Research Article

A Novel Mathematical Model for Radio Mean Square Labeling Problem

Elsayed Badr 1, Shokry Nada 2, Mohammed M. Ali Al-Shamiri 3,4, Atef Abdel-Hay 2, and Ashraf ELrokh 2

1Scientific Computing Department, Benha University, Benha, Egypt
2Mathematics and Computer Science Department, Menoufia University, Shibin Al Kawm, Egypt
3Department of Mathematics, Faculty of Science and Arts, King Khalid University, Muhayil Assir, Saudi Arabia
4Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen

Correspondence should be addressed to Elsayed Badr; badrgraph@gmail.com

Received 27 August 2021; Accepted 27 December 2021; Published 12 January 2022

1.Introduction

In wireless networks, each radio station assigns a number called frequency. When different transmitters of district stations send signals, the receiver might get unnecessarily interference of the signals sent by transmitters in particular with close frequencies. This is the channel assignment problem introduced by Hale [1] in 1980 to minimize such interference. In 2001, Chartrand et al. [2] proposed converting this problem to graph theoretical problem using vertex labeling. Many researchers involved with this problem [3–16] and produced different methods to minimize the interference of signals [7]. Recently, Ramesh et al. [8] proposed a new method called radio mean square labeling, which is defined as follows. A radio mean square labeling of a connected graph G is an injective function h from its vertex set V to the set of natural numbers \mathbb{N}, such that for any two distinct vertices x and y, $\sqrt{(h(x))^2 + (h(y))^2} \geq \dim(G) + 1 - d(x, y)$ holds, where $d(x, y)$ denotes the distance between the two vertices, and $\dim(G)$ represents the diameter of the graph [8]. For a radio mean square labeling h, the maximum number of $h(v)$ taken over all vertices of G is called its spam, denoted by $\text{rsmn}(h)$, and the minimum value of $\text{rsmn}(h)$ taking over all radio mean square labeling h of G is called the radio mean square number of G, denoted as $\text{rsmn}(G)$. The radio mean square number of h, denoted by $\text{rsmn}(h)$ is the maximum number assigned to any vertex of G. Ramesh et al. [8] determined the radio mean square number for some graphs such as in the centric subdivision of spoke wheel graph and biwheel graph.
Due to most of nontrivial coloring models, graph coloring is an NP-hard problem. Therefore, we take into consideration a graph coloring algorithm [9–11]. The judgment of the performance of the used algorithm does include its effectiveness and accuracy for a large number of vertices and the level of complexity regarding suboptimal solutions [12, 13]. Here, we introduce an approximate algorithm that leads to an upper bound of the radio mean square for a large number of vertices. Finally, we turn our attention to reformulate the radio square labeling as a linear programming model and then minimize the suggested linear function. We use of transforming the non-linear constraint to become a linear constraint by using of some large integers dependably on the coefficient range of the given problem under path calculating conditions. Some illustrated examples and comparison between the techniques will be given.

It should be noted that all the considered graphs in this study are finite, simple, connected, and undirected.

The organization of the study goes as follows: in Section 2, the radio mean square number of cycles and paths are given. Section 3 is devoted to present an approximate algorithm that finds the upper bound of the radio mean square number of a given graph and an illustrative example is included. Section 4 deals with a new mathematical model for finding the upper bound of the radio mean square number of the given graph. Section 5 provides the experimental results. Analysis and statistical tests between the mathematical model and the proposed approximate algorithm are provided. The last section is considered for conclusion.

2. Results

The following theorem is about the rmsn for the path P_n, and next, we will get the rmsn for cycle C_n.

Theorem 1. For the path P_n, $n \geq 1$, and the radio mean square number is

$$\text{rmsn}(P_n) = n + k;$$

$$\begin{align*}
1 \leq n \leq 15 \text{ and } k = 0, \\
16 \leq n \leq 22 \text{ and } k = 1, \\
23 \leq n \leq 32 \text{ and } k = 2, \\
33 \leq n \leq 44 \text{ and } k = 3, \\
45 \leq n \leq 58 \text{ and } k = 4, \\
59 \leq n \leq 73 \text{ and } k = 5, \\
74 \leq n \leq 92 \text{ and } k = 6, \\
k^2 + 5k + 9 \leq n \leq k^2 + 7k + 14, k \geq 7.
\end{align*}$$

Proof. Clearly, $\text{diam}(P_n) = n - 1$. Then, one can define $h : V(P_n) \rightarrow \mathbb{N}$ as follows:

Case a. For $1 \leq n \leq 15$, $k = 0$,

$$h(x_i) = 1, h(x_n) = k + 2,$$

$$h(x_{2i}) = n + k - 2i, 0 \leq i < \frac{n}{2} - 1,$$

$$h(x_{n-i}) = n + k - 2j, 0 \leq j < \frac{n}{2} - 1.$$

Subcase a.1: n is even:

$$h(x_1) = 1, h(x_n) = k + 2,$$

$$h(x_{2i}) = n + k - 2i, 0 \leq i < \frac{n - 1}{2},$$

$$h(x_{n-i}) = n + k - 2j, 0 \leq j < \frac{n - 1}{2} - 1.$$

One may label the vertices of P_n as follows:

Subcase a.1: n is odd:

$$h(x_1) = 1, h(x_n) = k + 2,$$

$$h(x_{2i}) = n + k - 2i, 0 \leq i < \frac{n - 1}{2},$$

$$h(x_{n-i}) = n + k - 2j, 0 \leq j < \frac{n - 1}{2} - 1.$$

Case b. For $n \geq 93$ and $k^2 + 5k + 9 \leq n \leq k^2 + 7k + 14, k \geq 7$, one may label the vertices of P_n as the following subcases:

Subcase b.1: n is even:

$$h(x_1) = 1, h(x_n) = k + 2,$$

$$h(x_{2i}) = n + k - 2i, 0 \leq i < \frac{n}{2} - 1,$$

$$h(x_{n-i}) = n + k - 1 - 2j, 0 \leq j < \frac{n}{2} - 1.$$

Subcase b.1: n is odd:

$$h(x_1) = 1, h(x_n) = k + 2,$$

$$h(x_{2i}) = n + k - 2i, 0 \leq i < \frac{n - 1}{2},$$

$$h(x_{n-i}) = n + k - 1 - 2j, 0 \leq j < \frac{n - 1}{2} - 1.$$

Therefore, for any pair $(x_i, x_j), i \neq j, 0 \leq i, j \leq n$, we have $d(x_i, x_j) + \left| h(x_i)^2 + h(x_j)^2 \right|/2 \geq 1 + n - 1 = 1 + \text{dim} \ (P_n)$,
Hence, h is a valid radio mean square labeling for P_n, and therefore, \(\text{rmsn}(P_n) \leq \text{rmsn}(h) = n + k. \) Since h is injective, \(\text{rmsn}(P_n) = n + k, n \geq 1 \) for all radio mean square labeling h, and hence, \(\text{rmsn}(P_n) = n + k, n \geq 1. \) Therefore, the labeling h defined above satisfies the radio mean square condition.

Example 1. The radio mean square numbers of P_9, P_{10}, P_{96}, and P_{115} are shown in Figure 1. It is clear that $k = 0$ for P_9 and P_{10}, but $k = 7$ for P_{96}, and P_{115}.

Theorem 2. The radio mean square numbers of the cycles C_n, $n \geq 3$, are given by

\[
\text{rmsn}(C_n) = \begin{cases}
3 \leq n \leq 7, & n + k; \\
8 \leq n \leq 15 & k = 0, \\
16 \leq n \leq 27 & k = 1, \\
28 \leq n \leq 43 & k = 2, \\
& \vdots \\
& k^2 + 5k + 9 \leq n \leq k^2 + 7k + 14, k \geq 3.
\end{cases}
\]

Proof. It is clear that the dimension of $C_n = x_1, x_2, \ldots, x_n$ is $[n/2]$ since its length is n. Then, one can define $h: V(C_n) \rightarrow \mathbb{N}$ as follows:

Case 3. aFor $3 \leq n \leq 7$, we may label the vertices of C_n by

\[h(x_i) = i; 1 \leq i \leq n. \]

Case 4. bFor $n \geq 8, 2k^2 + 2k + 4 \leq n \leq 2k^2 + 6k + 7, k \geq 0$. We may label the vertices of C_n by one of the following subcases:

Subcase b.1: n is even:

\[h(x_{n/2}) = k + 1, \]

\[h(x_{n/2 + 1}) = k + 3 + 2i, 0 \leq i < \frac{n}{2} - 1, \]

\[h(x_{n-j}) = k + 2 + 2j, 0 \leq j < \frac{n}{2}. \]

Subcase b.2: n is odd:

\[h(x_{n+1}/2) = k + 1, \]

\[h(x_{n+1}) = k + 2 + 2i, 0 \leq i < \frac{n + 1}{2} - 1, \]

\[h(x_{n-j}) = k + 3 + 2j, 0 \leq j < \frac{n + 1}{2} - 1. \]

Therefore, for any pair $(x_i, x_j), i \neq j, 1 \leq i, j \leq n$, we have $d(x_i, x_j) + \left[h(x_i)^2 + h(x_j)^2/2\right] \geq 1 + \left[\frac{n}{2}\right] = 1 + \dim(C_n)$.

So, for any pair $(x_i, x_j), i \neq j, 1 \leq i, j \leq n$, the following inequality holds $d(x_i, x_j) + \left[h(x_i)^2 + h(x_j)^2/2\right] \geq 1 + \left[\frac{n}{2}\right] = 1 + \dim(C_n)$.

Hence, h is a valid radio mean square labeling for C_n, and therefore,
Therefore, the labeling h defined above satisfies the radio mean square condition.

Example 2. The radio mean square numbers of cycles C_4, C_9, C_{16}, and C_{17} are shown in Figure 2. It is clear that $k = 1$ for C_{16} and C_{17}, but $k = 7$ for C_{95} and C_{112}.

3. A Novel Graph Radio Mean Square Algorithm

Here, we introduce an approximated algorithm. This algorithm finds an upper bound of the radio mean square for arbitrary graph G. The main idea is to labeling some vertices (initial vertices) by floor $(\sqrt{\text{diam }})$. On the other hand, the algorithm chooses a different vertex as an initial vertex in each iteration.

The time complexity of an algorithm is defined as the number of instructions of this algorithm multiplied by the running time of each instruction. The time complexity is considered as a good metric to evaluate the given algorithm. Thus, Algorithm 1 has nine steps, and both Step 1 and Step 2 have the same instruction. Step 3 has a nested loop that has $O(n^2)$ time complexity. On the other hand, Step 4, Step 5, and Step 6 have $O(n)$ time complexity. Step 7 has one instruction, while Step 8 and Step 9 have $O(n^2)$ and $O(n^2)$, respectively. Therefore, Algorithm 1 has the time complexity $O(n^2)$.

In the coming example, we show and explain how to compute the radio mean square labeling problem for P_5.

Example 3. Suppose that x_i is the label of the vertex v_i at $1 \leq i \leq 5$. Therefore, 1 explores an upper bound of the radio mean square labeling problem as follows:

It is known that $\text{diam}(P_5) = 4$. We select a vertex x_1 and $\text{col}(x_1) = 2$. Let $S = \{x_1\}$, and for all $v \in V(G) - S$, compute

\[
\text{temp}(x_2) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 1}, 1\right)}{4} \right) \right\} = 3,
\]

\[
\text{temp}(x_3) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 2}, 1\right)}{4} \right) \right\} = 3,
\]

\[
\text{temp}(x_4) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 3}, 1\right)}{4} \right) \right\} = 3,
\]

\[
\text{temp}(x_5) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 4}, 1\right)}{4} \right) \right\} = 3.
\]

(14)

Let $\min = \min_{v \in V(G) - S} \{\text{temp}(v)\} = 3$; we choose a vertex $x_2 \in V(G) - S$, such that $\text{temp}(x_2) = 3$. Give $\text{col}(x_2) = 3$ and $S = \{x_1, x_2\}$.

\[
\text{temp}(x_3) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 2}, 1\right)}{4} \right) \right\} = 4,
\]

\[
\text{temp}(x_4) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 3}, 1\right)}{4} \right) \right\} = 4,
\]

\[
\text{temp}(x_5) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 4}, 1\right)}{4} \right) \right\} = 4.
\]

(15)

Let $\min = \min_{v \in V(G) - S} \{\text{temp}(v)\} = 4$; we choose a vertex $x_3 \in V(G) - S$, where $\text{temp}(x_3) = 4$. Give $\text{col}(x_3) = 4$ and $S = \{x_1, x_2, x_3\}$.

\[
\text{temp}(x_4) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 3}, 1\right)}{4} \right) \right\} = 5,
\]

\[
\text{temp}(x_5) = \max_{x_i} \left\{ 2 + \text{ceil}\left(\frac{\text{max}\left(\sqrt{4 + 1 - 2}, 1\right)}{4} \right) \right\} = 5.
\]

(16)
In this section, we present the integer linear programming model (ILPM) for the radio mean square labeling problem. First, let us denote the function f_i as the absolute value notation used to get distinct values x_i. Let G be a connected graph of order n, and let $D = [d_{ij}]$ be the distance matrix of G. Let $S = \{x_1, x_2, \ldots, x_n\}$ be a connected graph of order n, and let $D = [d_{ij}]$ be the distance matrix of G. Now, we can propose the mathematical model for the radio mean square labeling as follows:

4. Formulation of the Radio Mean Square Labeling as a Mathematical Model

Let $\text{min } \{f_{ij}(v_i) \mid v_i \in G\}$ be the absolute value notation used to get distinct values x_i. For x_i, we choose a vertex $v_i \in G$, where $\text{min } \{f_{ij}(v_i) \mid v_i \in G\}$ is the label of the vertex v_i, $1 \leq i \leq n$. Suppose that x_i is the label of the vertex v_i, $1 \leq i \leq n$. Now, we can propose the mathematical model for the radio mean square labeling problem as follows:

$$
\text{min } \{f_{ij}(v_i) \mid v_i \in G\}
$$

Subject to:

$$
\text{min } \{f_{ij}(v_i) \mid v_i \in G\} = \text{ temp}(v_i) - \text{ temp}(v_j)
$$

$$
\text{subject to } 1 \leq i, j \leq n, \text{ and } i \neq j.
$$

4.1. Formulation 1. Minimize F subject to the 2^n constraints $[x_j + (1/2)] \geq \text{dist}(V_{ji})$, for $1 \leq j \leq n$, and $\leq i$. The following steps will transform nonlinear constraints to be linear, which is easy to deal with.

Example 1. The details of the ILPM to compute the radio mean square labeling for P_6, which is a large integer number which depends on the coefficients range of the problem. The absolute value notation is used to get distinct values x_i. For x_i, we choose a vertex $v_i \in G$, where $\text{min } \{f_{ij}(v_i) \mid v_i \in G\}$ is the label of the vertex v_i, $1 \leq i \leq n$. Now, we can reformulate the radio mean square problem as follows:

$$
\min \{f_{ij}(v_i) \mid v_i \in G\}
$$

Then, the mathematical model for the radio mean square labeling problem as the ILPM is prepared as follows:

$$
\min \{f_{ij}(v_i) \mid v_i \in G\}
$$

Subject to:

$$
\min \{f_{ij}(v_i) \mid v_i \in G\} = \text{ temp}(v_i) - \text{ temp}(v_j)
$$

$1 \leq i, j \leq n$, and $i \neq j$.

4.2. Formulation 2. Since $\text{min } \{f_{ij}(v_i) \mid v_i \in G\} = 5$, we choose a vertex $v_i \in G$, where $\text{min } \{f_{ij}(v_i) \mid v_i \in G\}$ is the label of the vertex v_i, $1 \leq i \leq n$. Now, we can reformulate the radio mean square problem as follows:

$$
\min \{f_{ij}(v_i) \mid v_i \in G\}
$$

Subject to:

$$
\min \{f_{ij}(v_i) \mid v_i \in G\} = \text{ temp}(v_i) - \text{ temp}(v_j)
$$

$1 \leq i, j \leq n$, and $i \neq j$.
Input: G be an n-vertex graph, simple connected graph, and the diameter of (diam)

Output: an upper bound of radio mean square number of G

Begin

Step 1: choose a vertex u and col(u) = floor(√diam)

Step 2: S = {u}

Step 3: for all v ∈ V(G) − S, compute

temp(v) = max{col(t) + ceil(√(D + 1 − d(u, v), 1)/diam)}

Step 4: let fin = min_{v ∈ V(G) − S} temp(v)

Step 5: choose a vertex v ∈ V(G) − S, such that temp(v) = min

Step 6: give col(v) = min

Step 7: S = S ∪ {v}

Step 8: repeat Step 3–Step 6 until all vertices are labelled

Step 9: repeat Step 1–Step 7 for every vertex x ∈ V(G)

End

Algorithm 1: Finding an upper bound of the radio mean square number of a graph G.

Table 1: Description of the computing environment.

<table>
<thead>
<tr>
<th>CPU</th>
<th>RAM size</th>
<th>MATLAB version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel (R) Core (TM) i5-2430 CPU at 2.40 GHz</td>
<td>4 GB RAM</td>
<td>R2019a (9.6.0.1072779)</td>
</tr>
</tbody>
</table>

Table 2: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of radio mean square number for the path graph.

<table>
<thead>
<tr>
<th>Path graph</th>
<th>N</th>
<th>Standard RMS</th>
<th>Proposed algorithm</th>
<th>Integer linear programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rmsn (P_{n})</td>
<td>CPU time</td>
<td>rmsn (P_{n})</td>
<td>CPU time</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.001565</td>
<td>0.001565</td>
<td>0.0135961</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0007495</td>
<td>0.0007495</td>
<td>0.0137607</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0009242</td>
<td>0.0009242</td>
<td>0.0142838</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0009259</td>
<td>0.0009259</td>
<td>0.0148360</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0011930</td>
<td>0.0011930</td>
<td>0.0149701</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.0028154</td>
<td>0.0028154</td>
<td>0.0151607</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0031659</td>
<td>0.0031659</td>
<td>0.0153437</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.0086583</td>
<td>0.0086583</td>
<td>0.0153530</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.0092995</td>
<td>0.0092995</td>
<td>0.0153602</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.0178153</td>
<td>0.0178153</td>
<td>0.0154630</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.0179739</td>
<td>0.0179739</td>
<td>0.0158122</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.0195242</td>
<td>0.0195242</td>
<td>0.0159264</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.0214671</td>
<td>0.0214671</td>
<td>0.0160664</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.0323685</td>
<td>0.0323685</td>
<td>0.0165312</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.0397062</td>
<td>0.0397062</td>
<td>0.0165756</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.0488390</td>
<td>0.0488390</td>
<td>0.0166756</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.0521773</td>
<td>0.0521773</td>
<td>0.0168593</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.0635412</td>
<td>0.0635412</td>
<td>0.0168673</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.0773853</td>
<td>0.0773853</td>
<td>0.0173017</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>0.0926470</td>
<td>0.0926470</td>
<td>0.0173982</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>0.1082337</td>
<td>0.1082337</td>
<td>0.0174649</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>0.1321028</td>
<td>0.1321028</td>
<td>0.0176519</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>0.1680530</td>
<td>0.1680530</td>
<td>0.0178209</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>0.1819503</td>
<td>0.1819503</td>
<td>0.0178319</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>0.2174177</td>
<td>0.2174177</td>
<td>0.0178408</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>0.2432315</td>
<td>0.2432315</td>
<td>0.0178502</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>0.2838989</td>
<td>0.2838989</td>
<td>0.0179323</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0181244</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>0.3907487</td>
<td>0.3907487</td>
<td>0.0182150</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0.3306090</td>
<td>0.3306090</td>
<td>0.0182150</td>
</tr>
</tbody>
</table>
Since diam \(n - 1\) and diam = 2 for \(P_3, M = 1\), the distance matrix of \(P_3\) is
\[
D = \begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{bmatrix}.
\]
(23)

Therefore, the above mathematical model can be written as follows:
\[
\min f = x_1 + x_2 + x_3.
\]
(24)

Subject to
\[
\begin{align*}
|x_1 - x_2| & \geq \sqrt{\text{diam} + 1 - d(v_1, v_3)}, \\
|x_1 - x_3| & \geq \sqrt{\text{diam} + 1 - d(v_2, v_3)}, \\
|x_2 - x_3| & \geq \sqrt{\text{diam} + 1 - d(v_3, v_3)}, \\
\end{align*}
\]
(22)

\[x_1, x_2, x_3 \geq 0.\]

The solution of the above model equals to 3.

5. Computational Study

In this article, we propose the analysis of the computational results that show the superiority of Algorithm 1 on the ILPM according to the radio mean square number. On the other hand, the proposed ILPM outperforms Algorithm 1 according to CPU time.

Paths and cycles are used to evaluate the proposed models. The computation environment is given in Table 1. MATLAB solver is used to solve the ILPM. In Tables 2 and 3, the following symbols standard RMS, rmsn, and CPU times are used to indicate the exact radio mean square number, the calculated mean square number, and the running time for path and cycles, respectively. The convergence between the calculated and exact upper bounds of the radio mean square number of paths is given in Table 2. Figures 3 and 4 show that the superiority of the proposed Algorithm 1 on the ILPM according to the radio mean square number. For example, the standard radio mean square number for \(P_{50}\) is 54, but it is 56 and 344 by Algorithm 1 and the ILPM, respectively. Figures 5 and show the superiority of the
Figure 3: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of radio mean square number for the path graph.

Figure 4: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of radio mean square number for the cycle graph.

Figure 5: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of radio mean square number for the path graph according to CPU time.
proposed Algorithm 1 on the ILPM according to CPU time. Table 3 provides that the gap between the ILPM and the proposed Algorithm 1 is large according to the radio mean square number. It is clear that 1 is better than the ILPM according to the radio mean square number. According to the CPU time, Tables 2 and 3 explain the superiority of the proposed ILPM on Algorithm 1.

6. Conclusions

In this work, we determined the radio mean square numbers \(\text{rmsn}(P_n) \) and \(\text{rmsn}(C_n) \) for paths and cycles. Then, the proposed approximate algorithm is introduced to obtain \(\text{rmsn}(G) \) for graph \(G \). In addition, a new mathematical model is proposed in order to find the upper bound of \(\text{rmsn}(G) \) for graph \(G \), and a comparison between the proposed approximate algorithm and the proposed mathematical model is introduced. Finally, the computational results and their analysis have proved that the proposed approximate algorithm overcomes the ILPM according to the radio mean square number.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project (R.G.P.1/208/41).

References