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Let G � (V, E) be a graph. A function f: E⟶ − 1,+1{ } is said to be a signed clique dominating function (SCDF) of G if
∑e∈E(K)f(e)≥ 1 holds for every nontrivial clique K in G. �e signed clique domination number of G is de�ned as
cscl′(G) � min ∑e∈E(G)f(e)|fis an SCDFofG{ }. In this paper, we investigate the signed clique domination numbers of join of
graphs. We correct two wrong results reported by Ao et al. (2014) and Ao et al. (2015) and determine the exact values of the signed
clique domination numbers of Pm∨Kn and Cm∨Kn.

1. Introduction

We use Bondy and Murty [1] for terminology and notation
not de�ned here and consider only simple and undirected
graphs.

�e theory of domination is an important content in
graphs, and its applications are more and more widely. In
1995, Dunbar et al. [2] �rst introduced the signed domi-
nation of graphs, and now, there are a lot of variations, such
as the total domination [3]. However, most of them belong
to the vertex domination of graphs, and a few of the edge
dominations were studied. In 2001, B. Xu puts forward the
signed edge domination of graphs [4]. Since then, many
variations based on edge domination have becomemore and
more abundant, such as signed total domination [5], Roman
domination [6], signed cycle domination [7], and signed
clique domination [8]. �e emergence of these concepts
enriched and completed the domination theory of graphs. In
this paper, we consider the signed clique domination
numbers of joint graphs.

Let G � (V, E) be a graph with vertex set V � V(G) and
edge set E � E(G). Every maximal complete subgraph K of
graph G is called a clique of G; that is, there are no other
complete subgraphs contain K. A clique K is called non-
trivial if K≠K1.

Given a graph G � (V, E), for any vertex v ∈ V, let E(v)
be the set of edges in G incident to v. If A⊆V, B⊆V, and
A∩B � ∅, then we write E(A, B) � uv ∈ E|u ∈ A, v ∈ B{ }.

For any two disjoint graphs G1 and G2, then G1∨G2
denotes the joint graph of G1 and G2, where

V G1∨G2( ) � V G1( )∪V G2( ),
E G1∨G2( ) � E G1( )∪E G2( )∪ uv|u ∈ V G1( ), v ∈ V G2( ){ }.

(1)

For ease of description, let G � (V, E) be a graph, S⊆E
and f: E⟶ R be a real-valued function de�ned on E, then
we put f(S) � ∑e∈Sf(e).

De�nition 1 (see [8]). Let G � (V, E) be a graph, a function
f: E⟶ − 1,+1{ } is said to be a signed clique dominating
function (SCDF) of G if f(E(K))≥ 1 holds for every
nontrivial clique K in G. �e signed clique domination
number of G is de�ned as

cscl′(G) � min f(E)|f is an SCDF of G{ }. (2)

If f is an SCDF such that cscl′(G) � f(E(G)), then the
function f is said to be a minimum SCDF of G.

Lemma 1 (see [8]). For any graph G, cscl′(G) ≡ |E(G)|
(mod2).

Lemma 2 (see [8]). For any connected graph G of order n, if
|E(G)| � m and ω(G)≤ 4. �en,
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cscl′(G)≥ 2n − m − 2. (3)

�is lower bound is the best possible.
For the joint graphs of the two graphs, we have the

following results.

Lemma 3 (see [9]).
(1) For any two positive integers m≥ 3 and n≥ 2, then

cscl′ Cm∨ nK2( ) �
3 − n, whenm � 3,

m + n, whenm≥ 4.
{ (4)

(2) For any two positive integers m≥ 4 and n≥ 4, then

cscl′ Cm∨Cn( ) �
m + n + 1, whenm and n are odd,

m + n, otherwise.
{

(5)

Lemma 4 (see [10]). For any positive integer (n> i> 3), then

cscl′ Ci∨Kn− i( ) �
6 − n, when i � 3,

i, when i≥ 4 and i ≡ 0(mod2),
n − 2, when i≥ 4 and i ≡ 1(mod2).




(6)

However, we �nd the following two lemmas are wrong.

Lemma 5 (see [10]). For any positive integer (n> i> 0), then

cscl′ Pi∨Kn− i( ) �

n − 1, when i � 1,

⌊
i

2
⌋ − ⌈

i

2
⌉( )(n − i) +(i − 1), when i≥ 2.




(7)

For example, in fact, when n � 6 and i � 5, then
cscl′(P5∨K1)≤ 1. �e labeling of P5∨K1 is shown in Figure 1,
and when n � 8 and i � 6, then cscl′(P6∨K2)≤ 3. �e labeling
of P6∨K2 is shown in Figure 2 where unlabeled edges are
assigned as -1.

Lemma 6 (see [11]). For any positive integerm≥ 3 and n≥ 3,
then

cscl′ Kn∨Cm( ) �

2(6 − n)⌈
m

2
⌉ − (n + 1)m +

n(n − 1)
2

, when n � 3, 4, 5,

− (n + 1)m + 2n + 2 +
(− 1)⌊n/2⌋+1 + 1

2
, when n≥ 6.




(8)

In fact, the above conclusion is not true for n � 3 or 4,
and m is odd. For example, we may see cscl′(K3∨C5)≤ − 1
and cscl′(K4∨C5)≤ − 9. �e labeling of K3∨C5 and K4∨C5 is
shown in Figures 3 and 4, respectively, where unlabeled
edges are assigned as –1.

In this note, we mainly correct two wrong conclusions in
[10, 11] and determine exactly the signed clique domination
numbers of Pm∨Kn and Cm∨Kn.
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Figure 1: P5∨K1.
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2. Main Results

Theorem 1. For any two positive integers m≥ 2 and n≥ 1,
then

cscl′ Pm∨Kn(  �

1, whenm � 2 or n � 1,

m − n − 1, whenm≥ 3 andm is odd,

m − 3, whenm≥ 4 andm is even.

⎧⎪⎪⎨

⎪⎪⎩

(9)

Proof. Let G � Pm∨Kn be a joint graph, V(G) �

V(Pm)∪V(Kn), we define A � V(Pm) � u1, u2, . . . , um ,
E(Pm) � uiui+1|1≤ i≤m − 1 , B � V(Kn) � v1, v2, . . . , vn .

Case 1. When m � 2.
Let f be a minimum SCDF of G, that is,

cscl′(G) � f(E(G)). Obviously, there are n cliques K(j) �

K3(1≤ j≤ n) in G, among K(j) is a clique with three
vertices u1, u2, vj. +e n cliques contain a common edge
u1u2. According to Definition 1, we have f(E(K(j)))≥ 1
held for every clique K(j). +en, we obtain


n
j�1 f(E(K(j)))≥ n. In this inequality, note that the

function value f(e) of each edge e in E(P2) is counted
exactly n times, and the function value f(e) of each edge e

in E(A, B) is counted one time. +en,

nf E P2( (  + f(E(A, B))≥ n. (10)

For every vertex vj ∈ B, E(vj) is the set of edges in G

incident to vj. It is obvious that f(E(vj))≥ 0 (otherwise, if
there exists a vertex vs such that f(E(vs))< 0). It implies the
contradiction that f(E(K(s)))< 0). +us, we derive
f(E(A, B)) � 

n
j�1 f(E(vj))≥ 0. Combining with (10), we

have

cscl′(G) � f(E(G)),

� f E P2( (  + f(E(A, B))≥ 1 +
n − 1

n
f(E(A, B))≥ 1.

(11)

Meanwhile, we define such a function f′ of G as follows:

f′(e) �
− 1, e � u1vj(1≤ j≤ n),

+1, otherwise.
 (12)

It is routine to check that f′ is an SCDF of G. Hence,

cscl′(G)≤f′(E(G)) � f′ E P2( (  + f′(E(A, B)) � 1. (13)

Combining with cscl′(G)≥ 1, we finally derive
cscl′(G) � 1.

Case 2. When n � 1.
We know that G � Pm∨K1 is connected graph of order

m + 1, |E(G)| � 2m − 1, and w(G)≤ 3. By Lemma 2, we have
cscl′(G)≥ 2(m + 1) − (2m − 1) − 2 � 1. Meanwhile, we de-
fine such a function f of G as follows:

f(e) �
+1, e ∈ E(A, B),

− 1, e ∈ E Pm( .
 (14)

It is routine to check that f is an SCDF of G. +en,

cscl′(G)≤f(E(G)) � f E Pm( (  + f(E(A, B)) � 1. (15)

Combining with cscl′(G)≥ 1, we finally have cscl′(G) � 1.

Case 3. When m≥ 3 and m is odd.
Let f be a minimum SCDF of G, that is,

cscl′(G) � f(E(G)). Clearly, there are n(m − 1) cliques Ki,j �

K3(1≤ i≤m − 1, 1≤ j≤ n) in G, among Ki,j is a clique with
three vertices ui, ui+1, vj. According to Definition 1, we
obtain f(E(Ki,j))≥ 1holds for every clique Ki,j. +erefore,
we have 

m− 1
i�1 

n
j�1 f(E(Ki,j))≥ n(m − 1).

In the above inequality, we know that the function value
f(e) of each edge e in E(Pm) is counted exactly n times.
+en, let E1 be the edge set in E(A, B) where the function
value f(e) of each edge e is counted one time, and E2 is the
edge set in E(A, B) where the function value f(e) of each
edge e is counted exactly 2 times, where

E1 � uivj|i � 1, m, 1≤ j≤ n ,

E2 � uivj|2≤ i≤m − 1, 1≤ j≤ n .

⎧⎪⎨

⎪⎩
(16)

+en,




m− 1

i�1



n

j�1
f E Ki,j   � nf E Pm( (  + f E1(  + 2f E2( ≥ n(m − 1).

(17)

For every vertex vj ∈ B, it is obvious that f(E(vj))≥ − 1
(otherwise, there must exist a clique Ks,t(1≤ s≤
m − 1, 1≤ t≤ n) such that f(E(Ks,t))< 1, a contradiction).
+en, we have f(E1) + (E2) � 

n
j�1 f(E(vj))≥ − n. We

assume that there are k vertices vj(1≤ j≤ n) such that


m− 1
i�2 f(uivj)≥ 1, then

2n − 4k≤f E1( ≤ 2n,

2k − n≤f E2( ≤ k(m − 2) − (n − k),
 (18)

where 0≤ k≤ n.
According to (17), we obtain

cscl′(G) � f E Pm( (  + f E1(  + f E2( 

≥ (m − 1) +
n − 1

n
f E1(  +

n − 2
n

f E2( 

≥ (m − 1) +
n − 1

n
(2n − 4k) +

n − 2
n

(2k − n)

� m − 1 + n − 2k≥m − n − 1.

(19)

Meanwhile, we define such a function f′ of G as follows:

f′(e) �
(− 1)

i
, e � uivj(1≤ i≤m, 1≤ j≤ n),

+1, e ∈ E Pm( .

⎧⎨

⎩ (20)
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It is clear that f′ is an SCDF of G. +erefore,

cscl′(G)≤f′(E(G))

� f′ E Pm( (  + f′ E1(  + f′ E2(  � m − n − 1.
(21)

Together with cscl′(G)≥m − n − 1, we have cscl′(G) �

m − n − 1.

Case 4. When m≥ 4 and m is even.
Let f be a minimum SCDF of G, i.e., cscl′(G) � f(E(G)).

+e same as Case 3, we have f(E(vj))≥ 0, then
f(E1) + f(E2) � 

n
j�1 f(E(vj))≥ 0. We assume that there

are k vertices vj(1≤ j≤ n) such that 
m− 1
i�2 f(uivj)≥ 2, then

− 2k≤f E1( ≤ 2n,

2k≤f E2( ≤ k(m − 2),
 (22)

where 0≤ k≤ n.
According to (17), we have

cscl′(G) � f E Pm( (  + f E1(  + f E2( 

≥ (m − 1) +
n − 1

n
f E1(  +

n − 2
n

f E2( 

≥ (m − 1) +
n − 1

n
(− 2k) +

n − 2
n

(2k)

� m − 1 −
2k

n
≥m − 3.

(23)

In addition, we define such a function f′ of G as follows:

f′(e) �

− 1, e ∈ u1vj ∪ u2u3(1≤ j≤ n),

(− 1)
i+1

, e � uivj(3≤ i≤m, 1≤ j≤ n),

+1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

It is routine to check that f′ is an SCDF of G. +erefore,

cscl′(G)≤f′(E(G)) � f′ E Pm( (  + f′ E1(  + f′ E2(  � m − 3.

(25)

Combining with cscl′(G)≥m − 3, we have cscl′(G) �

m − 3. +is completes the proof of +eorem 1.

Theorem 2. For any two positive integers m≥ 3 and n≥ 3,
then

cscl′ Cm∨Kn(  �

3 − 2m + 2
m

2
 , when n � 3;

6 − 3m, when n � 4;

10 − 6m + 2
m

2
 , when n � 5;

− (n + 1)m + 2n + 2 +
(− 1)
⌊n/2⌋+1

+ 1
2

, when n≥ 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Proof. Let G � Cm∨Kn, A � V(Cm) � u1, u2, . . . , um , and
E(Cm) � uiui+1|1≤ i≤m , among um+1 � u1; B � V(Kn) �

v1, v2, . . . , vn , |E(G)| � (n(n − 1)/2) + m(n + 1).
Let f be a minimum SCDF of G, that is,

cscl′(G) � f(E(G)). Obviously, there are m cliques K(i) �

Kn+2(1≤ i≤m) in G, among K(i) is a clique with n + 2
vertices ui, ui+1 and the vertex set B.

Case 5. When n � 3. Note that K(i) � K5(1≤ i≤m).
According to Definition 1, we have f(E(K(i)))≥ 1 held for
every clique K(i). Since |E(K5)| � 10, by Lemma 1, we have
f(E(K(i)))≥ 2. +en, we obtain 

m
i�1 f(E(K(i)))≥ 2m. In

this inequality, we know that the function value f(e) of each
edge e in E(K3) is counted exactly m times, the function
value f(e) of each edge e in E(Cm) is counted exactly one
time, and the function value f(e) of each edge e in E(A, B) is
counted 2 times. +en,

mf E K3( (  + f E Cm( (  + 2f(E(A, B))≥ 2m. (27)

Since f(E(K3))≤ 3, we have

f E Cm( (  + 2f(E(A, B))≥ − m. (28)

According to (27), we obtain

cscl′(G) � f E K3( (  + f E Cm( ( 

+ f(E(A, B))≥ 2 +
m − 1

m
f E Cm( ( 

+
m − 2

m
f(E(A, B)).

(29)

Together with (28), we have

(i) When f(E(A, B))≥ 0,

cscl′(G)≥ 2 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

≥ 2 +
m − 1

m
· (− m) + 0 � 3 − m.

(30)

(ii) When f(E(A, B))≤ 0,

cscl′(G)≥ 2 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

� 2 +
m − 1

m
f E Cm( (  + 2f(E(A, B))  − f(E(A, B))

≥ 2 +
m − 1

m
· (− m) − 0 � 3 − m.

(31)

+en, we have cscl′(G)≥ 3 − m. Note that, when m is odd,
|E(G)| � 4m + 3 is also odd. As per Lemma 1, we derive
cscl′(G)≥ 4 − m. +us, cscl′(G)≥ 3 − 2m + 2⌈m/2⌉. In addi-
tion, we define such a function f′ of G as follows:
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f′(e) �
+1, e ∈ E K3( ∪ uivj | 1≤ i≤m, j � 1 ∪ uivj | i ≡ 1 (mod 2), j � 2 ,

− 1, otherwise.

⎧⎨

⎩ (32)

It is not difficult to check that f′ is an SCDF of G, then
cscl′(G)≤f′(E(G)) � 3 − 2m + 2⌈m/2⌉. In summary, when
n � 3, cscl′(G) � 3 − 2m + 2⌈m/2⌉.

Case 6. When n � 4. We know K(i) � K6(1≤ i≤m). By the
Definition 1, we have f(E(K(i)))≥ 1 held for every clique
K(i). +en, we obtain 

m
i�1 f(E(K(i)))≥m. +e same as Case

5, we have

mf E K4( (  + f E Cm( (  + 2f(E(A, B))≥m. (33)

Since f(E(K4))≤ 6, we derive

f E Cm( (  + 2f(E(A, B))≥ − 5m. (34)

According to (33), we have

cscl′(G) � f E K4( (  + f E Cm( ( 

+ f(E(A, B))≥ 1 +
m − 1

m
f E Cm( ( 

+
m − 2

m
f(E(A, B)).

(35)

Combining with (34), we have

(i) When f(E(A, B))≥ − 2m,

cscl′(G)≥ 1 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

≥ 1 +
m − 1

m
· (− m) +

m − 2
m

· (− 2m) � 6 − 3m.

(36)

(ii) When f(E(A, B))≤ − 2m,

cscl′(G)≥ 1 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

� 1 +
m − 1

m
f E Cm( (  + 2f(E(A, B))  − f(E(A, B))

≥ 1 +
m − 1

m
· (− 5m) + 2m � 6 − 3m.

(37)

+en, we have cscl′(G)≥ 6 − 3m. Meanwhile, we define
such a function f′ of G as follows:

f′(e) �
+1, e ∈ E K4( ∪ uivj|1≤ i≤m, j � 1 ,

− 1, otherwise.

⎧⎨

⎩ (38)

Clearly, f′ is an SCDF of G, and then cscl′(G)≤
f′(E(G)) � 6 − 3m. In summary, when n � 4, whether m is
odd or m is even, we finally have cscl′(G) � 6 − 3m.

Case 7. When n � 5. We know K(i) � K7(1≤ i≤m). As per
Definition 1, we have f(E(K(i)))≥ 1 held for every clique

K(i). +en, we obtain 
m
i�1 f(E(K(i)))≥m. +e same as Case

5, we have

mf E K5( (  + f E Cm( (  + 2f(E(A, B))≥m. (39)

Since f(E(K5))≤ 10, we derive

f E Cm( (  + 2f(E(A, B))≥ − 9m. (40)

According to (39), we have

cscl′(G) � f E K5( (  + f E Cm( (  + f(E(A, B))≥ 1

+
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B)).

(41)

Combining with (40), we have

(i) When f(E(A, B))≥ − 4m,

cscl′(G)≥ 1 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

≥ 1 +
m − 1

m
· (− m) +

m − 2
m

· (− 4m) � 10 − 5m.

(42)

(ii) When f(E(A, B))≤ − 4m,

cscl′(G)≥ 1 +
m − 1

m
f E Cm( (  +

m − 2
m

f(E(A, B))

� 1 +
m − 1

m
f E Cm( (  + 2f(E(A, B))  − f(E(A, B))

≥ 1 +
m − 1

m
· (− 9m) + 4m � 10 − 5m.

(43)

+en, we have cscl′(G)≥ 10 − 5m. Notice that when m

is odd, |E(G)| � 6m + 10 is even. By Lemma 1, we
obtain cscl′(G)≥ 11 − 5m. +us, cscl′(G)≥ 10− 6m + 2⌈m/2⌉.
In addition, we define such a function f′ of G as follows:

f′(e) �
+1, e ∈ E K5( ∪ uivj | i ≡ 1 (mod 2), j � 1 ,

− 1, otherwise.

⎧⎨

⎩

(44)

It is not difficult to check that f′ is an SCDF of G, then
cscl′(G)≤f′(E(G)) � 10 − 6m + 2⌈m/2⌉. In summary, when
n � 5, we have cscl′(G) � 10 − 6m + 2⌈m/2⌉.

Case 8. When n≥ 6. Let f be a minimum SCDF of G, that is,
cscl′(G) � f(E(G)). Write s � e ∈ E(G)|f(e) � 1 , s1 �

e ∈ E(Kn+2)|f(e) � 1 .
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According to Definition 1, we have f(E(Kn+2))≥ 1 held
for every clique Kn+2 in G. +us, we have
s1 ≥ ⌊(n + 2)(n + 1)/4⌋ + 1. It implies s≥ s1 ≥ ⌊(n + 2)

(n + 1)/4⌋ + 1, and then,

cscl′(G) � 2s − |E(G)|≥ − (n + 1)m + 2n + 2 +
(− 1)
⌊n/2⌋+1

+ 1
2

.

(45)

In addition, since n≥ 6, we know
(n(n − 1)/2)≥ ⌊(n + 2)(n + 1)/4⌋ + 1. Now define a function
f′, that is, let the number of +1 edges in Kn is
⌊(n + 2)(n + 1)/4⌋ + 1, the other edges are assigned as -1. It
is obvious that

cscl′(G)≤f′(E(G)) � − (n + 1)m + 2n + 2 +
(− 1)
⌊n/2⌋+1

+ 1
2

. (46)

In summary, when n≥ 6, we have c’
scl(G) � − (n +1)m +

2n + 2 + ((− 1)⌊n/2⌋+1 + 1/2). We complete the proof of
+eorem 2.
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