If ]1 ∈ E1, then for all μ � (μ1, μ2) ∈V(Z1 + FZ2),

with μ2≠]2, μ1 � μ11]11 ∈ E1 and μ11, ]11 ∈ V1 (if ] and
μ are white nodes in F(Z1), we have

dZ1+
F
Z2

(μ, ]) � 1 + dZ2
μ2, ]2( 􏼁

+ min dF Z1( ) μ11, ]1􏼐 􏼑, dF Z1( ) ]11, ]1􏼐 􏼑􏼚 􏼛.

(10)

(c) If ]1 ∈ E1, then for all μ � (μ1, μ2) ∈ V(Z1 + FZ2),
where μ2 � ]2 and μ1 ∈ E1 (that is, ] and μ are white
vertices in the same copy of F(Z1) ), we have

dZ1+
F
Z2

(μ, ]) � dF Z1( ) μ1, ]1( 􏼁. (11)

Lemma 2 (see [4]). Let Z1 and Z2 be two graphs,
μ1, ]1 ∈ E1, μ2, ]2 ∈ V2, and F � S or R. -en, for
μ � (μ1, μ2) and ] � (]1, ]2) in Z1 + FZ2 with μ2≠]2, we
have

dZ1+
F
Z2

(μ, ]) �
2 + dZ2

μ2, ]2( 􏼁, μ1 � ]1,

dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁, μ1≠]1.

⎧⎨

⎩ (12)

Lemma 3 (see [4]). Let Z1 and Z2 be two graphs,
μ1, ]1 ∈ E1, μ2, ]2 ∈V2, and F � S or R. -en, for
μ � (μ1, μ2) and ] � (]1, ]2) in Z1 + FZ2 with μ2≠]2, then

dZ1+
F
Z2

(μ, ]) �
2 + dZ2

(μ2, ]2), μ1 � ]1,

1 + dF(Z1)(μ1, ]1) + dZ2
(μ2, ]2), μ1≠]1.

⎧⎨

⎩

(13)

Lemma 4 (see [6]). Let Z1 and Z2 be two graphs and μ �

(μ1, μ2) be a vertex of G1 + FZ2; then,

(a) If μ1 ∈V1 and μ2 ∈V2 (i.e., μ is a black vertex), then
we have

dZ1+
F
Z2

(μ) � dF(1) μ1( 􏼁 + dZ2
μ2( 􏼁. (14)

(b) If μ1 ∈ E1 and μ2 ∈ V2 (that is, μ is a white vertex),
then we have

dZ1+
F
Z2

(μ) � dF Z1( ) μ1( 􏼁. (15)

Lemma 5 (see [6]). Let Z be a graph. -en,

(a) If μ1 ∈ V(Z), then we have

dF Z1( ) μ1( 􏼁 � k · dZ μ1( 􏼁, (16)

where

k �
1, F � S orQ,

2, F � R orT.
􏼨 (17)

(b) If μ1 � μ1′μ1″ ∈ E(Z), then

dS(Z) μ1( 􏼁 � dR(Z) μ1( 􏼁 � 2,

dQ(Z) μ1( 􏼁 � dT(Z) μ1( 􏼁 � dL(Z) μ1( 􏼁 + 2,
(18)

where

dL(Z) μ1( 􏼁 � dZ μ1′( 􏼁 + dZ μ1″( 􏼁. (19)

3. Reciprocal Degree Distance Index of Four
Operations on Graphs

We present constraints for the reciprocal degree distance
of Z1 + FZ2 within this part, assuming F � S,R,Q, and
T.

3.1. Reciprocal Degree Distance forF-Sum of Graphs, Where
F � S or R. First, we present bounds for the reciprocal
degree distance of Z1 + FZ2 in terms of reciprocal degree
distance and Harary index of the components Z2,F(Z1),
where F � S or R.

Theorem 1. For two graphs Z1, Z2, bounds for
RDD(Z1 + FZ2);F � S,R are as follows:

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD F Z1( 􏼁( 􏼁 + 4 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD Z1 F Z1( 􏼁( 􏼁􏼂 􏼃

≤RDD Z1+FZ2( 􏼁

≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 + 4 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 F Z1( 􏼁( 􏼁

− 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃,

(20)

where D(F(Z1)) is the diameter and E1 denotes subfamily
of white nodes of F(Z1). Also,

Hτ E1(F(Z))􏼂 􏼃 �
1
2

􏽘
μ,]∈E1;μ≠]

1
dF Z1( )(μ, ]) + τ

. (21)

,where τ is a real number. In the specific case,
whenτ � 1, 2 or D(Z2), equality holds for Z2 � K|Z2|.

Proof. Let μ � (μ1, μ2) and ] � (]1, ]2) be two nodes in
Z1 + FZ2. We explore the following three possibilities
based on the colors of μ and ].

Case 1. Assume black color nodes are μ � (μ1, μ2) and
] � (]1, ]2); it means that μ, ] ∈ V1 × V2. Using (a) in
Lemma 1 and Lemma 4, we have
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dZ1+
F
Z2

(μ, ]) � dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁,

A �
1
2

􏽘

μ,]∈V Z1+
F
Z2( )

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)

�
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈V Z1+
F
Z2( )

dF Z1( ) μ1( 􏼁 + dZ2
μ2( 􏼁 + dF Z1( ) ]1( 􏼁 + dZ2

]2( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁

≤
1
2

􏽘
μ1 ,]1∈V1

􏽘
μ2 ,]2∈V2

dF Z1( ) μ1( 􏼁 + dZ2
μ2( 􏼁 + dF Z1( ) ]1( 􏼁 + dZ2

]2( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

(22)

(as dZ2
(μ2, ]2)≥ 1 and μ2≠]2)

≤
1
2

􏽘
μ2 ,]2∈V2

􏽘
μ1 ,]1∈V1

dF G1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+
1
2

􏽘
μ1 ,]1∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠ 􏽘
μ2 ,]2∈]2

dZ2
μ2( 􏼁 + dZ2

]2( 􏼁⎛⎝ ⎞⎠,

A≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈V1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠.

(23)

Case 2. Assume that μ � (μ1, μ2) and ] � (]1, ]2) are of
dissimilar colors, so μ ∈V1 × V2 and ] ∈ E1 × V2. In the

present condition, by (a) in Lemma 1 and Lemma 4, when
black node is μ and white is ], eventually we get

dZ1+
F
Z2

(μ, ]) � dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁,

B
�

�
1
2

􏽘

μ1 ,μ2( )∈V1×V2

􏽘

]1 ,]2( )∈E1×V2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)

�
1
2

􏽘
μ2 ,]2∈V2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dZ2
μ2( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁

≤
1
2

􏽘
μ2 ,]2∈V2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dZ2
μ2( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

(24)

(as dZ2
(μ2, ]2)≥ 1 and μ2≠]2)

Journal of Mathematics 5



≤
1
2

􏽘
μ2 ,]2∈V2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠ 􏽘
μ2 ,]2∈V2

dZ2
μ2( 􏼁⎛⎝ ⎞⎠,

B
�

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 2 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠.

(25)

As a result, for vertices of multiple colors, the above
expression would be

B � 2B
�

≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘
μ1∈V1

􏽘
]1∈E1

dF G1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 4 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠.

(26)

Case 3. Assume that μ � (μ1, μ2) and ] � (]1, ]2) are white,
that is, μ ∈ E1 × V2 and ] ∈ E1 × V2. Let

C �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
. (27)

We divided this total into two parts C � 􏽢Ç + �Ç, and we
have

􏽢Ç �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2;μ1�]1 ,μ2≠]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
,

�Ç �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2;u1≠]1

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
.

(28)

By Lemmas 2, 4, and 5, we have

􏽢Ç �
1
2

􏽘
μ1∈E1

􏽘
μ2 ,]2∈V2;μ2≠]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

2 + dZ2
μ2, ]2( 􏼁

�
1
2

􏽘
μ1∈E1

􏽘
u2 ,]2∈V2;μ2≠]2

2 + 2
2 + dZ2

μ2, ]2( 􏼁

� 2 􏽘
μ1∈E1

􏽘
μ2 ,]2∈V2;μ2≠]2

1
2 + dZ2

μ2, ]2( 􏼁
⎛⎝ ⎞⎠ � 4 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H2 Z2( 􏼁,

�Ç �
1
2

􏽘
μ1 ,]1∈E1;μ1≠]1

􏽘
μ2 ,]2∈V2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁

≤
1
2

􏽘
μ1 ,]1∈E1;μ1≠]1

􏽘
μ2 ,]2∈V2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dF Z1( ) μ1, ]1( 􏼁 + 1

(29)

(as dZ2
(μ2, ]2)≥ 1 and μ2≠]2)

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠, (30)

so

C � 􏽢Ç + �Ç

≤ 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠.

(31)
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+erefore, by the above calculations and the definition of
reciprocal degree distance,

RDD Z1 + FZ2( 􏼁 � A + B + C

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈V1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 4 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

+ 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁 +
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠,

(32)

where

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 �

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈V1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠,

4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈E1;μ1≠]1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

� 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠ + 4 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠.

(33)

Put these values in equation (32), and we obtain
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RDD Z1 + FZ2( 􏼁≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 + 4 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

H1 F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
u1 ,]1∈E1;u1≠]1

1
dF Z1( ) u1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

RDD Z1 + FZ2( 􏼁≤ V2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌RDD1 F Z1( 􏼁( 􏼁 + 4 E1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

H1 F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃.

(34)

As dZ2
(u2, ]2)≤D(Z2), in the same manner, we have

RDDZ1+
F
Z2
≥ V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
RDDD F Z1( 􏼁( 􏼁

+ 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

HD F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD E1 F Z1( 􏼁( 􏼁􏼂 􏼃.

(35)

3.2. Reciprocal Degree Distance forF-Sum of Graphs, Where
F � Q orT. We next present boundaries for the reciprocal
degree distance invariant of Z1 + FZ2 in terms of other
graphic invariants.

Theorem 2. For two graphs Z1, Z2, F � Q or T. Assume
F(Z1) is of diameterD(F(Z1)) and the collection of white
nodes is symbolized by E1. -en,

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD F Z1( 􏼁( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

HD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 − V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

RDD1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃≤RDD Z1 + FZ2( 􏼁

≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

H1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD+1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 − V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

RDDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃,

(36)

where

RDDτ E1(F(Z))􏼂 􏼃 �
1
2

􏽘
μ,]∈E1

dμ + d]

dF Z1( )(μ, ]) + τ
,

Hτ E1(F(Z))􏼂 􏼃 �
1
2

􏽘
μ,]∈E1;μ≠]

1
dF Z1( )(μ, ]) + τ

.

(37)

In the present condition, τ � 1, 2,D(Z2) or D(Z2) + 1
and τ must be a real number. Bounds are attained by
Z2 � K|Z2|.

Proof. Assume that A, B, and C are the same as in +eorem
1. +e quantities of A and B do not really change in the
present situation. As a result, we merely compute the result
of C. Consider

C �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
. (38)

We divide this total into three parts C � 􏽢Ç + �Ç + Ç
�

and

􏽢Ç �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2;μ1�]1 ,μ2≠]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
,

�Ç �
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2;μ1≠]1 ,μ2�]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
,

Ç
�

�
1
2

􏽘

μ1 ,μ2( ), ]1 ,]2( )∈E1×V2;μ1≠]1 ,μ2≠]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

dZ1+
F
Z2

( μ1, μ2( 􏼁, ]1, ]2( 􏼁)
.

(39)
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By Lemmas 3, 4, and 5, we have

􏽢Ç �
1
2

􏽘
μ1∈E1

􏽘
μ2 ,]2∈V2;μ2≠]2

dZ1+
F
Z2

(μ) + dZ1+
F
Z2

(])

2 + dZ2
μ2, ]2( 􏼁

dQ(Z)(μ) � dT(Z)(μ) � dL(Z)(μ) + 2

dL(Z)(μ) � dZ μ′( 􏼁 + dZ μ″( 􏼁 − 2

�
1
2

􏽘
μ1∈E1

􏽘
μ2 ,]2∈V2;μ2≠]2

dL Z1( ) μ1( 􏼁 + dL Z1( )(]) + 4

2 + dZ2
μ2, ]2( 􏼁

�
1
2

􏽘
μ1∈E1

􏽘
μ2 ,]2∈V2;μ2≠]2

dL Z1( ) μ1( 􏼁 + dL Z1( )(])

2 + dZ2
μ2, ]2( 􏼁

+ 4 􏽘
μ1∈E1

1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

1
2 + dZ2

μ2, ]2( 􏼁
⎛⎝ ⎞⎠,

�
1
2

􏽘
μ1∈E1

2dL Z1( ) μ1( 􏼁⎛⎝ ⎞⎠ 􏽘
μ2 ,]2∈]2;μ2≠]2

1
2 + dZ2

μ2, ]2( 􏼁
⎛⎝ ⎞⎠

+ 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁

� 2 􏽘
μ1∈E1

dL Z1( ) μ1( 􏼁⎛⎝ ⎞⎠H2 Z2( 􏼁 + 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁

􏽘
μ∈E1

dL(Z)(μ) � 􏽘

μ�μ
�
μ
�

�

∈E1

dZμ1′ + dZ μ1″( 􏼁 − 2

� 2 􏽘

μ1�μ1′ μ1″∈E1

dZ1
μ1′( 􏼁 + dZ1

μ1″( 􏼁 − 2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

H2 Z2( 􏼁 + 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁

� 2 M1 Z1( 􏼁 − 2 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑H2 Z2( 􏼁 + 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁

� 2H2 Z2( 􏼁M1 Z1( 􏼁 − 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁 + 4 E1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H2 Z2( 􏼁,

􏽢Ç � 2H2 Z2( 􏼁M1 Z1( 􏼁.

(40)

Again by Lemmas 3 and 4,
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�Ç �
1
2

􏽘
μ2∈V2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁

�
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁

� V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃,

Ç
�

�
1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

1 + dF Z1( ) μ1, ]1( 􏼁 + dZ2
μ2, ]2( 􏼁

≤
1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

1 + dF Z1( ) μ1, ]1( 􏼁 + 1

≤
1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

+
1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 2

−
1
2

􏽘
μ2 ,]2∈V2;μ2≠]2

􏽘
μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 2

−
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 − V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃.

(41)

So, value of C is

C �􏽢Ç + �Ç + Ç
�

≤
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 − V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + 2H2 Z2( 􏼁M1 Z1( 􏼁.

(42)
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As a result, by the concept of reciprocal degree distance,
we get

RDD Z1 + FZ2( 􏼁 � A + B + C

≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + 2H2 Z2( 􏼁M1 Z1( 􏼁

− V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈V1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+ 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘

μ1 ,]1( )∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 4 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠,

(43)

where

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 �

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1( )∈V1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘
μ1∈V1

􏽘
]1∈E1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠

+
V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
􏽘

μ1 ,]1∈E1;μ1≠]1

dF Z1( ) μ1( 􏼁 + dF Z1( ) ]1( 􏼁

dF Z1( ) μ1, ]1( 􏼁 + 1
⎛⎝ ⎞⎠,

4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 F Z1( 􏼁( 􏼁 − 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈E1;μ1≠]1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

� 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1 ,]1∈V1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠

+ 4 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1
2

􏽘
μ1∈V1

􏽘
]1∈E1

1
dF Z1( ) μ1, ]1( 􏼁 + 1

⎛⎝ ⎞⎠.

(44)
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When we plug these numbers into equation (43), we get

RDD Z1 + FZ2( 􏼁≤ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 F Z1( 􏼁( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 F Z1( 􏼁( 􏼁

− 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD2 E1 F Z1( 􏼁( 􏼁􏼂 􏼃

− V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDD1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃.

(45)

As dZ2
(μ2, ]2)≤D(Z2), in the same manner, we get

RDD Z1 + FZ2( 􏼁≥ V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD F Z1( 􏼁( 􏼁 + 4 E2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD F Z1( 􏼁( 􏼁

− 4 E2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌HD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD+1 E1 F Z1( 􏼁( 􏼁􏼂 􏼃

− V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
RDDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃 + V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌RDD E1 F Z1( 􏼁( 􏼁􏼂 􏼃.

(46)

4. Conclusion

In this work, we presented constraints (lower and upper) for
the reciprocal degree distance of Z1 + FZ2, assuming F �

S,R in form of+eorem 1 and forF � Q,T as in+eorem
2. We also observed that these bounds are expressions in-
volving several other chemical invariants.

Several tools of graph theory are being used to for-
mulate mathematical structure of many phenomena of
chemistry. Solutions of these molecular problems are
being considered using some nontrivial graph theoretical
ideas. Combination of mathematics, chemistry and in-
formation science is giving rise to an emerging field of
research chem- informatics, that is under kind consid-
eration of many new researchers. In the future, we are
interested in computing the bounds for other degree-
based chemical invariants for F-sums of graphs like
redefined Zagreb indices. Further, we plan to order the
F-sums of graphs with respect to the above-mentioned
chemical invariants giving first, second, and third maxima
or minima.
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