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Let G � (VG, EG) be a simple and connected graph. A set M⊆EG is called a matching if no two edges of M have a common
endpoint. A matchingM is maximal if it cannot be extended to a larger matching in G.  e smallest size of a maximal matching is
called the saturation number of G. In this paper, we con�rm a conjecture of Alikhani and Soltani about the saturation number of
corona product of graphs. We also present the exact value of s(G ∘H) where H is a randomly matchable graph.

1. Introduction

All graphs considered in this paper are connected and
simple; that is, they do not have loops and multiple edges
[1–3]. For notation and graph theory terminology, we
ingeneral follow [11, 12, 15].

Let G � (VG, EG) be a graph. A collection of edges
MG⊆EG is called a matching of G if no two edges of MG
are adjacent.  e vertices incident to the edges of a
matching MG are said to be saturated by MG (or
MG-saturated); the others are said to be unsaturated (or
MG-unsaturated). A matching whose edges meet all
vertices of G is called a perfect matching of G. If there
does not exist a matching MG′in G such that |MG|< |MG′|,
then MG is called a maximum matching of G. A matching
MG ismaximal if it cannot be extended to a larger matching
in G.  e cardinality of any maximum matching, ](G), and
the cardinality of any smallest maximal matching in G, s(G),
are called thematching number and the saturation number
of G, respectively.

If any maximal matching in G is also perfect (i.e., if
s(G) � |VG|/2), then G is called randomly matchable.

Smallest maximal matchings have a wide range of ap-
plications in real-world problems. For example, application
of smallest maximal matchings related to a telephone
switching network was presented in [4]. Finding a smallest

maximal matching is NP-hard even for especial family of
graphs (such as planar graphs), see [4–6]. Also, one can �nd
some bounds for this invariant in [7–10]. See [10, 12,13] for
more details on this topic. See [11–13] Recently, Alikhani
and Soltani presented the following conjecture about the
saturation number of corona product of graphs.

Conjecture. [14] Let G and H be two graphs and
|VG| � n.  en,

ns(H)≤ s(G ∘H)≤ ns(H) + ](G) + l, (1)

where ](G) is the size of a maximum matching MG of the
graph G and l is the number ofM-unsaturated vertices of G.

In this paper, we con�rm this conjecture. We also
present somemore e�cient results on the saturation number
of corona product of graphs.

For two graphs, G � (VG, EG) and H � (VH, EH).  e
corona product of G and H, denoted by G ∘H, is obtained
from one copy of G and |VG| copies of H by joining each
vertex of the ith copy ofH, i ∈ 1, . . . , |VG|{ }, to the ith vertex
of G, cf. [15]. In the following, for g ∈ VG, Hg shows the
copy of H in G ∘H corresponding to g.

2. Main Results

 e �rst result of this section is the proof of the conjecture
mentioned in the previous section.
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Theorem 1. Let G and H be two graphs and |VG| � n. )en,

ns(H)≤ s(G ∘H)≤ ns(H) + ](G) + l, (2)

where ](G) is the size of a maximum matching MG of the
graph G and l is the number of M-unsaturated vertices of G.

Proof. First, we prove the upper bound. Let MG be a
maximum matching of G, and MH be a maximal matching
in H that |MH| � s(H). Also, suppose that vertices
g1, . . . , gl are M-unsaturated vertices of G. )ere are two
cases for H.

Case 1. H is a randomly matchable. Suppose that MG
′ is

a maximal matching in G that |MG| � s(G). Set

M � MG
′ ∪ ∪ n

i�1MHi
 , (3)

where MHi
is the ith copy of MH, i ∈ 1, . . . , n{ }, in Hi.

Clearly, M is a maximal matching in G ∘H. )us,

s(G ∘H)≤ |M| � MG
′ ∪ ∪ n

i�1MHi
 





� s(G) + ns(H)< ns(H) + ](G) + l.

(4)

Case 2. H is not a randomly matchable. )us, MH is
not a perfect matching. Suppose that hj is a MH-un-
saturated of H. Set

M � MG ∪ ∪
n
i�1MHi

 ∪ ∪ l
i�1 h

i
jgi  , (5)

where hi
j is the copy of hj in Hi corresponding to gi.

Easily one can check that M is a maximal matching in
G ∘H. )erefore,

s(G ∘H)≤ |M| � MG ∪ ∪
n
i�1MHi

 ∪ ∪ l
i�1 hig

i
j  





� ns(H) + ](G) + l.

(6)

Now, we prove the lower bound. Let M be a maximal
matching of G ∘H. We consider two below cases for M.
Case 1. M does not have any edges e so that e has one
end in G and one end in a copy of H. Hence,
|M∩EHi

|≥ s(H), and consequently, ns(H)≤ s(G ∘H).
Case 2. Suppose g1h

1
j1

, g2h
2
j2

, . . . , gkhk
jk

  be all edges of
M such that gi ∈ VG and hi

jt
∈ VHi

. )en, for each
i ∉ 1, . . . , k{ }, we have |M∩EHi

| � s(H). Also, for each
i ∈ 1, . . . , k{ }, we have s(H) − 1≤ |M∩EHi

|≤ s(H). On
the other hand,

g1h1, g2h2, . . . , gkhk ∪ ∪ n
i�1 M∩EHi

  ⊆M. (7)

)erefore, ns(H)≤ s(G ∘H).
)e next theorem gives the exact value of s(G ∘H) for

some family of graphs. □

Theorem 2. Let G be a graph of order n. If H is a randomly
matchable graph, then

s(G ∘H) � ns(H). (8)

Proof. By )eorem 1, we have s(G ∘H)≥ ns(H). )en, it is
sufficient to prove that s(G ∘H)≤ ns(H). Suppose hi

j is the
copy of hj in Hi corresponding to gi. Let MH is a maximal
matching of H, and MHi

is the ith copy of MH, i ∈ 1, . . . , n{ },
in Hi. Assume that VG � g1, . . . , gn  and hlht ∈MH. Set

M � g1h
1
t , g2h

2
t , . . . , gnh

n
t ∪ ∪ n

i�1 MHi
− h

i
lh

i
t   . (9)

(For more illustration, see Figure 1 which is C3°C4. Suppose
C4 :� h1, h2, h3, h4, h1. Consider the maximal matching
MC4

� h1h2, h3h4 . Since C4 is a randomlymatchable graph,
then M � g1h

1
1, g2h

2
1, g3h

3
1 ∪ h1

3h
1
4, h2

3h
2
4, h3

3h
3
4, h4

3h
4
4 ).

According to this fact that H is a randomly matchable graph,
then M is a maximal matching in G ∘H. )us,

s(G ∘H)≤ |M|

� g1h
1
t , g2h

2
t , . . . , gnh

n
t ∪ ∪ n

i�1 MHi
− h

i
lh

i
t   



.

(10)

On the other hand, | g1h
1
t , g2h

2
t , . . . , gnhn

t ∪ (∪ n
i�1(MHi

−

hi
lh

i
t ))| � n(s(H) − 1) + n � ns(H). )erefore, s(G ∘H)≤

ns(H). □
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Figure 1: C3°C4.
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