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We solve an optimal control problem governed by an evolution equation using bilinear regular feedback. Using optimization
techniques, we show how to approximate the �ow of a reaction-di�usion bilinear system by a desired target. For application, we
consider the regional �ow problem constrained by a bilinear distributed system. �e paper ends by an example illustrating the
numerical approach of the proposed method.

1. Introduction

Bilinear systems form an important class of dynamic systems
for several reasons. Many industrial or natural processes
have a bilinear structure. For example, we can cite the
transfer of heat by conduction convection, the neutron
displacement in a nuclear reactor, and the dynamics of sense
organs [1]. Research has shown that bilinear systems are
su�cient to approach any nonlinear input-output behavior
(see [1, 2]).�e control has a double action in the system that
allows the adaptation of the model at di�erent levels of input
signals. An example is provided by the functioning of sense
organ (see [1]).

Optimal control methods continue to provide solutions
to many real problems. We cite solutions of smoking models
by Mahdy et al. [3] and COVID-19 prediction by Ahmed
et al. [4]. Optimal control problems constrained by a dis-
tributed bilinear system are initiated by Bradley et al. and
Lenhart [5, 6]. In [7], Joshi studies the case of regular velocity
terms. Sonawane et al. [8] consider the optimal control for a
vibrating string with axial variable. Rao et al. studied plant
disease in [9].

Mall et al. propose a uniformmethod for optimal control
problems with control and state constraints (see [10]).
Chertovskih et al. in [11] give an indirect method for regular
state-constrained optimal control problems in �ow £elds.

Turgut et al. in [12] study an island-based crow search al-
gorithm for solving optimal control problems. Al-Hawasy
et al. in [13] consider the optimal control problems for triple
elliptic partial di�erential equations. Bonnet and Frank-
owska in [14] characterize the necessary optimality condi-
tions for optimal control problems in Wasserstein spaces.
Granada and Kovtunenko in [15] consider a shape derivative
for optimal control of the nonlinear Brinkman–Forchheimer
equation.

For fractional systems, Saidi [16] discusses some results
associated to £rst-order set-valued evolution problems with
subdi�erentials. Jajarmi and Baleanu [17] consider the
fractional optimal control problems with a general derivative
operator. Huixian et al. [18] study an averaging result for a
class of impulsive fractional neutral stochastic evolution
equations. Jafariet al. [19] propose a numerical approach for
solving fractional optimal control problems with Mit-
tag–Le©er kernel. Mehandiratta et al. [20] study fractional
optimal control problems on a star graph. Heydari et al. [21]
propose a numerical solution for an optimal control
problems generated by Atangana–Riemann–Liouville frac-
tal-fractional derivative.

�e �ow problems are one of the most important
questions in mathematics. �ey have applications in several
£elds such as physics, biology, and engineering. We cite here
the problem of controlling the blood �ow in a vessel, where
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we need to calculate the gradient (flow) of the velocity of
blood as a rate of change of the blood flow (see [22]).

Recently, many researchers focused on the study of flow
problems using optimal control theory. *ey consider the
gradient state of a distributed system and ask if there is an
optimal control to reach a desired profile (see [23]). For this
approach, one of the most important ideas is called the
partial analysis. It has an objective to reach a target on a
specific subdomain of the system domain, ω ⊂ D (see
[24, 25]). For partial work on bilinear distributed systems,
Ouzehra et al. [26, 27] study the exact and approximate
controllability of reaction-diffusion equation using bilinear
control. Zerrik and Ould Sidi [28–31] use partial control
problems to orient the dynamics of infinite dimensional
systems towards the desired state in a specific area. Zine and
Ould Sidi in [32–34] deal with partial control problems in
the case of hyperbolic systems. Ould Sidi and Beinane
[35, 36] treat the partial flow control problems.

*e objective of this paper is to control the flow of
equation (1) towards a desired target using the penalization
problem 3, and with a more regular spatiotemporal control
function. In Section 2, we show the existence of a solution to
the studied problems. Next, we give the characterization of
its solution considering different types of actions. Section 3 is
devoted to the study of the partial flow control problems
constrained by bilinear distributed systems with regular
optimal control time function. *e paper ends by an ex-
ample illustrating the numerical approach of the proposed
method.

2. Flow Problem with Regular Control

Let us consider the system described by

qm(x, m) � qxx(x, m) − v(x, m)qx(x, m), Γ,

q(x, 0) � q0(x), D,

q � qx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(1)

with a domain D ⊂ IRn(n � 1, 2, 3) is open bounded, and its
regular boundary is zD. Let M> 0 and Γ � D × ]0, M[,
Π � zD × ]0, M[, where the space of control is
v ∈ L2(0, M, H1

0(D)).
Let q0(x) ∈ L2(D) and

S �
q ∈ L

2 0, M; H
1
0(D)􏼐 􏼑

qm ∈ L
2 0, M; H

−2
(D)􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (2)

represents the state space (see [5]). *e system dynamic is
qxx � Δq � 􏽐

n
i�1 z2q/zx2

i , and system (1) has a unique so-
lution qv in S∩ L∞(0, M; L2(D)) (see [37]).

We consider the operator ∇:

∇: H
1
(D)⟶ L

2
(D)􏼐 􏼑

n
,

q⟶∇q �
zq

zx1
, . . . ,

zq

zxn

􏼠 􏼡.

(3)

*e flow regular optimal control problem of system (1) is

min
v∈L2 0,M,H1

0(D)( )
Φε(v), (4)

with ε> 0, and Φε is the cost penalty defined by

Φε(v) �
1
2
∇q − q

d
�����

�����
2

L2 0,M,H1
0(D)( )( )

n +
ε
2

􏽚
Γ

v
2
m(x, m) + v

2
x(x, m)􏽨 􏽩dxdm

�
1
2

􏽘

n

i�1

zq

zxi

− q
d
i

��������

��������

2

L2 0,M,H1
0(D)( )

+
ε
2

􏽚
Γ

v
2
m(x, m) + v

2
x(x, m)􏽨 􏽩dxdm,

(5)

where the desired flow is qd � (qd
1 , . . . , qd

n).
*e main objective is to propose a method to steer the

flow of (1) to qd(x), using the functional (5) and considering
a more regular control space v ∈ L2(0, M; H1

0(D)). We
characterize the solution of (4) through an extension of the
Lagrangian method.

2.1. Existence of Solution. In the next theorem, we study the
existence of a solution to the flow problem (4).

Theorem 1. Let us consider q be the solution of the system

qm � qxx − vqx, Γ,
q(x, 0) � q0(x), D,

q � qx � 0, Π.

⎧⎪⎨

⎪⎩
(6)

*en, there exists an optimal control v, which is the
minimum of (4).

Proof. Let us consider the set Φε(v)|v ∈ L2(0, M,􏼈

H1
0(D))} ⊂ IR, which is a positive nonempty and admits
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lower bounded. *us, by choosing a minimizing sequence
(vn)n which verifies

Φ∗ � lim
n⟶+∞
Φ vn( 􏼁 � inf

v∈L2 0,M,H1
0(D)( )
Φε(v). (7)

*en, the cost Φε(vn) is bounded, and it follows that
‖vn‖L2(0,M,H1

0(D))≤B, with B as a positive constant.
We have

vn⇀ v, L
2 0, M, H

1
0(D)􏼐 􏼑,

q
n⇀ q, S,

q
n
xx⇀ χ, S,

q
n
x⇀Λ, S,

q
n
m⇀Ψ, S.

(8)

By passing to the limit in the equation qn
m(x, m) �

qn
xx − vnqn

x, we deduce that qm(x, m) � Ψ, q↦qxx, qxx � χ
and vqx � Λ. Hence, we obtain

qm � qxx − v(x, m)qx. (9)

From the lower semicontinuity of Φε(v):

Φε(v) � inf
n

􏽘

n

i�1

1
2

􏽚
M

0
􏽚

D

zqn

zxi

− q
d
i􏼠 􏼡

2

dx +
ε
2

􏽚
Γ

v
2
m + v

2
x􏽨 􏽩

n
dxdm

≤ lim
n⟶0
Φε vn( 􏼁 � inf

v
Φε(v).

(10)

*erefore, v is a solution of (4). □

2.2.CharacterizationofSolution. In this section, the aim is to
propose a formulation of the solution of our flow problem.
*erefore, we should introduce the so-called optimal
equation to find the differential of the functional Φε(v) in
(5). *e following lemma mentions the differential of Φε(v)

with respecting v.

Lemma 2. A differential of the map

v ∈ L
2 0, M, H

1
0(D)􏼐 􏼑⟶ q(v) ∈ S, (11)

is

q(v + εl) − q(l)

ε
⇀μ, (12)

where μ � μ(q, l) verifies

μm � μxx − vμx − lqx, Γ,

μ(x, 0) � 0, D,

μ � μx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(13)

where q � q(v), v ∈ L2(0, M; H1
0(D)), and d(q(v))l is the

derivative of v⟶ q(v) with respect v.

Proof. We consider the solution of (13), verifying

‖μ‖S ≤ k1‖q‖L∞ 0,M;H1
0(D)( )‖l‖L2 0,M,H1

0(D)( ). (14)

Also,

μ′
����

����S
≤ k2‖q‖L∞ 0,M;H1

0(D)( )‖l‖L2 0,M,H1
0(D)( ). (15)

*us,

‖μ‖C [0,M];H1
0(D)( ) ≤ k3‖l‖L2 0,M,H1

0(D)( ). (16)

*en, we obtain that l ∈ L2(0, M; L2(D))⟶
μ ∈ C((0, M); H1

0(D)) is bounded (see [5]).
If we put ql � q(v + l) and ξ � ql − q, then ξ is the state of

ξm(x, m) � ξxx − v(x, m)ξx(x, m) − l(x, m) ql( 􏼁x, Γ,

ξ(x, 0) � 0, D,

ξ � ξx � 0, Π.

⎧⎪⎪⎨

⎪⎪⎩
(17)

*us,

‖ξ‖L∞ [0,M];H1
0(D)( ) ≤ k4‖θ‖L2 0,M,H1

0(D)( ). (18)

Let c � ξ − μ which verifies the system

cm � cxx + v(x, m)cx(x, m) + l(x, m)ξx, Γ,

c(x, 0) � 0, D,

c � cx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(19)

c ∈ C(0, M; H1
0(D)); consequently,

‖c‖C [0,M];H1
0(D)( ) ≤ k‖l‖

2
L2 0,M,H1

0(D)( ), (20)

and we have

‖q(v + l) − q(v) − d(q(v))l‖C 0,M;H1
0(D)( ) � ‖c‖C [0,M];H1

0(D)( ) ≤ k‖l‖
2
L2 0,M;H1

0(D)( ), (21)
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where k1, k2, k3, k4, and k are a constant positive.
In the following, we define a family of optimal equations.

−
zpi

zm
�

z
2
pi

zx
2 +

z vpi( 􏼁

zx
+

zq

zxi

− q
d
i􏼠 􏼡, Γ,

vx(x, 0) � vx(x, M) � 0, D,

pi(x, M) � 0, D,

pi �
zpi

zx
� 0, Π.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

*e next lemma characterizes the differential of
Φε(v). □

Lemma 3. Let v ∈ L2(0, M, H1
0(D)) be the solution of (4),

and we obtain

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� 􏽘

n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq

zxi

− q
d
i􏼠 􏼡dmdx + ε􏽚

D
􏽚

M

0
vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx. (23)

Proof. *e cost Φε(v) (5) can be expressed by

Φε(v) �
1
2

􏽘

n

i�1
􏽚

D
􏽚

M

0

zq

zxi

− q
d
i􏼠 􏼡

2

dmdx +
ε
2

􏽚
D

􏽚
M

0
v
2
m + v

2
x􏽨 􏽩dmdx. (24)

If we put qβ � q(v + βl) and q � q(v), using (59), we have

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
D

􏽚
M

0

zqβ/zxi􏼐 􏼑 − q
d
i􏼐 􏼑

2
− zq/zxi( 􏼁 − q

d
i􏼐 􏼑

2

β
dmdx

+ lim
β⟶0

ε
2β

􏽚
D

􏽚
M

0
vm + βlm( 􏼁

2
− v

2
m + vx + βlx( 􏼁

2
− v

2
x􏽨 􏽩dmdx,

(25)

then

lim
β⟶0

Φε(v + βl) −Φε(v)

β

� lim
β⟶0

􏽘

n

i�1

1
2

􏽚
D

􏽚
M

0

zqβ/zxi􏼐 􏼑 − zq/zxi( 􏼁􏼐 􏼑

β
zqβ

zxi

+
zq

zxi

− 2q
d
i􏼠 􏼡dmdx + lim

β⟶0
ε􏽚

D
􏽚

M

0
vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx

� 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq(x, m)

zxi

− q
d
i􏼠 􏼡dmdx + 􏽚

D
􏽚

M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx.

(26)

*e following theorem proposes a solution of the
problem (4). □

Theorem 4. Let v ∈ L2(0, M; H1
0(D)) be a solution of (4);

then,
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vmm + vxx +
1
ε

Div pi( 􏼁( 􏼁qx � 0, (27)

where q � q(v) is the output of (1), where pi � (p1, . . . , pn)

and pi ∈ C([0, M]; H1
0(D)) is the solution of (22).

Proof. Let l ∈ L2(0, M; H1
0(D)) and

v + βl ∈ L2(0, M; H1
0(D)) for β> 0. *e extremal of Φε is

realized at v; then,

0≤ lim
β⟶0

Φε(v + βl) −Φε(v)

β
. (28)

Lemma 9 gives

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq(x, m)

zxi

− q
d
i􏼠 􏼡dmdx + 􏽚

D
􏽚

M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx. (29)

*erefore, using (22), we obtain

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

−
zpi(x, m)

zm
−

z
2
pi(x, m)

zx
2 −

zvpi(x, m)

zx
􏼠 􏼡dmdx

+􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx.

(30)

By a simple calculus, we have

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

−
zpi(x, m)

zm
−

z
2
pi(x, m)

zx
2 +

zvpi(x, m)

zx
􏼠 􏼡pi(x, m)dmdx

+ 􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx.

(31)

From System(13), we obtain

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

z

zxi

− l(x, m)qx( 􏼁pi(x, m)dmdx

+ 􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx

� 􏽚
D

􏽚
M

0
−l(x, m)qx 􏽘

n

i�1

z

zxi

pi(x, m)⎛⎝ ⎞⎠ + ε vmlm( 􏼁 + ε vxlx( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦dmdx.

(32)

Moreover, if l � l(t) ∈ L2(0, M; H1
0D), we deduce

−lqx 􏽘

n

i�1

z

zxi

pi(x, m)⎛⎝ ⎞⎠ − εvmml − εvxxl � 0, (33)

which allow us to introduce

vmm + vxx +
1
ε

Div pi( 􏼁( 􏼁qx � 0, (34)

that the solution v of (4) must satisfy. □

Remark 5. According to equation (2),

(1) If we consider a spatial control function v � v(x, )

then the variational formula becomes

vxx � −
1
ε

Div pi( 􏼁( 􏼁qx, (35)
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(2) If we consider a temporal control function v � v(m),
then the variational formula becomes

vmm � −
1
ε

Div pi( 􏼁( 􏼁qx. (36)

3. Partial Flow Control Problem

3.1. ProblemStatement. We consider the bilinear distributed
system (1), with a given q0 ∈ H1(D). System (1) can be
rewritten as follows:

q(m) � S(m)q0 + 􏽚
m

0
S(m − s)v(s)q(s)ds, (37)

and the solution of (37) are often called the mild solution of
(1).

*e existence of a unique solution qv(x, m) in
L2(0, M; H1

0(D)) satisfying (37) can be deduced from [37].
We choose ω ∈ D, and

χω: L
2
(D)􏼐 􏼑

n
⟶ L

2
(D)􏼐 􏼑

n

q⟶ χωq � q|ω,
(38)

and χ∗ω; its adjoint is given by

χ∗ωq �
q inD,

0 ∈ D∖ω,
􏼨 (39)

􏽥χω: L
2
(D)􏼐 􏼑⟶ L

2
(ω)􏼐 􏼑

q⟶ 􏽥χωq � q|ω.
(40)

Definition 6. Equation (1) is called partial flow controllable
on ω ⊂ D, to gd ∈ (L2(ω))n if there exists a control
v ∈ L2(0, M, H1

0(D)) and ε> 0 such that

χω∇qv(M) − g
d

�����

����� L2(ω)( )
n ≤ ε, (41)

where gd � (yd
1 , . . . yd

n) is the desired flow in (L2(ω))n.
Ouzehra in [26], studies the exact and approximate

controllability of distributed bilinear systems. *e partial
flow control problem of (1) is

minv∈L2 0,M,H1
0(D)( )Φε(v), (42)

where Φε is presented for ε> 0 by

Φε(v) �
1
2
χω∇q(M) − g

d
�����

�����
2

L2(ω)( )
n +

ε
2

􏽚
Γ

v
2
m(m)􏽨 􏽩dm

�
1
2

􏽘

n

i�1
􏽥χω

zq(M)

zxi

− y
d
i

��������

��������

2

L2(ω)

+
ε
2

􏽚
Γ

v
2
m(m)􏽨 􏽩dm.

(43)

*e objective of the presented problem is to command
the flow of (1) to a target state gd(x), realizing (43), and find
v∗ ∈ L2(0, M, H1

0(D)), verifying

Φε v
∗

( 􏼁 � min
v∈L2 0,M,H1

0(D)( )
Φε(v). (44)

Remark 7. *e existence of solutions for the partial flow
control problem can be proved in the same way as in the
proof of the previous section.

3.2. Characterization of Solution. Now, we are able to for-
mulate the solution of the flow problem (42).

Lemma 8. A differential of the map

v ∈ L
2 0, M, H

1
0(D)􏼐 􏼑⟶ q(v) ∈ S, (45)

is

q(v + εl) − q(l)

ε
⇀μ, (46)

where μ � μ(q, l) verifies

μm � μxx − vμx − lqx, Γ,

μ(x, 0) � 0, D,

μ � μx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(47)

where q � q(v), v ∈ L2(0, M; H1
0(D)), and d(q(v))l is the

derivative of v⟶ q(v) with respect v.

Proof. *e output of equation (13) satisfies

‖μ‖S ≤ k1‖q‖L∞ 0,M;H1
0(D)( )‖l‖L2 0,M,H1

0(D)( ). (48)

Also,

μ′
����

����S
≤ k2‖q‖L∞ 0,M;H1

0(D)( )‖l‖L2 0,M,H1
0(D)( ). (49)

*us,

‖μ‖C [0,M];H1
0(D)( ) ≤ k3‖l‖L2 0,M,H1

0(D)( ). (50)

*en, we obtain that
l ∈ L2(0, M; L2(D))⟶ μ ∈ C((0, M); H1

0(D)) is bounded
(see [5]).

If we put ql � q(v + l) and ξ � ql − q, then ξ is the state of

ξm(x, m) � ξxx − v(x, m)ξx(x, m) − l(x, m) ql( 􏼁x, Γ,

ξ(x, 0) � 0, D,

ξ � ξx � 0, Π.

⎧⎪⎪⎨

⎪⎪⎩

(51)

*us,

‖ξ‖L∞ [0,M]];H1
0(D)( ) ≤ k4‖l‖L2 0,M,H1

0(D)( ). (52)

Let c � ξ − μ which verifies the system

cm � cxx + v(x, m)cx(x, m) + l(x, m)ξx, Γ,

c(x, 0) � 0, D,

c � cx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(53)

c ∈ C(0, M; H1
0(D)); consequently,
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‖c‖C [0,M];H1
0(D)( ) ≤ k‖l‖

2
L2 0,M,H1

0(D)( ), (54) and we have

‖q(v + l) − q(v) − d(q(v))l‖C 0,M;H1
0(D)( ) � ‖c‖C [0,M];H1

0(D)( ) ≤ k‖l‖
2
L2 0,M,H1

0(D)( ). (55)

We introduce the family of optimal systems in the case of
partial controllability

− pi( 􏼁m(x, m) � pi( 􏼁xx(x, m) + v(m)pi( 􏼁x(x, m), Γ,

pi(x, M) �
zq(M)

zxi

− 􏽥χ∗ωy
d
i􏼠 􏼡, D,

pi(x, m) � pi( 􏼁x(x, m) � 0, Π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

where 􏽥χ∗ω is the adjoint of 􏽥χω defined from L2(ω)⟶ L2(D)

by

􏽥χ∗ωq(x) �
q(x), x ∈ ω,

0, x ∈ D\ω.
􏼨 (57)

*e following lemma mentions the differential of Φε(v)

with respecting v. □

Lemma 9. If v ∈ L2(0, M) is the control realizing (42), μ is
the output of (47), and pi is the solution of (56), we deduce

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� 􏽘

n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zpi

zm

zμ(x, m)

zxi

dm + 􏽚
M

0
pi

z

zxi

zμ
zm

􏼠 􏼡dm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm. (58)

Proof. *e functional Φε(v) given by (43) can take the form

Φε(v) �
1
2

􏽘

n

i�1
􏽚
ω

􏽥χω
zq

zxi

− y
d
i􏼠 􏼡

2

dx + ε􏽚
M

0
v
2
m(m)dm. (59)

Let qβ � q(v + βl) and q � q(v), using (59), we have

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
ω

􏽥χω zqβ/zxi􏼐 􏼑 − y
d
i􏼐 􏼑

2
− 􏽥χω zq/zxi( 􏼁 − y

d
i􏼐 􏼑

2

β
dx

+ lim
β⟶0

ε
β

􏽚
M

0
vm + βlm( 􏼁

2
− v

2
m􏽨 􏽩dm.

(60)

Consequently,

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
ω

􏽥χω
zqβ/zxi􏼐 􏼑 − zq/zxi( 􏼁􏼐 􏼑

β
􏽥χω zqβ/zxi􏼐 􏼑 + 􏽥χω zq/zxi( 􏼁 − 2y

d
i􏼐 􏼑dx

+ lim
β⟶0

􏽚
M

0
2εlmvm + εβl

2
m􏼐 􏼑dm � 􏽘

n

i�1
􏽚
ω

􏽥χω
zμ(x, M)

zxi

􏽥χω
zq(x, M)

zxi

− 􏽥χ∗ωy
d
i􏼠 􏼡dx + 􏽚

M

0
2εlmvmdm

� 􏽘
n

i�1
􏽚
ω
􏽥χω

zμ(x, M)

zxi

􏽥χωpi(x, M)dx + 2ε􏽚
M

0
lmvmdm.

(61)

From (56) and (61), we deduce that
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lim
β⟶0

Φε vε + βl( 􏼁 −Φε vε( 􏼁

β
� 􏽘

n

i�1
􏽚
ω
􏽥χ∗ω􏽥χω 􏽚

M

0

zpi

zm

zμ(x, m)

zxi

dm + 􏽚
M

0
pi

z

zxi

zμ
zm

􏼠 􏼡dm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm. (62)

Now, we will deduce the solution of (42), exploiting the
family of optimal systems. □

Theorem 10. Let v ∈ L2(0, M; H1
0) be the solution of the

partial flow problem, and q � q(v) is its corresponding state of
(1), we show that

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmm � 0, (63)

is a solution of problem (42), where pi ∈ C([0, M]; H1
0(D)) is

the unique solution of the adjoint system (56).

Proof. Let l ∈ L2(0, M; H1
0(D)) with v + βl ∈ L2(0, M;

H1
0(D)) for β> 0. *e functional Φε get its minimum at v,

and we deduce

0≤ lim
β⟶0

Φε(v + βl) −Φε(v)

β
. (64)

Using Lemma 9, replacing zμ/zm in system (47), we have

0≤ lim
β⟶0

vε qε + βl( 􏼁 − vε qε( 􏼁

β

� 􏽘
n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zμ
zxi

zpi

zm
dm + 􏽚

M

0

z

zxi

μxx − vμx − lqx( 􏼁pidm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm

0≤ 􏽘
n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zμ
zxi

zpi

zm
+

z
2
pi

zx
2 + v(m)

zpi

zx
􏼠 􏼡 + l(m)

zqx

zxi

pidm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm

� 􏽘
n

i�1
􏽚

M

0
l(m)〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω)dm + 􏽚
M

0
2εlmvmdm

� 􏽚
M

0
l(m) 􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) + 2εlmvm
⎡⎣ ⎤⎦dm.

(65)

Consequently, for an arbitrary control l � l(m) we conclude

l(m) 􏽘
n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmml(m) � 0. (66)

*en,

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmm � 0. (67)

Consequently,

vmm �
−1
2ε

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) . (68)

□

4. Example

In this section, we propose the numerical approach to
computing the solution of our method (68). We consider the
one dimensional bilinear equation

zq

zt
+ α

z
2
q

zx
2 � βv(x, m)

zq

zx
, [0, 1] ×[0, 1],

q(x, 0) � q0(x) � 2x, [0, 1],

q � 0, atx � 0, 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

*e operator −α(z2/zx2) admits a set of eigenfunctions
ϕn(·) associated to the eigenvalues λn given by

ϕn(x) �
�
2

√
sin(nπx);

λn � αn
2π2

,

n≥ 1.

(70)

While the operator −α(z2/zx2) of system (69) and the
perturbation βv(x, m)zq/zx commute, using Pazy [37], the
solution of (69) can be written as
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q(x, m) � 􏽘
n�N

n�1
e
αn2π2t < e

β 􏽚
m

0
(zv/zx)(x, m)dm

q0,
�
2

√
sin(nπx)>

�
2

√
sin(nπx). (71)

*e one dimensional adjoint system can be written as

−pm(x, m) � pxx(x, m) +(v(m)p)x(x, m), [0, 1] ×[0, 1],

p(x, 1) �
zq(M)

zx
− 􏽥χ∗ωy

d
􏼠 􏼡, [0, 1],

p(0, m) � (p)x(0, m) � 0, [0, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

We define the perturbation function

f(q, p) �〈􏽥χω
z2q(m)

zx2 ; 􏽥χωp(m)〉L2(ω). (73)

Using (68) and a finite difference schema, the optimal
control v can be found by solving

vmm(x, m) �
−1
2ε

f(q, p), [0, 1] ×[0, 1],

v(0) � vm(1) � 0, [0, 1].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(74)

By choosing ε � 1/n, we define the following sequence of
control (vn)n solution of

v
n+1
mm(x, m) �

−n

2
f q

n
, p

n
( 􏼁, [0, 1] ×[0, 1],

v(0) � vm(1) � 0, [0, 1],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(75)

where qn and pn are, respectively, the solution of (71) and
(72) perturbed by vn with v0 � 0.

*e penalty cost (43) becomes

Φn v
n

( 􏼁 �
1
2
χω∇q

n
− y

d
�����

�����
2

L2 0,1,H1
0([0,1])( )

+
1
2n

􏽚
1

0
􏽚
1

0
v

n
m x, tm( )􏼂 􏼃

2dxdm . (76)

*e following convergent Algorithm 1 allows the
implementation of our results.

Remark 11.

(1) *e distributed bilinear systems (1), are considered
with the feedback map v(x, m)qx(x, m) as multi-
plication of the control by the velocity of the state
system. One can consider another different type of
perturbation.

(2) In the case of partial controllability, we use in general
temporal control feedback. *is type of control is
compatible with real applications.

(3) For the simulation point of view, the obtained
control formula is easy to calculate numerically.
*is encourages us to establish numerical ap-
proaches and simulations of the proposed problems
using Algorithm 1..

5. Conclusion

We consider the flow optimal control problem constrained
by a bilinear distributed system.*e chosen optimal controls
are regular, and the existence of solutions is proved and
characterized using optimization techniques. Our method is
applied to the partial flow control problem allowing us to
control a flow on a specific subdomain of the system domain.

Step 1: Choose
*e desired targ yd et.
*e convergence accuracy ζ.
*e subregion ω and time M.

Step 2: Until ‖vn+1 − vn‖≤ ζ repeat
Using (71), compute qn associated to vn.
Using (72), compute pn associated to vn.
Using (74) and (75), compute vn+1.

Step 3: vn such that ‖vn+1 − vn‖≤ ζ is the minimum of (76).

ALGORITHM 1:Algorithm for calculating the solution of the problem (50).
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Finally, as an example, we present the numerical approach,
which makes it possible to concretize the obtained results.
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