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�eoretical investigation of magnetohydrodynamics (MHD) Casson and Williamson �uid �ow and heat and mass transfer in
laminar �ow through a stretching sheet in the presence of heat generation is carried out in this study. �e convective wall
temperature and convective wall mass boundary condition are taken into account in this study. A study is also provided, which
looks into the impact of viscous dissipation. Except for a temperature-dependent thermal conductivity, all properties of the
proposed model are assumed to be constants in the study. �e spectral collocation method based on the shifted Vieta–Lucas
polynomials is used to give an approximate formula for the n-order derivative and solve numerically the coupled momentum,
energy, and mass equations. �is method is used to convert the problem’s system of ordinary di�erential equations (ODEs) into a
nonlinear system of algebraic equations. �is system is built as a restricted optimization problem and optimized to obtain the
series solution’s unknown coe�cients. Some theorems are provided to investigate the method’s convergence.�e statistics, which
are given visually, were compared to the results of other researchers’ theoretical analysis.

1. Introduction

As an established fact, the bulk of �uids dealt with by en-
gineers and scientists, such as air, water, and oils, can be
considered Newtonian. However, in many circumstances,
the assumption of Newtonian behavior is incorrect, and the
non-Newtonian response must be modeled instead. Situa-
tions like this exist in the chemical and plastics processing
industries. Non-Newtonian behavior is also obtained in the
mining industry, where slurries and muds are frequently
handled, as well as in lubricating and biomedical �ow ap-
plications. As a result, simulation of non-Newtonian �uid
�ow phenomena is critical in the industry. In �uid dynamics,
non-Newtonian Casson �uid �ow in various physical sit-
uations has been the subject of extensive study due to its

important application in industry and technology. Possibly
the earliest formulation of the problem and analytical study
was due to Casson [1] who, in 1959, postulated the problem
of Casson �uid �ow and heat transfer at a constant wall
temperature. �is model, sometimes, will be more appro-
priate, especially in rheological data than other models for
many materials [2]. In this respect, more contributors in the
�eld of laminar non-Newtonian Casson �uid �ow and heat
transfer are well-known and were recorded in [3–7]. An-
other important model is the Williamson model, which has
particular advantages over other non-Newtonian models in
which it can deal with �uids having minimum viscosity and
�uids that have maximum viscosity. Williamson [8] was
the pioneering researcher, and he proposed the foundations
of this model and con�rmed the obtained results
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experimentally. (e importance of this type of model was the
motivation for more studies in this field [9–15]. In terms of
physical characteristics, there exist non-Newtonian fluids that
mix the Casson and Williamson models. Consequently, these
fluids can be defined as a Casson–Williamson model, as
shown in our research, which is based on prior Cas-
son–Williamson model studies [16]. An interesting feature
here is that we followAbbas andMegahed [17] in their model.
(ey used the Casson–Williamson fluid flow and heat mass
transfer models over a nonuniform stretching surface in the
presence of viscous dissipation and thermal radiation.

In fact, most nonlinear differential equations have no
exact solutions, so numerical and approximate techniques
are the semiunique way to solve these types of ODEs
[18–24]. (e spectral methods are one of the most useful
tools for simulating differential equations (partial, fractional,
and variable order). (e most famous advantage of these
methods is their capability to generate accurate outcomes
with a very small degree of error of freedom. (e orthog-
onality property of some important polynomials, such as
Vieta–Lucas polynomials, is used to approximate functions
in the interval [a, b]. (ese polynomials have a main and
important role in these methods for ODEs [25].

Despite the importance of non-Newtonian behavior in
modern technology and industry, no investigation of the
Casson–Williamson model with viscous dissipation due to a
nonuniform stretched sheet has been attempted thus far. As
a result, an attempt is made in this study to use the Vie-
ta–Lucas spectral collocation approach to get a numerical
solution for the non-Newtonian Casson–Williamson model
due to a nonuniform stretching sheet while accounting for
the magnetic field, viscous dissipation, and heat generation.

2. Mathematical Analysis

In this section, we will look at a specific sort of non-
Newtonian fluid that combines the Casson and Williamson
types in terms of properties. (is kind is known as the
Casson–Williamson type, as previously mentioned in the
literature study [16]. Similarly, the following relation can be
used to express the stress tensor τij of this type:

τij � μ 1 +
1
β

􏼠 􏼡
zu

zy
+
Γ
�
2

√
zu

zy
􏼠 􏼡

2
⎛⎝ ⎞⎠, (1)

where μ is the fluid viscosity, β is the Casson parameter, and
Γ is the Williamson coefficient. So, herein, we consider the
steady motion of an incompressible non-Newtonian Cas-
son–Williamson fluid with an electrical conductivity σ past a
nonuniform stretching sheet. (e fluid thermal conductivity
is assumed to be a function of temperature. (e Cartesian
coordinate system is considered such that the x-axis is taken
along the sheet in the direction of the motion and the y-axis
is perpendicular to it. (e sheet is maintained at a tem-
perature Tw and a concentration Cw which are higher than
T∞ and C∞, respectively, where T∞ and C∞ are the tem-
perature and concentration of the fluid at the ambient. Heat
generation mechanisms are also assumed to have an impact
on the energy field. (e y-direction magnetic field with a

uniform strength of B is assumed perpendicular for the flow
region. Furthermore, the magnetic Reynolds number of the
flow is considered to be low enough that the induced
magnetic field is insignificant. Also, it is supposed that
y � A(x + b)((1− m)/2), Uw(x) � U0(x + b)m, ]w � 0, m≠ 1.
(e physical model of the problem may be given in Figure 1.

(e balance equations of motion for the Casson and
Williamson model under the above assumptions are [26]

zu

zx
+

zv

zy
� 0, (2)

u
zu

zx
+ v

zu

zy
� v 1 +

1
β

􏼠 􏼡
z
2
u

zy
2 +

�
2

√
]Γ

zu

zy

z
2
u

zy
2 −

σB
2
(x)

ρ
u,

(3)

u
zT

zx
+ v

zT

zy
�

1
ρcp

z

zy
κ

zT

zy
􏼠 􏼡

+
μ
ρcp

1 +
1
β

􏼠 􏼡
zu

zy
􏼠 􏼡

2

+
Γ
�
2

√
zu

zy
􏼠 􏼡

3
⎛⎝ ⎞⎠

+
Q

ρcp

T − T∞( 􏼁,

(4)

u
zC

zx
+ v

zC

zy
� Dm

z
2
C

zy
2 , (5)

where u and v are the velocity components in the x− and y−

directions, β is the Casson fluid parameter, T is the fluid
temperature, cp is the specific heat, ] is the kinematic vis-
cosity, κ is the thermal conductivity of the fluid, which can be
taken as κ � κE(1 + εθ) [7] which is a linear function of θ
alone, μ∞ is the dynamic viscosity away from the sheet, κ∞ is
the thermal conductivity at the ambient, ε is the thermal
conductivity parameter, μ is the fluid viscosity, and ρ is the
density of the fluid. Also, Q, which appears in the last term of
energy equation, is the coefficient of space-dependent internal
heat generation. Likewise, we suppose that the fluid model
possesses concentration C with molecular diffusivity Dm.

We also express the boundary conditions in the fol-
lowing form [17]:

u � Uw(x),

v � 0,

− κ
zT

zy
� hw Tw − T( 􏼁,

− Dm

zC

zy
� hs Cw − C( 􏼁, aty

(6)

u⟶ 0,

T⟶ T∞,

C⟶ C∞, asy⟶∞,

(7)

where hw and hs are the heat transfer coefficient and the
concentration coefficient based on the resistance of the wall
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and ambient-side surface resistance, respectively, Cw is the
concentration at the surface, T∞ is the ambient temperature,
and Tw is temperature at the stretching sheet. It is interesting
to note here that the heat convection is equal to the heat
conduction at the stretching sheet, according to the third
part of equation (6). Furthermore, the fourth part of the
same equation states that mass convection at the sheet is
equal to the rate of change in concentration in the
y-direction.

It is convenient to introduce the following dimensionless
variables [17]:

η � y

���������������������
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where ψ is a stream function which can be combine between
u, v as u � (zψ/zy) and v � − (zψ/zx). So, u and v satisfy the
equation of the continuity and become as

u � U0(x + b)
m
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v � −
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(10)

In view of nondimensional quantities (equations
(8)–(10)), equation (2) is identically satisfied, whereas
equations (3)–(5) reduce to the following coupled, non-
linear, and dimensionless ordinary differential equations for
momentum, energy, and concentration for the regime:
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is the local Wil-
liamson parameter, M � (2σB2/ρU0(m + 1)) is the mag-
netic parameter, δ � (2Q(x + b)1− m/(1 + m)ρcpU0) is the
local heat generation parameter (> rbin0) or the absorption
parameter (< 0), Pr � (μcp/k) is the Prandtl number, Ec �

(U2
w/cp(Tw − T∞)) is the Eckert number, and Sc � ((]/Dm))

is the Schmidt number.
Likewise, the transformed dimensionless boundary

conditions are
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��
2]

√
/Dm������������������

(1 + m)U0(b + x)m− 1
􏽱

) is the mass convective parameter.
(e engineering design quantities of physical interest

include the local skin-friction coefficient Cf, the local
Nusselt number Nux, and the local Sherwood number Shx,
which are given by
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where Rex � (UwX/]) is the local Reynolds number and
X � x + b.
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Figure 1: Physical model and coordinate system.
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3. Basic Concepts on the Shifted
Vieta–Lucas Polynomials

In this section of the study, we are presenting the basic
definitions of the shifted Vieta–Lucas polynomials (VLPs),
their notations, and properties that we will use in our study,
and they are necessary to reach our goal [27].

We are researching a class of orthogonal polynomials,
which lies at the heart of our research. Using the recurrence
relations and analytical formulae of these polynomials, they
can be generated to construct a new family of orthogonal
polynomials that will be known as Vieta–Lucas polynomials.

(e Vieta–Lucas polynomials, VLm(z), of degree m ∈ N0
are defined by the following relation [27]:

VLm(z) � 2 cos(mψ),ψ � arccos
z

2
􏼒 􏼓, ψ ∈ [0, π], |z|≤ 2.

(17)

It is easy like other famous functions; one can prove that
these Vieta–Lucas polynomials satisfy the following recur-
rence formula:

VLm(z) � zVLm− 1(z) − VLm− 2(z),

m � 2, 3, . . . , VL0(z) � 2, VL1(z) � z.
(18)

Using the transformation, z � 4x − 2, we can generate
from the family of Vieta–Lucas polynomials, a new class of

orthogonal polynomials on the interval [0, 1], which is the
orthogonal family of the shifted Vieta–Lucas polynomials,
and it will be denoted by VL∗m(x) and can be obtained as
follows:

VL∗m(x) � VLm(4x − 2). (19)

(e shifted Vieta–Lucas polynomials VL∗m(x) satisfy the
following recurrence relation:

VL∗m+1(x) � (4x − 2)VL∗m(x) − VL∗m− 1(x) m � 1, 2, . . . ,

(20)

where VL∗0(x) � 2 andVL∗1(x) � 4x − 2. Also, we find
VL∗m(0) � 2(− 1)m and VL∗m(1) � 2, m � 0, 1, 2, . . ..

(e analytical formula for VL∗m(x) is given by

VL∗m(x) � 2m 􏽘
m

j�0
(− 1)

j 4m− jΓ(2m − j)

Γ(j + 1)Γ(2m − 2j + 1)
x

m− j
,

m � 2, 3, . . . .

(21)

(e shifted Vieta–Lucas polynomials VL∗m(x) are or-
thogonal polynomials on the interval [0, 1] with respect to
the weight function (1/

������
x − x2

√
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orthogonality property:

〈VL∗m(x),VL∗n (x)〉 � 􏽚
1

0

VL∗m(x),VL∗n (x)
������
x − x

2
􏽰 dx �

0, n≠m≠ 0,

4π, n � m � 0,

2π, n � m≠ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

Let v(x) be a function in the space L2[0, 1]; then, using
the shifted Vieta–Lucas polynomials VL∗m(x), this function
v(x) can be written as follows:

v(x) � 􏽘
∞

j�0
cjVL
∗
j (x), (23)

where cj are the values that we should evaluate to express the
function v(x) in terms of the shifted Vieta–Lucas polyno-
mials VL∗m(x). Consider the first m + 1 terms only of
equation (23); then, we can write:

vm(x) � 􏽘
m

j�0
cjVL
∗
j (x), (24)

such that cj, j � 0, 2, . . . , m, can be evaluated by using the
following formula:
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1
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(25)

4. An Approximate of the n-Order Derivative
and the Convergence Analysis

(is section is devoted to presenting an approximate for-
mula of the n-order derivative via shifted VLPs and studying
the convergence analysis by computing the error estimate of
the proposed approximation.

Theorem 1. :e n-order derivative for the function vm(x)

which is defined in equation (24) can be computed by the
following approximate formula [28]:

v
(n)
m (x) � 􏽘

m

j�n

􏽘

j− n

s�0
cjχj,s,nx

j− s− n
, (26)

where

χj,s,n � (− 1)
s 4j− s

(2j)Γ(2j − s)Γ(j − s + 1)

Γ(s + 1)Γ(2j − 2s + 1)Γ(j − s + 1 − υ)
. (27)
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Theorem 2. Assume that v(x) belongs to the space of all
Lebesgue-square-integrable on the interval [0, 1] with respect
to the weight function (1/

������
x − x2

√
), and assume that the

second derivative of v(x) is a bounded function by the
constant L (upper bound). :en, v(x) can be written in terms
of the shifted VLPs as a linear combination of VL∗m(x), and
vm(x) contains m + 1 terms only of this expression. Also, this
series converges uniformly to the function v(x) as m⟶∞.
Moreover, the coefficients given in equation (24) are bounded,
i.e., [29]

cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
L

4j j
2

− 1􏼐 􏼑
, j> 2. (28)

Theorem 3. Assume that v(x) satisfies the requirements of
:eorem 2, and let the weight function in the orthogonality
relation of the shifted VLPs on [0, 1] be the function
w(x) � (1/

������
x − x2

√
); then, the norm of the error estimate

(L2
w[0, 1]-norm) is given by [29]

v(x) − vm(x)
����

����w
<

L

12
���
m

3
􏽰 . (29)

Theorem 4. Let v(x) be an m-times continuously differen-
tiable on [0, 1], and the most suitable approximation for v(x)

is vm(x) which is expressed in equation (24); then, we have the
following absolute error bound [29]:

v(x) − vm(x)
����

����≤
ΔΩm+1

(m + 1)!

��
π

√
, (30)

where

Δ � max
x∈[0,1]

v
(m+1)

(x),

Ω � max 1 − x0, x0􏼈 􏼉.

(31)

5. Procedure Solution Using SVLCOM

Here, we will implement the spectral collocation method
based on a summation of Vieta–Lucas functions (VLFs) as a
basis to convert the system of ODEs that describes the
problem to a system of algebraic equations. (is system is
constructed as a constrained optimization problem and
optimized to get the unknown coefficients of the series of the
solution. (is connection of the two well-known methods
will be called “the shifted Vieta–Lucas collocation optimi-
zation method (SVLCOM)”. (e given problem (11)–(15)
will be solved numerically by applying this technique
through the following steps:

(1) We express and approximate the solution of prob-
lems (11)–(13) as a finite series of VLFs, namely,

fN(η) � 􏽘
N
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N

j�0
bjVL
∗
j (η),

ϕN(η) � 􏽘

N

j�0
cjVL
∗
j (η).

(32)

(2) We substitute from (32) and the n-order derivatives
defined by (26) in the proposed models (11)–(13) to
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(3) (e previous equations (33)–(37) will be collocated
at N − 2 of nodes at selected grid
ηk, k � 0, 1, 2, . . . , N − 3 as follows:
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⎛⎝ ⎞⎠ − M 􏽘
N

j�1
􏽘

j− 1

s�0
ajχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠ � 0, (39)

1
Pr

1 + ε 􏽘

N

j�0
bjVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽘

N

j�2
􏽘

j− 2

s�0
bjχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠ + ε 􏽘

N

j�1
􏽘

j− 1

s�0
bjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠

+ 􏽘
N

j�0
ajVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ 􏽘

N

j�1
􏽘

j− 1

s�0
bjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠ + Ec,

(40)

1 +
1
β

􏼠 􏼡 +
Λ
2

􏽘

N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽘

N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠

2

+ δ 􏽘
N

j�0
bjVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ � 0, (41)

1
Sc

􏽘

N

j�2
􏽘

j− 2

s�0
cjχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠ + 􏽘
N

j�0
ajVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ 􏽘

N

j�1
􏽘

j− 1

s�0
cjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠ � 0. (42)

(e boundary conditions (14)-(15) can be approxi-
mated at the finite interval (0, η∞) as follows:

􏽘

N

j�0
2(− 1)

j
aj � 0,

􏽘

N

j�0
ajVL
∗′
j (0) � 1,

􏽘

N

j�0
bjVL
∗′
j (0) � − c

1 − 􏽐
N
j�0 2(− 1)

j
bj

1 + ε􏽐
N
j�0 2(− 1)

j
bj

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(43)

􏽘

N

j�0
cjVL
∗′
j (0) � − λ 1 − 􏽘

N

j�0
2(− 1)

j
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦, (44)

􏽘
N

j�0
ajVL
∗′
j η∞( 􏼁 � 0,

􏽘

N

j�0
2bj � 0,

􏽘

N

j�0
2cj � 0.

(45)

6 Journal of Mathematics



(4) We express the problem defined by (38)–(45) as a
constrained optimization problem with the follow-
ing cost functions (CFs):

CF1 � 􏽘
N

k�0
| 1 +

1
β

􏼠 􏼡 􏽘

N

j�3
􏽘

j− 3

s�0
ajχj,s,3η

j− s− 3
k

⎛⎝ ⎞⎠ + 􏽘
N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠ 􏽘

N

j�0
ajVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ −

2m

m + 1
􏼒 􏼓 􏽘

N

j�1
􏽘

j− 1

s�0
ajχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠

2

+ Λ 􏽘
N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠

(46)

􏽘

N

j�3
􏽘

j− 3

s�0
ajχj,s,3η

j− s− 3
k

⎛⎝ ⎞⎠ − M 􏽘
N

j�1
􏽘

j− 1

s�0
ajχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠|, (47)

CF2 � 􏽘
N

k�0
| 1 + ε 􏽘

N

j�0
bjVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽘

N

j�2
􏽘

j− 2

s�0
bjχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠ + ε 􏽘
N

j�1
􏽘

j− 1

s�0
bjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠

2

+ Pr 􏽘
N

j�0
ajVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ 􏽘

N

j�1
􏽘

j− 1

s�0
bjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠ + EcPr

(48)

1 +
1
β

􏼠 􏼡 +
Λ
2

􏽘

N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽘

N

j�2
􏽘

j− 2

s�0
ajχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠

2

+ δPr 􏽘
N

j�0
bjVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠|, (49)

CF3 � 􏽘
N

k�0

1
Sc

􏽘

N

j�2
􏽘

j− 2

s�0
cjχj,s,2η

j− s− 2
k

⎛⎝ ⎞⎠ + 􏽘
N

j�0
ajVL
∗
j ηk( 􏼁⎛⎝ ⎞⎠ 􏽘

N

j�1
􏽘

j− 1

s�0
cjχj,s,1η

j− s− 1
k

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (50)

and the constraints (Cons.) are

Cons. � 􏽘
N

j�0
2(− 1)

j
aj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

N

j�0
ajVL
∗′
j (0) − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

N

j�0
bjVL
∗′
j (0) + c

1 − 􏽐
N
j�0 2(− 1)

j
bj

1 + ε􏽐
N
j�0 2(− 1)

j
bj

⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
N

j�0
cjVL
∗′
j (0) + λ 1 − 􏽘

N

j�0
2(− 1)

j
cj]| + 􏽘

N

j�0
ajVL
∗′
j η∞( 􏼁| + 􏽘

N

j�0
2bj| + 􏽘

N

j�0
2cj|.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎡⎢⎢⎣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(51)

(5) We use the Penalty Leap Frog procedure [30] for
solving the constrained optimization problem
(46)–(51) for the unknowns
aj, bj, cj, j � 0, 1, 2, . . . , N. (en, we can construct
the approximate solution by using formula (32).

6. Validation of the SVLCOM

(e goal of this section is to demonstrate the accuracy and
reliability of the numerical values acquired through the
SVLCOM. Clearly, the comparison is carried out for the
values of the skin-friction coefficient with different values of
Λ. (is verification is suggested in Table 1, which shows that

the current results are in excellent accord with previously
published benchmark data [17].

7. Results and Discussion

In order to study the effects of the different parameters on
the MHD Casson and Williamson fluid flow, numerical
calculations are carried out for different values of the pa-
rameters M, β, Λ, ε, Ec, δ, c, and λ. (e magnetic param-
eter, M, describes the effects of the magnetic field in the fluid
flow and heat transfer. β describes the effects of the Casson
parameter, Λ is the local Williamson parameter, ε is a pa-
rameter which describes the fluid thermal conductivity, Ec is
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called Eckert number, δ describes the effects of the heat
generation parameter, c is the thermal convective parameter,
and λ is the mass convective parameter. In Figure 2, the
velocity distribution f′(η) is plotted against η for different
values of M. It is observed that an increase in M leads to a
decrease in both velocity distribution and boundary layer
thickness.

(e graphs of the temperature distribution have been
plotted against η for the same parameter M in Figure 3. It is
found from Figure 3 that, as the magnetic number increases,
the thermal boundary layer thickness growth is enhanced.
(e effect of the magnetic number is considered to increase
the temperature field as well as the sheet temperature θ(0)

considerably. (e effect of magnetic number on these fluid
flow and heat transfer characteristics are more significant.
Physically, an increase in magnetic field strength accelerates
the Lorentz force, which causes fluid particles to encounter
greater resistance, lowering fluid velocity. Because of the
presence of this force, friction between the fluid layers in-
creases, resulting in an increase in fluid temperature.

Another remarkable effect of magnetic parameter M is
observed in thickening the boundary layer and in enhancing
the concentration along the sheet ϕ(0) as observed from
Figure 4. On the contrary, the concentration distribution
mechanism of the non-Newtonian fluid increases with
magnetic parameter due to excess of concentration gener-
ated by mass convective phenomenon.

(e velocity profiles f′(η) for some representative
values of the Casson parameter β are given in Figure 5. An
important feature that is observed is that the velocity profiles
f′(η) decreases with increasing the Casson parameter β
which results in slimming the boundary layer thickness.

Figure 6 presents the effect of the Casson parameter β on
the temperature profiles θ(η) when other parameters are
fixed. Clearly, the thermal boundary layer thicknesses in-
crease significantly with the increase in Casson parameter β
results in an enhancement in the temperature distribution
through the thermal boundary layer. On the contrary,
cooling process for the stretching sheet can be achieved with
Casson fluids having small β. Physically, increasing the
Casson parameter brings the fluid properties closer to the
Williamson type, which means more energy is created,
which improves sheet temperature and thermal boundary
thickness.

(e numerical values of the Casson parameter β are
entered in Figure 7. In this figure, the concentration profiles
ϕ(η) are presented against the similarity variable η. We
further observe that, owing to increase in the Casson pa-
rameter β, there is an increase in both the concentration of
the fluid along the sheet and the boundary layer thickness.

In Figure 8, the velocity distribution f′(η) is drawn
against η for various values of Λ. It is noted that an increase
in Λ leads to a slight decrease in velocity distribution
through the boundary layer region. Physically, Λ is pro-
portional to the Williamson coefficient Γ, which is based on
time; thus, a high Williamson coefficient of any substance
makes it more viscous, which might result in a reduction in
motion.

For different values of the local Williamson parameterΛ,
the profiles of the temperature θ(η) against η are shown in

Table 1: Comparison of (− 1/2)
��������
(2/m + 1)

􏽰
Cf

���
Rex

􏽰
with the re-

sults of Abbas and Megahed [17] when M � 0.5, β � 1.5, and
m � 0.5.

Λ Abbas and Megahed [17] Present work
0.0 1.46382 1.4638174890
0.5 0.83281 0.8327981903
1.0 0.41518 0.4151684879 f′ 

(η
) M=0.0, 0.5, 1.0

m=0.5, Λ=0.2, β=1.5
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η

Figure 2: Influence of M on f′(η).
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Ec=0.2, δ=0.2, γ=0.2
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Figure 3: Influence of M on θ(η).
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Figure 4: Influence of M on ϕ(η).

8 Journal of Mathematics



Figure 9. It should be noted here that, away from the sheet,
an increase in the value of the local Williamson parameter Λ
leads to an increase in the temperature distribution, but the
reverse behavior is noted beside the sheet.

Figure 10 shows the interesting results of the local
Williamson parameter Λ on the concentration profiles ϕ(η)

which have a slight effect on both the concentration dis-
tribution and on the rate of mass transfer.

Figure 11 shows the distribution of the temperature
profiles θ(η) relative to the thermal conductivity parameter

ε. Clearly, this parameter has a pronounced effect on the heat
transfer mechanism especially away from the sheet, but only
a slight reversed effect is observed for the sheet temperature
beside the sheet. When the fluid thermal conductivity goes
up due to a rise in temperature, the fluid temperature within
the thermal layer effectively rises.

To observe the heat behavior θ(η) for different values of
Eckert number Ec, Figure 12 against η is presented. From
this figure, we observe that the sheet temperature θ(η), the
thermal thickness, and the temperature distribution increase

β=1.0, 1.5, 2.5, ∞

Λ=0.2, m=0.5, M=0.5
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f′ 
(η

)

4 6 8 102
η

Figure 5: Influence of β on f′(η).
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Figure 6: Influence of β on θ(η).
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Figure 7: Influence of β on ϕ(η).
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Figure 8: Influence of Λ on f′(η).
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Figure 9: Influence of Λ on θ(η).
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Figure 10: Influence of Λ on ϕ(η).
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with the increase in Ec. (e same behavior is observed in
Figure 13 for various values of δ, where an increase in the
heat generation parameter δ, leads to a slowly increase in the
temperature distribution, the sheet temperature θ(η), and
the thermal thickness. Physically, increasing the size of the
Eckert number or the internal heat generation parameter
produces a large amount of heat, which raises the fluid
temperature.

(e numerical values of the dimensionless temperature
distributions are shown graphically in Figure 14 against η at
c � 0.1, 0.3, 0.5. From this figure, we observed that the fluid
temperature profiles increase with the increase in the
thermal convective parameter c. It can also be observed that
the warming process for the sheet more pronounced for
great values of the thermal convective parameter c. Physi-
cally, the thermal convective phenomenon can be read as an
average heat energy, and in this way, a rise in the thermal
convective parameter results in a boost in heat energy, so
both the sheet temperature and the temperature throughout
the thermal layer raise.

(e effects of varying the mass convective parameter,
λ � 0.1, 0.3, 0.5, on the dimensionless concentration ϕ(η)

against η, are shown in Figure 15. (is figure shows that
when the mass convective parameter λ increases, the con-
centration profile increases. Likewise, we can see that, for
smaller λ, the concentration of the fluid beside the sheet

becomes less concentrated. We further observe that the
boundary layer thickness increases with the increasing
values of λ.

(e numerical results are shown in Table 2 to give the
values of the local skin-friction coefficient, the heat transfer
rate, and the mass transfer rate relative to the governing
parameters. It is seen from this table that the local skin-
friction coefficient increases with the increase of the mag-
netic number and decreases with the increase of the local
Williamson parameter and the Casson parameter. Also, both
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Figure 11: Influence of ε on θ(η).
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Figure 12: Influence of Ec on θ(η).
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Figure 13: Influence of δ on θ(η).
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Figure 14: Influence of c on θ(η).
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Figure 15: Influence of λ on ϕ(η).
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the heat transfer rate and the mass transfer rate appear to
become greater as the Casson parameter and the magnetic
number increases. Furthermore, for increasing the thermal
conductivity parameter, the Eckert number, and the heat
generation parameter, the effects towards the heat transfer
rate become smaller. Additionally, the greater the thermal
convective parameter and the mass convective parameter,
the more strongly the the heat transfer rate and the mass
transfer rate.

8. Conclusions

(e following conclusions can be drawn concerning ap-
proximate techniques applied to the Casson andWilliamson
model for the fluid flow and heat and mass transfer over a
stretching sheet with convective wall temperature and
convective wall mass boundary condition in the presence of
a magnetic field and heat generation for the range of pa-
rameters studied. (e main findings of our study on the
Casson and Williamson model are as follows:

(1) (e dimensionless velocity decreases with increasing
the local Williamson parameter, magnetic parame-
ter, and Casson parameter

(2) (e magnetic number and the Casson parameter
enhance both the temperature of the sheet and the
temperature profiles

(3) (e thermal convective parameter, the Eckert
number, and the heat generation parameter have
prominent effect on the temperature field

(4) Eminent influence on the concentration field is
observed due to the presence of the magnetic pa-
rameter and the mass convective parameter

(5) In the future, we decide to develop on this research
by looking at the effects of heat and mass fluxes on
this sort of fluid, as well as the use of a porous
medium to control the cooling process, which is
critical in many industrial applications

Nomenclature

b: Constant (m)
B: Strength of a uniform magnetic field (T)
C: Fluid concentration (mol·L− 1)
cp: Specific heat at a constant pressure (Jkg− 1K− 1)
Cf: Skin-friction coefficient
Cw: Fluid concentration at the sheet (mol·L− 1)
C∞: Fluid concentration away from the sheet (mol·L− 1)
Dm: Molecular diffusivity (m2s− 1)
Ec: Eckret number
f: Dimensionless stream function
hs: Mass transfer coefficient (ms− 1)
hw: Heat transfer coefficient (Wm− 2K− 1)
M: Magnetic parameter
Nux: Local Nusselt number
Pr: Prandtl number
Q: Coefficient of heat generation or absorption

(JK− 1m− 3s− 1)
Rex: Local Reynolds number
Sc: Schmidt number

Table 2: Variation of (1/2)
��������
(2/m + 1)

􏽰
Cf

���
Rex

􏽰
, − θ′(0) and − ϕ′(0) for various values of M, β, Λ, ε, Ec, δ, c, and λ with m � 0.5, Pr � 1.5,

and Sc � 0.7.

M β Λ ε Ec δ c λ (− 1/2)
��������
(2/m + 1)

􏽰
Cf

���
Rex

􏽰
− θ′(0) − ϕ′(0)

0.0 1.5 0.2 0.2 0.2 0.2 0.2 0.2 1.0129951 0.107672 0.143506
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.2 1.2415185 0.086845 0.140181
1.5 1.5 0.2 0.2 0.2 0.2 0.2 0.2 1.4121084 0.063989 0.137295
0.5 1.0 0.2 0.2 0.2 0.2 0.2 0.2 1.3762085 0.088327 0.141701
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.2 1.2415185 0.086845 0.140180
0.5 2.5 0.2 0.2 0.2 0.2 0.2 0.2 1.1248884 0.083934 0.138529
0.5 1.5 0.0 0.2 0.2 0.2 0.2 0.2 1.4638175 0.086272 0.140533
0.5 1.5 0.5 0.2 0.2 0.2 0.2 0.2 0.8327982 0.087814 0.139562
0.5 1.5 1.0 0.2 0.2 0.2 0.2 0.2 0.4151685 0.090119 0.138088
0.5 1.5 0.2 0.0 0.2 0.2 0.2 0.2 1.2415185 0.095060 0.140181
0.5 1.5 0.2 0.5 0.2 0.2 0.2 0.2 1.2415185 0.076994 0.140181
0.5 1.5 0.2 1.0 0.2 0.2 0.2 0.2 1.2415185 0.064791 0.140181
0.5 1.5 0.2 0.2 0.0 0.2 0.2 0.2 1.2415185 0.139055 0.140181
0.5 1.5 0.2 0.2 0.5 0.2 0.2 0.2 1.2415185 0.017036 0.140181
0.5 1.5 0.2 0.2 0.8 0.2 0.2 0.2 1.2415185 0.004296 0.140181
0.5 1.5 0.2 0.2 0.2 0.0 0.2 0.2 1.2415185 0.116676 0.140181
0.5 1.5 0.2 0.2 0.2 0.1 0.2 0.2 1.2415185 0.105116 0.140181
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.2 1.2415185 0.086845 0.140181
0.5 1.5 0.2 0.2 0.2 0.2 0.1 0.2 1.2415185 0.050708 0.140181
0.5 1.5 0.2 0.2 0.2 0.2 0.3 0.2 1.2415185 0.113941 0.140181
0.5 1.5 0.2 0.2 0.2 0.2 0.5 0.2 1.2415185 0.151911 0.140181
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.1 1.2415185 0.086845 0.082415
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.3 1.2415185 0.086845 0.182915
0.5 1.5 0.2 0.2 0.2 0.2 0.2 0.5 1.2415185 0.086845 0.241914
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T: Nanofluid temperature (K)
Tw: Surface temperature (K)
T∞: Ambient temperature (K)
u: Velocity component in the x-direction (ms− 1)
Uw: Sheet velocity (ms− 1)
v: Velocity component in the y-direction (ms− 1)
x, y: Cartesian coordinates (m)
Greek symbols
υ: Kinematic viscosity (m− 2s− 1)
κ: (ermal conductivity (Wm− 1K− 1)
μ: Coefficient of viscosity (kgm− 1s− 1)
ρ: Density of the fluid (kgm− 3)
ϕ: Dimensionless concentration
θ: Dimensionless temperature
c: (ermal convective parameter
σ: Electrical conductivity (Sm− 1)
β: Casson parameter
λ: Mass convective parameter
Γ: Williamson coefficient (s)
Λ: Williamson parameter
δ: Heat generation parameter
η: Similarity variable
Superscripts
′: Differentiation with respect to η
∞: Free stream condition
w: Wall condition.
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