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Let A be a unital C∗-algebra and X be a unitary Banach A-bimodule. In this paper, we characterize continuous generalized
derivations and generalized Jordan derivations as formD: A⟶ X through the action on zero product. In other words, we show
that under some conditions on elements of A, a linear map on A can be a generalized Jordan derivation.

1. Introduction and Preliminaries

Let A be a unital Banach algebra with the unit eA and X be a
unitary (Banach) A-bimodule. A linear map D: A⟶ X is

said to be a derivation (resp., generalized derivation) if for
each a, b ∈ A,

D(ab) � D(a) · b + a ·D(b), resp., D(ab) � D(a) · b + a ·D(b) − a ·D eA( ) · b[ ], (1)

where “ ∘ ” denotes the Jordan product a ∘ b � ab + ba on A,
and “·” denotes the Jordan product on X de�ned through

a · x � x · a � a · x + x · a, a ∈ A, x ∈ X. (2)

�e mentioned map is called a Jordan derivation (resp.,
generalized Jordan derivation) if

D(a ∘ b) � D(a) · b + a ·D(b), resp., D(a ∘ b) � D(a) · b + a ·D(b) − a ·D eA( ) · b − b ·D eA( ) · a[ ], (3)

for all a, b ∈ A. By the usual polarization, the Jordan deri-
vation (resp., generalized Jordan derivation) identity is
equivalent to assuming that

D a2( ) � D(a) · a, resp., D a2( ) � D(a) · a − a D eA( )a[ ], a ∈ A. (4)

Hindawi
Journal of Mathematics
Volume 2022, Article ID 3386149, 6 pages
https://doi.org/10.1155/2022/3386149

mailto:abasalt.bodaghi@gmail.com
https://orcid.org/0000-0001-8362-8490
https://orcid.org/0000-0003-0358-4518
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3386149


Clearly, each (generalized) derivation is a (generalized)
Jordan derivation, but the converse is not true in general.
)ere are plenty of known examples of Jordan derivations
that are not a derivation and can be found in works of
literature. For the correctness of the converse, Johnson in [1]
()eorem 6.3) proved that every continuous Jordan deri-
vation from C∗-algebra A in any A-bimodule X is a
derivation.

Recall from [2] that a C∗-algebra A is called a W∗-al-
gebra if it is a dual space as a Banach space. Note that every
W∗-algebra is unital.

)e set of idempotents of given algebra A is denoted by
I(A). Let algI(A) be the subalgebra of A generated by
idempotents. We say that a Banach algebra A is generated by
idempotents, if A � algI(A), where algI(A) denotes the
closure of algI(A). Examples of Banach algebras with the
last property include all W∗-algebras, the group algebra
L1(G) for a compact group G, and also topologically simple
Banach algebras containing a nontrivial idempotent [3]. In
other words, such Banach algebras are generated by
idempotents. Another classes of Banach algebras with the
property that A � algI(A) are available in [3].

Let A be a Banach algebra and X be an arbitrary Banach
space. We say a continuous bilinear mapping
ϕ: A × A⟶ X preserves zero products if

ab � 0⟹ ϕ(a, b) � 0, a, b ∈ A. (5)

)e study of zero products preserving bilinear maps has
been initiated by Alaminos et al. in [4] for a very special
setting, and then, it was studied in [3] for the general case.
Motivated by (5), the following concept was presented in [3].

Definition 1. A Banach algebra A has the property (B) if for
every continuous bilinear mapping ϕ: A × A⟶ X, where
X is an arbitrary Banach space, and condition (5) implies
that ϕ(ab, c) � ϕ(a, bc), for all a, b, c ∈ A.

It follows from [3] ()eorem 2.11) that C∗-algebras,
group algebras, and Banach algebras that are generated by
idempotents have the property (B), see also [5] (Lemma 2.1)
for group algebras in a different view.

It should be pointed out that the property (B) is a
powerful tool for characterizing homomorphisms, deriva-
tions, and Jordan derivations on that class of algebras through
the action on zero products. We refer the reader to [3, 5–12]
for a full account of the topic and references therein.

)e next result which is closely related to the property
(B) plays a key role in the sequel.

Theorem 1 ([6],)eorem 2.2). Let A be aC∗-algebra, X be a
Banach space, and ϕ: A × A⟶ X be a continuous bilinear
mapping such that

ab � ba � 0⇒ϕ(a, b) � 0, a, b ∈ A. (6)

)en,

ϕ(xa, yb) + ϕ(bx, ay) � ϕ(x, ayb) + ϕ(bxa, y), (7)

for all a, b, x, y ∈ A.

In this paper, we consider the subsequent conditions on
a linear map D from a Banach algebra A into a Banach
A-bimodule X for each a, b, c ∈ A.

(1) [(G1)] ab � 0⇒D(a) · b + a · D(b) � 0
(2) [(G2)] ab � bc � 0⇒a · D(b) · c � 0
(3) [(J1)] ab � ba � 0⇒D(a) · b + a · D(b) � 0
(4) [(J2)] ab � ba � 0⇒D(a) · b + a · D(b) � 0
(5) [(J3)] ab � ba � 0⇒a · D(b) + b · D(a) � 0.

Our purpose is to investigate whether the conditions
above can characterize generalized derivations and gener-
alized Jordan derivations. Indeed, which of the above are
sufficient conditions to be the generalized derivation of a
continuous linear map.

2. Generalized Derivations on C∗-Algebras

In this section, we characterize generalized derivations from
unital C∗-algebra A into unitary Banach A-bimodule X that
satisfy condition (G1) or (G2), through their action on zero
products.

Theorem 2. Let A be a unital C∗-algebra. If D: A⟶ X is a
continuous linear map satisfying (G1), then D is a gener-
alized derivation.

Proof. Define a continuous bilinear mapping
ϕ: A × A⟶ X by ϕ(a, b) � D(a) · b + a · D(b). )en,
ϕ(a, b) � 0 whenever ab � 0, and so the property (B) gives

D(a) · bc + a · D(bc) � ϕ(a, bc) � ϕ(ab, c)

� D(ab) · c + ab · D(c), a, b, c ∈ A.

(8)

Taking c � eA in (8), we get

D(a) · b + a · D(b) � D(ab) + ab · D eA( , (9)

for all a, b ∈ A. Interchanging a into eA in (9), we get D(eA) ·

b � b · D(eA) for all b ∈ A. )us, it follows from (9) that

D(ab) � D(a) · b + a · D(b) − a · D eA(  · b, (10)

for all a, b ∈ A. )erefore, D is a generalized derivation.
Note that if D is a generalized derivation, then the linear

map δ: A⟶ X defined by δ(a) � D(a) − D(eA) · a is a
derivation, and thus, we get the following result. □

Corollary 1 ([4], Corollary 4.2). Let A be a unital C∗-al-
gebra. If D: A⟶ X is a continuous linear map satisfying
(G1), then a · D(eA) � D(eA) · a for all a ∈ A, and there is a
derivation δ: A⟶ X such that D(a) � D(eA) · a + δ(a).

Assume that D is a continuous linear map from unital
C∗-algebra A into unitary A-bimodule X such that D(b)a +

b D(a) � 0 for all a, b ∈ A with ab � 0. )en, D is a gen-
eralized Jordan derivation. Indeed, by a similar proof of the
preceding theorem, we can obtain
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D(ab) � D(b) · a + b · D(a) − D eA(  · ab, a, b ∈ A. (11)
Taking a � b, we find D(a2) � D(a) · a − a D(eA)a for

all a ∈ A. Moreover, if D(eA) � 0, then D is a Jordan der-
ivation, and hence, it is a derivation by [1] ()eorem 6.3).

)e following fundamental example has been demon-
strated by Johnson in [1].

Example 1. Let

A �
a11 a12

0 a22
 : a11, a12, a22 ∈ C . (12)

We make X � C an A-bimodule by defining
aλ � a22λ,

λa � λa11,

λ ∈ C, a ∈ A.

(13)

Consider the linear map D: A⟶ X defined via
D(a) � a12. )en, D(ab) � D(b) · a + b · D(a) for all
a, b ∈ A, and D(eA) � 0. In particular, D is a (generalized)
Jordan derivation, but it is not a (generalized) derivation.
)erefore, Johnson’s result is not valid for unital Banach
algebras instead of C∗-algebras in general.

In the next result, we characterize generalized deriva-
tions by using condition (G2).

Theorem 3. Suppose that A is a unital C∗-algebra and
D: A⟶ X is a continuous linear map such that condition
(G2) holds. .en, D is a generalized derivation.

Proof. Pick a0, b0 ∈ A such that a0b0 � 0 and define a
continuous bilinear mapping ϕ: A × A⟶ X by
ϕ(a, b) � aD(ba0)b0, for all a, b ∈ A. )en, ϕ(a, b) � 0
whenever ab � 0. Using the property (B) with c � eA, we
obtain

abD a0( b0 � ϕ ab, eA(  � ϕ(a, b) � a · D ba0(  · b0,

a, b ∈ A.
(14)

We have derived this identity under the assumption that
a0, b0 ∈ A such that a0b0 � 0. Let now a1, b1 ∈ A be fixed.We
may apply the property (B) for ψ: A × A⟶ X given
through

ψ(a, b) � a1b1 · D(a) · b − a1 · D b1a(  · b, (15)

for all a, b ∈ A, and hence, we conclude that

a1b1 · D(ab) − a1 · D b1ab(  · c � a1b1 · D(a)bc − a1D b1a(  · bc.

(16)

Taking a1 � c � a � eA in the above equality, we reach

D b1b(  � D b1(  · b + b1 · D(b) − b1 · D eA(  · b, (17)

for all b1, b ∈ A. )is completes the proof. □

3. Generalized Jordan Derivations on C∗-
Algebras

In this section, we prove that each linear mapping D from
unital C∗-algebra A into unitary Banach A-bimodule X that
satisfies one of conditions (J1), (J2), and (J3) is a gen-
eralized Jordan derivation.

Our first main theorem is indicated as follows.

Theorem 4. Let A be a W∗-algebra and D: A⟶ X be a
continuous linear map satisfying (J1). .en, D is a gener-
alized Jordan derivation.

Proof. Define a bilinear mapping ϕ: A × A⟶ X by

ϕ(a, b) � D(a) · b + a · D(b), a, b ∈ A. (18)

)en, ab � ba � 0 implies that ϕ(a, b) � 0. Applying
)eorem 1 by putting x � y � eA, we arrive

ϕ(a, b) + ϕ(b, a) � ϕ eA, ab(  + ϕ ba, eA( , (19)

for all a, b ∈ A. )is means that

a · D(b) + D(a) · b � D(a ∘ b) + D eA(  · ab + ba · D eA( .

(20)

Replacing b by a in (20) gives

2D a
2

  � 2(D(a) · a) − D eA(  · a
2

− a
2

· D eA( , (21)

for all a ∈ A. Here, we claim that a · D(eA) � D(eA) · a for
all a ∈ A. Let p be an idempotent in A. Substituting a by p in
(21), we have

2D(p) � 2p · D(p) + 2D(p) · p

− D eA(  · p − p · D eA( .
(22)

We multiply (22) by p on the left, and we obtain

2p · D(p) � 2p · D(p) + 2p · D(p) · p

− p · D eA(  · p − p · D eA( ,
(23)

and so

2p · D(p) · p − p · D eA(  · p − p · D eA(  � 0. (24)

Similarly, by multiplying both sides of (22) by p, we
arrive at

2p · D(p) · p − D eA(  · p − p · D eA(  · p � 0. (25)

From (24) and (25), it follows that p · D(eA) � D(eA) · p

for all idempotent p ∈ A. By Lemma 1.7.5 and Proposition
1.3.1 of [2], every self-adjoint element x ∈ A is the limit of a
sequence of linear combinations of projections in A.
)erefore, x · D(eA) � D(eA) · x for each self-adjoint ele-
ment x in A. Now, each arbitrary element a ∈ A can be
written as a � x + iy where x, y are self-adjoint elements of
A. Hence,
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a · D eA(  � (x + iy) · D eA(  � D eA(  · (x + iy)

� D eA(  · a,
(26)

for all a ∈ A. )us, equality (21) implies that

D a
2

  � D(a) · a − a · D eA(  · a, (27)

for all a ∈ A. Consequently, D is a generalized Jordan
derivation.

It is well-known that there are two products on A∗∗, the
second dual space of a Banach algebra A, called the first and
second Arens products which make A∗∗ into a Banach al-
gebra ([13], Definition 2.6.16). If these products coincide on
A∗∗, then A is said to be Arens regular. It is shown in
Chapter 2 of [13] that every C∗-algebra A is Arens regular.
Moreover, the second dual of each C∗-algebra is a
W∗-algebra.

According to [14], for each Banach A-bimodule X, X∗∗

turns into a Banach A∗∗-bimodule where A∗∗ equipped with
the first Arens product. )e module actions are defined by

Φ · u � w
∗

− lim
i
lim

j
ai · xj,

u ·Φ � w
∗

− lim
j
lim

i
xj · ai,

Φ ∈ A
∗∗

, u ∈ X
∗∗

,

(28)

where ai i∈I and xi j∈I are nested in A and X that con-
verge, in w∗-topologies, to Φ and u, respectively. One
may refer to the monograph of Dales [13] for a full
account of Arens product and w∗-continuity of the above
structures.

)ere exists another related concept of generalized
derivation, which appeared in [15] for the first time. Let A be
a Banach algebra and X be an A-bimodule. A linear operator
D: A⟶ X is said to be a generalized derivation if there
exists ξ ∈ X∗∗ such that

D(ab) � D(a) · b + a · D(b) − a · ξ · b, a, b ∈ A. (29)

It should be noted that if A is unital and D is a gen-
eralized derivation, then by [3] (Proposition 4.2) equality
(29) converts to

D(ab) � D(a) · b + a · D(b) − a · D eA(  · b, (30)

for all a, b ∈ A, and hence, D is a generalized derivation in
the usual sense. Motivated by (29), we introduce the concept
of generalized Jordan derivation as follows. A linear operator
D: A⟶ X is said to be a generalized Jordan derivation if
there exists ξ ∈ X∗∗ such that

D(a ∘ b) � D(a) · b + a · D(b) − a · ξ · b − b · ξ · a, (31)

for all a, b ∈ A. Similarly, if A is unital and D satisfies in (31)
for some ξ ∈ X∗∗, then

D(ab) � D(a) · b + a · D(b) − a · D eA( 

· b − b · D eA(  · a, a, b ∈ A.
(32)

In what follows, we prove )eorem 4 to the C∗-algebra
case. First, note that the linear span of projections is dense in

a unital C∗-algebra of real rank zero [16]; hence, the con-
clusion of )eorem 4 is also valid for such C∗-algebras.

Applying the techniques in the proof of )eorem 4.1
from [6], we have the upcoming result. □

Theorem 5. Let A be a unital C∗-algebra and D: A⟶ X

be a continuous linear map satisfying (J1). .en, D is a
generalized Jordan derivation.

Proof. It follows from )eorem 1 that the bilinear map
ϕ: A × A⟶ X defined through

ϕ(a, b) � D(a) · b + a · D(b) (33)

fulfills

xa · D(yb) + D(xa) · yb + bx · D(ay)

+ D(bx) · ay − x · D(ayb) − D(x)

· ayb − bax · D(y) − D(bxa) · y � 0,

(34)

for all a, b, x, y ∈ A. Furthermore, the Arens regularity of A,
the w∗-w∗-continuity of D∗∗, and the separate weak con-
tinuity of the module operations on X∗∗ necessitate that

xa · D
∗∗

(yb) + D
∗∗

(xa) · yb + bx · D
∗∗

(ay)

+ D
∗∗

(bx) · ay − x · D
∗∗

(ayb) − D
∗∗

(x)

· ayb − bax · D
∗∗

(y) − D
∗∗

(bxa) · y � 0,

(35)

for all a, b, x, y ∈ A∗∗. Take ξ � D∗∗(eA∗∗) ∈ X∗∗. )en, it
follows from equality (35) by putting x � y � eA∗∗ that

a · D
∗∗

(b) + D
∗∗

(a) · b � D
∗∗

(a ∘ b) + ξ · ab + ba · ξ, (36)

for all a, b ∈ A∗∗. In particular, we have

D(a ∘ b) � a · D(b) + D(a) · b − ξ · ab − ba · ξ, a, b ∈ A.

(37)

Similar to the proof of )eorem 4, we have a · ξ � ξ · a

for all a ∈ A∗∗. Hence, by (37),

D(a ∘ b) � a · D(b) + D(a) · b − a · ξ · b − b · ξ, a, b ∈ A.

(38)

It remains to show that ξ · a ∈ X for all a ∈ A. In other
words, it suffices to prove it for each positive element a ∈ A.
Suppose that a ∈ A be a positive element and b ∈ A with
a � b2. According to (38),

ξ · a � ξ · b
2

� D(b) · b − D(a) ∈ X. (39)

Consequently, D is a generalized Jordan derivation. □

Corollary 2. LetA be a unitalC∗-algebra. IfD: A⟶ X is a
continuous linear map satisfying (J1), then D is a derivation
if and only if D(eA) � 0.

Proof. It is obvious that if D is a derivation, then D(eA) � 0.
On the other hand, it follows from )eorem 5 that D is a
Jordan derivation when D(eA) � 0, and therefore, D is a
derivation by Johnson’s result.
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Here, we mention that each condition (G1) and the
implication

a ∘ b � 0⇒D(a)b + aD(b) � 0, a, b ∈ A (D1), (40)

imply (J1), and hence, )eorems 4, 5 and Corollary 2 still
work with condition (J1) replaced by (G1) or (D1). □

Theorem 6. Let A be a W∗-algebra and D: A⟶ X be a
continuous linear map satisfying (J2). .en, D is a gener-
alized Jordan derivation.

Proof. Since p(eA − p) � (eA − p)p � 0 for all idempotent
p ∈ A, condition (J2) implies that

2D(p) − 2p · D(p) − 2D(p) · p + p · D eA(  + D eA(  · p � 0.

(41)

Multiplying both sides of (41) by p on the left, we obtain

2p · D(p) − 2p · D(p) − 2p · D(p) · p

+ p · D eA(  · p + p · D eA(  · p � 0,
(42)

and so

2p · D(p) · p − p · D eA(  · p − p · D eA(  � 0. (43)

Similarly, by multiplying (41) on the right by p, we arrive
at

2p · D(p) · p − D eA(  · p − p · D eA(  · p � 0. (44)

From (43) and (44), we get p · D(eA) � D(eA) · p for all
idempotent p ∈ A. Now, similar to the proof of )eorem 4,
we conclude that

a · D eA(  � D eA(  · a, a ∈ A. (45)

Applying)eorem 1 to the bilinear map ϕ: A × A⟶ X

defined by

ϕ(a, b) � D(a) · b + a · D(b), a, b ∈ A, (46)

we find

xa · D(yb) + D(xa) · yb + bx · D(ay) + D(bx) · ay

� x · D(ayb) + D(x) · ayb + bax · D(y) + D(bxa) · y,

(47)

for all a, b, x, y ∈ A. Switching x, y by eA and using (45), we
reach

D(a) · b + a · D(b) � D(ab) + ab · D eA( 

+ D(ba) + ba · D eA( .
(48)

Replacing b by a in (48), it concludes that

D a
2

  � D(a) · a − a · D eA(  · a, (49)

for all a ∈ A. )us, D is a generalized Jordan derivation.
Similar to the proof of )eorem 5, we can obtain the

following corollary. □

Corollary 3. Let A be a unital C∗-algebra and D: A⟶ X

be a continuous linear map satisfying (J2). .en, D is a
generalized Jordan derivation.

It should be pointed out that each of the conditions

ab � 0⇒D(a) · b + a · D(b) � 0, a, b ∈ A (D2),

a ∘ b � 0⇒D(a) · b + a · D(b) � 0, a, b ∈ A (D3),
(50)

implies (J2), and therefore, )eorem 6 and Corollary 3 are
true if the condition (J2) replaced by either (D2) or (D3).

Theorem 7. Let A be a W∗-algebra and D: A⟶ X be a
continuous linear map such that the condition (J3) holds.
.en, D(a) � a · D(eA) for all a ∈ A. In particular, D is a
generalized derivation.

Proof. It is obvious that for every idempotent p ∈ A,
p(eA − p) � (eA − p)p � 0. Hence,

p · D eA − p(  + eA − p(  · D(p) � 0. (51)

A simple calculation shows that D(p) � p · D(p). Let
Asa denote the set of self-adjoint elements of A and x ∈ Asa.
)en, x � 

n
k�1 λkpk, where λk  are real numbers and pk 

is an orthogonal family of projections in A. Since pipj �

pjpi � 0 for i≠ j, condition (J3) implies that pi · D(pj) +

pj · D(pi) � 0 for all i, j with i≠ j. )us, for each x ∈ Asa,

D x
2

  � D 
n

k�1
λ2kp

2
k

⎛⎝ ⎞⎠ � 
n

k�1
λ2kD p

2
k 

� 
n

k�1
λkpk

⎛⎝ ⎞⎠ · 
n

k�1
λkD pk( ⎛⎝ ⎞⎠ � x · D(x).

(52)

It follows from the linearity of D that D(xy + yx) �

x · D(y) + y · D(x) for each x, y ∈ Asa. Now, each arbitrary
element a ∈ A can be written as a � x + iy for x, y ∈ Asa.
)erefore,

D a
2

  � D x
2

− y
2

+ i(xy + yx) 

� D x
2

  − D y
2

  + iD(xy + yx)

� x · D(x) − y · D(y) + i(x · D(y) + y · D(x))

� a · D(a).

(53)

)us, D(a2) � a · D(a) for all a ∈ A. Replacing a by
a + eA, we obtain D(a) � a D(eA) for all a ∈ A.

)e next result is a direct consequence of)eorem 7.We
include it without proof. □

Corollary 4. LetA be a unitalC∗-algebra. IfD: A⟶ X is a
continuous linear map satisfying (J3), then D(a) � a · D(eA)

for all a ∈ A. Moreover, if D(eA) � 0, then D ≡ 0.

One should remember that )eorem 1 has an important
role in characterizing generalized Jordan derivations on
C∗-algebras. )e following result is another analogous
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criterion for Banach algebra with the property that
A � algI(A).

Theorem 8 ([7], Corollary 3.6). Let A be a unital Banach
algebra, X be a Banach space, and ϕ: A × A⟶ X be a
continuous bilinear mapping such that

ab � ba � 0⇒ϕ(a, b) � 0, a, b ∈ A. (54)

)en,

ϕ(a, x) + ϕ(x, a) � ϕ ax, eA(  + ϕ eA, xa( , (55)

for all a ∈ A and x ∈ I(A). In particular, if A is generated
by idempotents, then

ϕ(a, b) + ϕ(b, a) � ϕ ab, eA(  + ϕ eA, ba( , a, b ∈ A. (56)

Since all Banach algebras which are generated by
idempotents have the property (B), )eorems 2 and 3 re-
main valid for such algebras. On the other hand, by using the
preceding theorem, some results of the current paper can be
proved for unital (Arens regular) Banach algebras with the
property that A � algI(A).
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