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We have studied the extended algebraic operations between two fuzzy numbers and calculated Zadeh’s max-min composition
operator for two generalized triangular fuzzy sets in R2. And we generalized the triangular fuzzy numbers from R2 to R3. We
prove that the result of the three-dimensional case is an extension of two-dimensional case and presented it in a graph. �e
extension is proved by showing that the result obtained by restricting the three-dimensional result to two-dimensional result is
consistent with the existing two-dimensional result.

1. Introduction

Fuzzy theory has been increasingly applied to humanities
including logics and sociology as well as natural sciences
from engineering to medicine. In mathematics, triangular
fuzzy sets have been extensively studied, which resulted in
numerous fuzzy theories. In applications of the fuzzy set
theories, many operators between two fuzzy sets have been
de�ned and calculated. In particular, Zadeh’s operators
have been widely applied and developed [1–3]. Recently,
the application expands to fuzzy control theory [4, 5] and
fuzzy logic [6–8]. �e theories of triangular fuzzy numbers
have been extended to generalized triangular fuzzy sets that
do not have the maximum value of 1. And as the number of
ambiguous fuzzy variables increases, the theories have been
extended to the studies of two-dimensional and three-di-
mensional fuzzy sets. In that respect, the study that ex-
tended Zadeh’s operator theory to two or three dimensions
is meaningful. We have studied the extended algebraic
operations between two fuzzy numbers [9–12] and cal-
culated Zadeh’s max-min composition operator for two
generalized triangular fuzzy sets in R2 [13–15]. In [16], we
generalized the triangular fuzzy numbers fromR2 toR3. By
de�ning a parametric operator between two α-cuts with

ellipsoidal values containing the interior, we de�ned a
parametric operator for the two triangular fuzzy numbers
de�ned inR3. We proved that the results for the parametric
operator are the generalization of Zadeh’s extended alge-
braic operator on R [9]. In addition, we calculated the
parametric operators for two generalized three-dimen-
sional triangular fuzzy sets and presented the calculation in
three-dimensional graphs [17].

In this paper, we prove that the result of the three-di-
mensional case is an extension of two dimensions and
presented it in a graph. �e extension is proved by showing
that the result obtained by restricting the three-dimensional
result to two dimensions is consistent with the existing two-
dimensional result. �e graph of the fuzzy set de�ned in
three dimensions expresses the function value by color
density. When the graph is cut with a vertical plane passing
through the vertex of a generalized three-dimensional tri-
angular fuzzy set, the function value is shown through color
density on the cross section of the graph. �e value of the
membership function de�ned on the cross section can be
expressed in a graph of the function de�ned in two di-
mensions. We show that this graph is consistent with the
three-dimensional representation of the results in two
dimensions.

Hindawi
Journal of Mathematics
Volume 2022, Article ID 3248127, 11 pages
https://doi.org/10.1155/2022/3248127

mailto:yunys@jejunu.ac.kr
https://orcid.org/0000-0002-0157-3076
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3248127


2. Zadeh’s Max-Min Composition
Operations for Generalized Triangular Fuzzy
Sets on R2

We define α-cut and α-set of the fuzzy set A on R with the
membership function μA(x).

Definition 1. An α-cut of the fuzzy number A is defined by
Aα � x ∈ R ∣ μA(x)≥ α  if α ∈ (0, 1] and A0 � cl x ∈ R ∣{

μA(x)> α}, where cl(B) is the closure of B ⊂ R. For
α ∈ (0, 1), the set Aα � x ∈ X ∣ μA(x) � α  is said to be the
α-set of the fuzzy set A, A0 is the boundary of
x ∈ R ∣ μA(x)> α , and A1 � A1.

We define the generalized two-dimensional triangular
fuzzy numbers on R2 as a generalization of generalized
triangular fuzzy sets on R and the parametric operations
between two generalized two-dimensional triangular fuzzy
sets. For that, we have to calculate operations between α-cuts
in R. &e α-cuts are intervals in R, but in R2, the α-cuts are
regions, which makes the existing method of calculations
between α-cuts unusable. We interpret the existing method
from a different perspective and apply the method to the
region valued α-cuts on R2.

Definition 2. A fuzzy set A with a membership function:

μA(x, y) �

h −

������������������

x − x1( 
2
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2 +

y − y1( 
2

b
2



, b
2

x − x1( 
2

+ a
2

y − y1( 
2 ≤ a

2
b
2
h
2
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where a, b> 0 and 0< h< 1 is called the generalized two-
dimensional triangular fuzzy set and denoted by
(a, x1, h, b, y1)

2.

&e intersections of μA(x, y) and the vertical planes y −

y1 � k(x − x1) (k ∈ R) are symmetric triangular fuzzy
numbers in those planes. If a � b, ellipses become circles.
&e α-cut Aα of a generalized two-dimensional triangular
fuzzy number A � (a, x1, h, b, y1)

2 is an interior of ellipse in
an xy-plane including the boundary

Aα � (x, y) ∈ R2
|

x − x1

a(h − α)
 

2

+
y − y1

b(h − α)
 

2

≤ 1
⎧⎨

⎩

⎫⎬

⎭. (2)

Definition 3. A two-dimensional fuzzy number A defined
on R2 is called convex fuzzy number if for all α ∈ (0, 1), the
α-cuts,

Aα � (x, y) ∈ R2
|μA(x, y)≥ α , (3)

are convex subsets in R2.

Theorem 1 (see [9]). Let A be a continuous convex fuzzy
number defined on R2 and Aα � (x, y) ∈ R2|μA(x, y) � α 

be the α-set of A. +en, for all α ∈ (0, 1), there exist con-
tinuous functions fα

1(t) and fα
2(t) defined on [0, 2π] such

that

A
α

� f
α
1(t), f

α
2(t)(  ∈ R2

|0≤ t≤ 2π . (4)

Definition 5. Let A and B be convex fuzzy sets defined onR2

and

A
α

� f
α
1(t), f

α
2(t)(  ∈ R2

|0≤ t≤ 2π ,

B
α

� g
α
1(t), g

α
2(t)(  ∈ R2

|0≤ t≤ 2π ,
(5)

be the α-sets of A and B, respectively. For α ∈ (0, 1), the
parametric addition, parametric subtraction, parametric
multiplication, and parametric division are fuzzy sets that
have their α-sets as follows.

2.1.ParametricAdditionA(+)pB. &eparametric addition is
given by the following:

A(+)pB 
α

� f
α
1(t) + g

α
1(t), f

α
2(t) + g

α
2(t)(  ∈ R2

|0≤ t≤ 2π  (6)

2.2. Parametric Subtraction A(− )pB. &e parametric sub-
traction is given by the following:

A(− )pB 
α

� xα(t), yα(t)(  ∈ R2
|0≤ t≤ 2π , (7)

where

xα(t) �
f
α
1(t) − g

α
1(t + π), if 0≤ t≤ π,

f
α
1(t) − g

α
1(t − π), if π ≤ t≤ 2π,

⎧⎨

⎩

yα(t) �
f
α
2(t) − g

α
2(t + π), if 0≤ t≤ π,

f
α
2(t) − g

α
2(t − π), if π ≤ t≤ 2π.

⎧⎨

⎩

(8)

2.3. Parametric Multiplication A(·)pB. &e parametric
multiplication is given by the following:

A(·)pB 
α

� f
α
1(t) · g

α
1(t), f

α
2(t) · g

α
2(t)(  ∈ R2

|0≤ t≤ 2π . (9)
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2.4. Parametric Division A(/)pB. &e parametric division is
given by the following:

A(/)pB 
α

� xα(t), yα(t)(  ∈ R2
|0≤ t≤ 2π , (10)

where

xα(t) �
f
α
1(t)

g
α
1(t + π)

, (0≤ t≤ π),

xα(t) �
f
α
1(t)

g
α
1(t − π)

, (π ≤ t≤ 2π),

yα(t) �
f
α
2(t)

g
α
2(t + π)

, (0≤ t≤ π),

yα(t) �
f
α
2(t)

g
α
2(t − π)

, (π ≤ t≤ 2π).

(11)

For α � 0 and α � 1, (A(∗ )pB)0 � limα⟶0+ (A(∗ )pB)α

and (A(∗ )pB)1 � limα⟶1− (A(∗ )pB)α, where
∗ � +, − , ·, /.

Theorem 2 (see [10]). Let A � (a1, x1, h1, b1, y1)
2 and B �

(a2, x2, h2, b2, y2)
2 be two generalized two-dimensional tri-

angular fuzzy sets. If 0< h1 < h2 < 1, then we have the
following:

(1) For 0< α< h1, the α-set of A(+)pB is

A(+)pB 
α

� (x, y) ∈ R2
|

x − x1 − x2

a1 h1 − α(  + a2 h2 − α( 
  +

y − y1 − y2

b1 h1 − α(  + b2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (12)

(2) For 0< α< h1, the α-set of A(− )pB is

A(− )pB 
α

� (x, y) ∈ R2
|

x − x1 + x2

a1 h1 − α(  + a2 h2 − α( 
 

2

+
y − y1 + y2

b1 h1 − α(  + b2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (13)

(3) (A(·)pB)α � (xα(t), yα(t))|0≤ t≤ 2π , where

xα(t) � x1x2 + x1a2 h2 − α(  + x2a1 h1 − α( ( cos t + a1a2 h1 − α(  h2 − α( cos2t, 0< α< h1,

yα(t) � y1y2 + y1b2 h2 − α(  + y2b1 h1 − α( ( sin t + b1b2 h1 − α(  h2 − α( sin2t, 0< α< h1.
(14)

(4) (A(/)pB)α � (xα(t), yα(t))|0≤ t≤ 2π , where

xα(t) �
x1 + a1 h1 − α( cos t

x2 − a2 h2 − α( cos t
,

yα(t) �
y1 + b1 h1 − α( sin t

y2 − b2 h2 − α( sin t
,

0< α< h1.

(15)

Furthermore, we have

A(∗ )pB 
0

� lim
α⟶0+

A(∗ )pB 
α
, ∗ � +, − , ·, /,

A(∗ )pB 
h1

� lim
α⟶h−

1

A(∗ )pB 
α
, ∗ � +, − , ·, /.

(16)

If h1 < α≤ h2, by the Zadeh’s max-min principle oper-
ations, we obtain

A(∗ )pB 
α

� ∅, ∗ � +, − , ·, /. (17)

Example 1. (see [10]). Let A � (6, 3, (1/2), 8, 5)2 and
B � (4, 2, (2/3), 5, 3)2. &en, by &eorem 2, we have the
following:

(1) For 0< α< (1/2), the α-set of A(+)pB is

A(+)pB 
α

� (x, y) ∈ R2
|

3x − 15
17 − 30α

 
2

+
3y − 24
22 − 39α

 
2

� 1 . (18)

(2) For 0< α< (1/2), the α-set of A(− )pB is

A(− )pB 
α

� (x, y) ∈ R2
|

3x − 3
17 − 30α

 
2

+
3y − 6

22 − 39α
 

2
� 1 . (19)
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(3) (A(·)pB)α � (xα(t), yα(t))|0≤ t≤ 2π , where

xα(t) � 6 +(14 − 24α)cos t + 4(1 − 2α)(2 − 3α)cos2t, 0< α<
1
2
,

yα(t) � 15 +
86
3

− 49α sin t + 20(1 − 2α)
2
3

− α sin2t, 0< α<
1
2
.

(20)

(4) (A(/)pB)α � (xα(t), yα(t))|0≤ t≤ 2π , where

xα(t) �
9 + 9(1 − 2α)cos t

6 − 4(2 − 3α)cos t
,

yα(t) �
15 + 12(1 − 2α)sin t

9 − 15(2 − 3α)sin t
,

0< α<
1
2
.

(21)

3. Parametric Operations for Generalized
Three-Dimensional Triangular Fuzzy
Sets on R3

We define the generalized three-dimensional triangular
fuzzy sets onR3 as a generalization of generalized triangular

fuzzy sets on R2. &en, we define the parametric operations
between two generalized three-dimensional triangular fuzzy
sets. For that, we have to calculate operations between α-sets
in R3. &e α-sets are regions in R2, but in R3, the α-sets are
ellipsoids including interior, which makes the existing
method of calculations between α-sets unusable. We in-
terpret the existing method from a different perspective and
apply the method to the ellipsoids including interior-valued
α-sets on R3.

Definition 6. A fuzzy set A with a membership function
μA(x, y, z) such that

h −

���������������������������

x − x1( 
2

a
2 +

y − y1( 
2

b
2 +

z − z1( 
2

c
2



, if b
2
c
2

x − x1( 
2

+ c
2
a
2

y − y1( 
2

+ a
2
b
2

z − z1( 
2 ≤ a

2
b
2
c
2
h
2
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where a, b, c> 0 and 0< h< 1 is called the generalized three-
dimensional triangular fuzzy set and denoted by
(h, a, x1, b, y1, c, z1)

3.

Note that μA(x, y) is a cone in R2, but we cannot know
the shape of μA(x, y, z) in R3. &e α-cut Aα of a generalized
three-dimensional triangular fuzzy number
A � (h, a, x1, b, y1, c, z1)

3 is the following set:

Aα � (x, y, z) ∈ R3
|

x − x1

a(h − α)
 

2

+
y − y1

b(h − α)
 

2

+
z − z1

c(h − α)
 

2

≤ 1
⎧⎨

⎩

⎫⎬

⎭. (23)

Definition 7. A three-dimensional fuzzy number A defined
on R3 is called convex fuzzy number if for all α ∈ (0, 1), the
α-cuts,

Aα � (x, y, z) ∈ R3
|μA(x, y, z)≥ α , (24)

are convex subsets in R3.

Theorem 3 (see [17]). Let A be a continuous convex fuzzy
number defined on R3 and
Aα � (x, y, z) ∈ R3|μA(x, y, z) � α  be the α-set of A. +en,

for all α ∈ (0, 1), there exist continuous functions
fα
1(s), fα

2(s, t), and fα
3(s, t)(0≤ s≤ 2π, − (π/2)≤ t≤ (π/2))

such that

A
α

� f
α
1(s), f

α
2(s, t), f

α
3(s, t)(  ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

 . (25)

Definition 8 (see [17]). Let A and B are two continuous
convex fuzzy sets defined on R3 and
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A
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α
1(s), f

α
2(s, t), f

α
3(s, t)(  ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2
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B
α

� g
α
1(s), g

α
2(s, t), g

α
3(s, t)(  ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2
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(26)

be the α-set of A and B, respectively. For α ∈ (0, 1), we define
that the parametric addition, parametric subtraction,
parametric multiplication, and parametric division of two
fuzzy setsA and B are fuzzy numbers that have their α-sets as
follows:

(1) Parametric addition A(+)pB:

A(+)pB 
α

� f
α
1(s) + g

α
1(s), f

α
2(s, t) + g

α
2(s, t), f

α
3(s, t) + g

α
3(s, t)(  ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

 . (27)

(2) Parametric subtraction A(− )pB:

A(− )pB 
α

� f
α
1 s( ) − g

α
1(s + π), f

α
2(s, t) − g

α
2(s + π, t), f

α
3(s, t) − g

α
3(s + π, t)(  ∈ R3

|0≤ s≤ π, −
π
2
≤ t≤

π
2

 ,

A(− )pB 
α

� f
α
1 s( ) − g

α
1(s − π)f

α
2(s, t) − g

α
2(s − π, t), f

α
3(s, t) − g

α
3(s − π, t)(  ∈ R3

|π ≤ s≤ 2π, −
π
2
≤ t≤

π
2

 .

(28)

(3) Parametric multiplication A(·)pB:

A(·)pB 
α

� f
α
1(s) · g

α
1(s), f

α
2(s, t) · g

α
2(s, t), f

α
3(s, t) · g

α
3(s, t)(  ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

 . (29)

(4) Parametric division A(/)pB:

A(/)pB 
α

�
f
α
1(s)

g
α
1(s + π)

,
f
α
2(s, t)

g
α
2(s + π, t)

,
f
α
3(s, t)

g
α
3(s + π, t)

  ∈ R3
|0≤ s≤ π, −

π
2
≤ t≤

π
2

 ,

A(/)pB 
α

�
f
α
1(s)

g
α
1(s − π)

,
f
α
2(s, t)

g
α
2(s − π, t)

,
f
α
3(s, t)

g
α
3(s − π, t)

  ∈ R3
|π ≤ s≤ 2π, −

π
2
≤ t≤

π
2

 .

(30)

For α � 0 and α � 1, (A(∗ )pB)0 � limα⟶0+ (A(∗ )pB)α

and (A(∗ )pB)1 � limα⟶1− (A(∗ )pB)α, where
∗ � +, − , ·, /.

Theorem 4 (see [17]). Let A � (h1, a1, x1, b1, y1, c1, z1)
3 and

B � (h2, a2, x2, b2, y2, c2, z2)
3 be two generalized three-

dimensional triangular fuzzy sets. If 0< h1 < h2 < 1, then we
have the following:

(1) For 0< α< h1, the α-set of A(+)pB is

A(+)pB 
α

� (x, y, z) ∈ R3
|

x − x1 − x2

a1 h1 − α(  + a2 h2 − α( 
 

2

+
y − y1 − y2

b1 h1 − α(  + b2 h2 − α( 
 

2

+
z − z1 − z2

c1 h1 − α(  + c2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭.

(31)
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(2) For 0< α< h1, the α-set of A(− )pB is

A(− )pB 
α

� (x, y, z) ∈ R3
|

x − x1 + x2

a1 h1 − α(  + a2 h2 − α( 
 

2

+
y − y1 + y2

b1 h1 − α(  + b2 h2 − α( 
 

2

+
z − z1 + z2

c1 h1 − α(  + c2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭.

(32)

(3) For 0< α< h1,
(A(·)pB)α �

(xα(s), yα(s, t), zα(s, t))|0≤ s≤ 2π, − (π/2)≤ t≤ (

π/2)}, where

xα(s) � x1x2 + x1a2 h2 − α(  + x2a1 h1 − α( ( cos s + a1a2 h1 − α(  h2 − α( cos2s,

yα(s, t) � y1y2 + y1b2 h2 − α(  + y2b1 h1 − α( ( sin s cos t + b1b2 h1 − α(  h2 − α( sin2scos2t,

zα(s, t) � z1z2 + z1c2 h2 − α(  + z2c1 h1 − α( ( sin s sin t + c1c2 h1 − α(  h2 − α( sin2ssin2t.

(33)

(4) For 0< α< h1, (A(/)pB)α � (xα(s), yα(s, t), zα(s, t))

|0≤ s≤ 2π, − (π/2)≤ t≤ (π/2)}, where

xα(s) �
x1 + a1 h1 − α( cos s

x2 − a2 h2 − α( cos s
,

yα(s.t) �
y1 + b1 h1 − α( sin s cos t

y2 − b2 h2 − α( sin s cos t
,

zα(s.t) �
z1 + c1 h1 − α( sin s sin t

z2 − c2 h2 − α( sin s sin t
.

(34)

Furthermore, we have

A(∗ )pB 
0

� lim
α⟶0+

A(∗ )pB 
α
, ∗ � +, − , ·, /,

A(∗ )pB 
h1

� lim
α⟶h−

1

A(∗ )pB 
α
, ∗ � +, − , ·, /,

(35)

If h1 < α≤ h2, by the Zadeh’s max-min principle opera-
tions, we obtain

A(∗ )pB 
α

� ∅, ∗ � +, − , ·, /, (36)

4. AGeneralizationfromR2 toR3 ofGeneralized
Triangular Fuzzy Sets

In this section, we show that the parametric operations for
two generalized triangular fuzzy sets defined on R3 are a
generalization of parametric operations for two generalized
triangular fuzzy sets defined on R2. For that, we have to
prove that the intersections of the results onR3 and z � 0 are
the same as those on R2.

Theorem 5. For ∗ � +, − , ·, /, let μA(∗)B(x, y, z) and
μA(∗)B(x, y) are the results in +eorem 3 and +eorem 2,
respectively. +en, we have μA(∗)B(x, y, 0) � μA(∗)B(x, y).

Proof. Consider A � (h1, a1, x1, b1, y1, 0, 0)3 and
B � (h2, a2, x2, b2, y2, 0, 0)3, where 0< h1 < h2 < 1.

(1) For 0< α< h1, the α-set of μA(+)B(x, y, 0) is

(x, y) ∈ R2
|

x − x1 − x2

a1 h1 − α(  + a2 h2 − α( 
 

2

+
y − y1 − y2

b1 h1 − α(  + b2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (37)

Similarly, we can prove that the 0− set and h1− set of
μA(+)B(x, y, 0) are the same as those of μA(+)B(x, y).

(2) For 0< α< h1, the α-set of μA(− )B(x, y, 0) is

(x, y) ∈ R2
|

x − x1 + x2

a1 h1 − α(  + a2 h2 − α( 
 

2

+
y − y1 + y2

b1 h1 − α(  + b2 h2 − α( 
 

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (38)
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Similarly, we can prove that the 0− set and h1− set of
μA(− )B(x, y, 0) are the same as those of μA(− )B(x, y).

(3) For 0< α< h1, the α-set of μA(·)B(x, y, 0) is

S1 � xα(s), yα(s, t)(  ∈ R2
|0≤ s≤ 2π, −

π
2
≤ t≤

π
2

 , (39)

where

xα(s) � x1x2 + x1a2 h2 − α(  + x2a1 h1 − α( ( cos s + a1a2 h1 − α(  h2 − α( cos2s,

yα(s, t) � y1y2 + y1b2 h2 − α(  + y2b1 h1 − α( ( sin s cos t + b1b2 h1 − α(  h2 − α( sin2scos2t.
(40)

In &eorem 2, the α-set of μA(·)B(x, y) is

S2 � xα(t), yα(t)(  ∈ R2
|0≤ t≤ 2π , (41)

where

xα(t) � x1x2 + x1a2 h2 − α(  + x2a1 h1 − α( ( cos t + a1a2 h1 − α(  h2 − α( cos2t,

yα(t) � y1y2 + y1b2 h2 − α(  + y2b1 h1 − α( ( sin t + b1b2 h1 − α(  h2 − α( sin2t.
(42)

In three-dimensional case, the α− set becomes a
convex set in R2. &e boundary of S1 is S2. Clearly,
x0(s) � x0(t), xh1

(s) � yh1
(t), and we can prove that

y0(s, t) � y0(t),

yh1
(s, t) � yh1

(t).
(43)

(4) For 0< α< h1, the α-set of μA(/)B(x, y, 0) is

S3 � xα(s), yα(s, t)(  ∈ R2
|0≤ s≤ 2π, −

π
2
≤ t≤

π
2

 , (44)

where
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xα(s) �
x1 + a1 h1 − α( cos s

x2 − a2 h2 − α( cos s
,

yα(s.t) �
y1 + b1 h1 − α( sin s cos t

y2 − b2 h2 − α( sin s cos t
.

(45)

In &eorem 2, the α-set of μA(/)B(x, y) is

S4 � xα(t), yα(t)(  ∈ R2
|0≤ t≤ 2π , (46)

where

xα(t) �
x1 + a1 h1 − α( cos t

x2 − a2 h2 − α( cos t
,

yα(t) �
y1 + b1 h1 − α( sin t

y2 − b2 h2 − α( sin t
.

(47)

In a three-dimensional case, the α-set becomes a convex
set in R2. &e boundary of S3 is S4. Clearly,
x0(s) � x0(t), xh1

(s) � yh1
(t), and we can prove that

y0(s, t) � y0(t),

yh1
(s, t) � yh1

(t).
(48)

&us, μA(∗)B(x, y, 0) � μA(∗)B(x, y). □

5. Conclusion

Extensive use of fuzzy theory in many different fields has
facilitated active research on operators between fuzzy sets
[18–20]. Operators of various concepts have been defined
and studied, but Zadeh’s operator concept is commonly
studied and utilized. A correct understanding of the gen-
eralized triangular fuzzy set will be helpful in interpreting
Zadeh’s operators [21–24].

&e conclusion of a general triangular fuzzy set in two-
dimensional space is a function defined on a plane and can
be expressed in a graph in three-dimensional space
(Figures 1–6). &erefore, the graph in the form of an el-
liptical cone in two dimensions, the result of Section 2, is not
difficult to understand (Figures 7–10).

However, if it is expanded to three dimensions, the do-
main becomes a three-dimensional set, making visual ex-
pression difficult. To help easier understanding, graphs were
expressed in color density (Figures 11–14).

Each point on the cross section has a different color
density, noting that each has a specific function value. In
Section 4, we proved that the three-dimensional result is an
extended concept of the two-dimensional result, which is
indicated in graphs in Figures 15–18. When the three-di-
mensional result is cut with a vertical plane passing through
the vertex, the cross section of the graph is two-dimensional.
Function values in two-dimensional were represented in
graphs with the z-axis value. Visualization of the results will
lead to more application and utilization.

In Section 1, we discussed the theoretical flow and ap-
plication of fuzzy sets. &e study that extended Zadeh’s op-
erator theory to two or three dimensions is important in
application. We have studied the extended algebraic opera-
tions between two fuzzy numbers and calculated Zadeh’s
max-min composition operator for two generalized triangular
fuzzy sets inR2 and generalized the triangular fuzzy numbers
from R2 to R3. &e purpose of the paper is also presented.

In Section 2, we defined the generalized two-dimensional
triangular fuzzy numbers on R2 as a generalization of
generalized triangular fuzzy sets on R and the parametric
operations between two generalized two-dimensional tri-
angular fuzzy sets. In &eorem 2, we calculated the para-
metric operations between two generalized two-dimensional
triangular fuzzy sets and gave an example.

In Section 3, we defined the generalized three-dimen-
sional triangular fuzzy sets on R3 as a generalization of
generalized triangular fuzzy sets onR2. &en, we defined the
parametric operations between two generalized three-di-
mensional triangular fuzzy sets. We calculated the para-
metric operations between two generalized three-
dimensional triangular fuzzy sets in &eorem 3.

In Section 4, we showed that the parametric operations
for two generalized triangular fuzzy sets defined on R3 are a
generalization of parametric operations for two generalized
triangular fuzzy sets defined onR2. What has been proven is
presented as an example. And the examples are expressed in
various types of graphs for easier understanding.
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