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We study fractional Brownian motion– (FBM–) driven fuzzy stochastic fractional evolution equations. These equations can be
used to model fuzziness, long-range dependence, and unpredictability in hybrid real-world systems. Under various
assumptions regarding the coefficients, we investigate the existence-uniqueness of the solution using an approximation method
to the fractional stochastic integral. We can solve an equation with linear coefficients, for example, in financial models
Application to a model of population dynamics is also illustrated. An example is propounded to show the applicability of our
results.

1. Introduction

Fractional stochastic differential equations (FSDEs) play an
important role in the modeling of numerous complicated
processes in several sectors of science and engineering. FSDE
theory and applications were examined. Furthermore,
numerous academics have produced interest in systems with
memory or aftereffects.

There appears to be some difficulty in modeling a variety
of modern-world systems, such as trying to characterize the
physical system and differing viewpoints on its properties.
The fuzzy set theory will be utilized to resolve this issue
[1]. It can handle linguistic claims like “big” and “less”math-
ematically using this approach. A fuzzy set provides the abil-
ity to examine fuzzy differential equations (FDEs) in
representing a variety of phenomena, including imprecision.
For example, fuzzy stochastic differential equations (FSDEs)
could be used to explore a wide range of economic and tech-
nical problems involving two types of uncertainty: random-
ness and fuzziness.

Deterministic fuzzy differential equations were devel-
oped as a result of research into dynamic systems with inad-
equate or ambiguous parameter information. They are
increasingly used in system models in biology, engineering,
civil engineering, bioinformatics, and computational biol-
ogy, quantum optics and gravity, hydraulic and mechanical
system modeling. Many studies in this field have been con-
ducted utilizing various ways of expressing differential prob-
lems in a fuzzy framework. The Hukuhara derivative of a
set-valued function was used as the foundation for the first
approach to deterministic FDEs.

There are several articles on FSDEs, each of which takes
a different approach. The fuzzy stochastic ItÃ´ integral was
defined by the author in [2]. The fuzzy Itô stochastic integral
was driven by fuzzy non-anticipating stochastic processes
and the Wiener process. Malinowski [3–5] worked on the
application, properties, Ito type strong solutions, and with
delay to stochastic fuzzy differential equations. To construct
a fuzzy random variable, the method involves embedding
crisp Itô stochastic integral into fuzzy space. Guo et al. [6],
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Li et al. [7], Deng et al. [8], and Ahmad [9] worked on the
stability of fractional stochastic differential equation. Hus-
sain et al. [10] studied stochastic modeling of COVID-19.
Abbas et al. [11, 12] solve ordinary differential equation. In
the study of Niazi et al. [13], Iqbal et al. [14], Shafqat et al.
[15], Alnahdi [16], Khan [17], and Abuasbeh et al.
[18–21], existence and uniqueness of the fuzzy fractional
evolution equations were investigated.

FBM has been used to describe the behavior of asset
prices and stock market volatility. This process is a good fit
for describing these values because of its long-range depen-
dence on self-similarity qualities. For a general discussion
of the applications of FBM to model financial quantities,
see Shiryaev [22]. Several writers have proposed a fractional
Black and Scholes model to replace the traditional Black and
Scholes model, which is memoryless and depends on the so-
called fractional Black and Scholes model of geometric
Brownian motion. The risky asset’s market stock price is
given by this model:

Sν = S0 exp μν + σBH
ν −

σ2

2 ν2H
� �

, ð1Þ

where BH is an FBM with the Hurst parameter H , μ is the
mean rate of return, and σ > 0 is the volatility, and at time ν,
the price of non-risky assets is erν, where r is the interest
rate.

In modeling many stochastic systems, on the other hand,
the FBM, which exhibits long-range dependency, is pro-
posed to replace Brownian motion as a driving mechanism.
The FBM is a Gaussian process with favorable qualities such
as long-range dependency, self-similarity, and increment
stationarity when H ∈ ð1, 2Þ is used as the Hurst parameter.
This method is well suited to the study of phenomena with
long-range and scale-invariant correlations. When H ≠ 3/2,
however, FBM is not semimartingale.

Jafari et al. [23] worked on FSDEs driven by FBM.
Inspired by the above paper, we introduce fuzzy fractional
stochastic differential equation (FFSDEs) in relation to
FBM in this study for order (1,2). These equations can be
used to simulate unpredictability, fuzziness, and long-range
dependence in hybrid dynamic systems. To determine the
explicit answers, we use an approximation approach to frac-
tional stochastic integrals. To investigate existence-
uniqueness of strong solutions, we use Liouville form of
FBM with parameter H ∈ ð3/2, 2Þ. Furthermore, we discuss
using the equations in financial models:

0
cD

α
νX νð Þ = f ν, X νð Þ,DβX νð Þ

� �
ds + g ν, X νð ÞDβX νð Þ

� �
dBH νð Þ, ν ∈ 0,I½ �,

X 0ð Þ +m Xð Þ = X0,
X ′ 0ð Þ = X1,

ð2Þ

where α ∈ ð1, 2Þ, β ∈ ð0, 1Þ, and BH are FBM and f , g : ½0,
I�⟶ Rm is the continuous function.

There has been a recent interest in input noises lacking
independent increments and exhibiting long-range depen-

dence and self-similarity qualities, which has been motivated
by some applications in hydrology, telecommunications,
queueing theory, and mathematical finance. When the
covariances of a stationary time series converge to zero like
a power function and diverge so slowly that their sums
diverge, this is known as long-range dependence. The self-
similarity property denotes distribution invariance when
the scale is changed appropriately. FBM, a generalization
of classical Brownian motion, is one of the simplest stochas-
tic processes that are Gaussian, self-similar, and exhibit sta-
tionary increments. When the Hurst parameter is more than
1/2, the FBM exhibits long-range dependency, as we will see
later. In this note, we look at some of the features of FBM
and discuss various strategies for constructing a stochastic
calculus for this process. We will also go through some tur-
bulence and mathematical finance applications. The remain-
ing of this paper is as follows. Section 2 discusses the
definition of FBM and Liouville form of this process. Then,
some introductory material on fuzzy stochastic processes
and fuzzy stochastic integrals is reviewed. Section 3 intro-
duces a class of FFSDEs driven by FBM. Furthermore, the
existence-uniqueness of solutions is proven using an approx-
imation approach. In Section 4, some findings are presented.
In section 5, application to a model of population dynamics
is also illustrated. Finally, in Section 6, a conclusion is given.

2. Preliminaries

A Gaussian process BH = fBH ðνÞ is called FBM of Hurst
parameter H ∈ ð0, 1Þ if it has mean zero and the covariance
function:

RBH ν, sð Þ = E BH νð ÞBH sð Þ
� �

= 1
2 s2H + ν2H − ν − sj j2H
� �

:

ð3Þ

This phenomenon was first described in [24] and inves-
tigated in [25], where a Brownian motion-based stochastic
integral representation was constructed. For H > 3/2, this
process’ long-range dependence and self-similarity qualities
give suitable driving noise in stochastic models like net-
works, finance, and physics. BecauseBH is not semimartin-
gale ifH ≠ 3/2. In terms of FBM, classical Itô theory cannot
be used to generate stochastic integral. Two approaches were
used to define stochastic integrals about FBM. In the situa-
tion of H > 3/2, Young’s integral [26] can be used to define
the Riemann-Stieltjes stochastic integral. The Malliavin cal-
culus is used in a second way to define stochastic integral
concerning FBM (see [27–30]). The following is an illustra-
tion of BH ðνÞ given in [25]:

BH νð Þ = 1
Γ 1+αð Þ

ð0
−∞

ν − sð Þα − −sð Þα½ �dW sð Þ +BH νð Þ
� �

,

ð4Þ

where W is a Browian motion, α =H − 3/2 and BH ðνÞ =Ð ν
0ðν − sÞαdWðsÞ. A FBM in Liouville form (LFBM) is the

processBH ðνÞ withH ∈ ð1, 2Þ, which has many of the same
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qualities as the FBM except for the non-stationary incre-
ments. In [27], a semimartingale process was utilized to
approximate BH ðνÞ using the Malliavin calculus technique:

BH ,ε νð Þ =
ðν
0
ν − s + εð ÞαdW sð Þ, ε > 0red: ð5Þ

Furthermore,

BH ,ε νð Þ = α
ðν
0
ψε sð Þds + εαW νð Þ, ð6Þ

where

ψε νð Þ =
ðν
0
ν − s + εð Þα−1dW sð Þ: ð7Þ

The process BH ,εðνÞ converges to BH ðνÞ in L2ðΩÞ
when ε tends to zero [31].

Preliminaries on FRVs, fuzzy stochastic processes (FSP),
and fuzzy stochastic integrals are provided in this section
(see [4, 29, 32]). The family of all nonempty, compact, and
convex subsets of Rm is denoted by GðRmÞ. The Hausdorff
metric, abbreviated as dH , is defined as follows:

dH N ,Bð Þ =max sup
n∈N

inf
b∈K

n − bk k, sup
b∈B

inf
n∈N

n − bk k
� �

red:

ð8Þ

With regard to dH , the space GðRmÞ is a full and separa-
ble metric space. If N ,B, and Q are equal to GðRmÞ, then

dH N +Q,B+℘ð Þ = dH N ,Bð Þ: ð9Þ

A probability space is defined ðΩ,A ,℘Þ. If mapping F

: Ω⟶GðRmÞ satisfies the following conditions, it is called
N -measurable.

ω ∈Ω : F ωð Þ ∩Q ≠ φf g ∈N : ð10Þ

Q ⊂ Rm for every closed set, letMðΩ,N ; GðRmÞÞ denote
a set of A-measurable multifunctions with GðRmÞ values.
For ℘≥1, a multifunction F∈M is said to be L℘-integr-
ably bounded if h ∈L℘ðΩ,N ,℘;Rm

+Þ exists that is kjFjk ≤
h℘−a:e, Rm

+ = ½0,∞Þ, and

Fj jk k = dH F, 0f gð Þ = sup
f∈F

fj j: ð11Þ

F∈M is known to be L℘-integrably bounded if and
only if kjFjk ∈L℘ðΩ,N ,℘;Rm

+Þ (see [31]). Let us put it this
way:

L℘ Ω,N ,℘;G Rð Þð ÞÞ = F∈M Ω,N ;G Rð Þð Þ: Fj jk k ∈L℘ Ω,N ,℘;Rm
+ð Þf g:
ð12Þ

For fuzzy set u ∈ Rm, membership function u : Rm ⟶
½1, 2� is defined, where uðxÞ denotes degree of membership

of x in fuzzy set u. Assume fuzzy sets u : Rm ⟶ ½1, 2�
denoted by FðRmÞ that is ½u�α ∈ GðRmÞ for every α ∈ ½1, 2�,
where ½u�α = fx ∈ Rm : uðxÞ ≥ αg. Define dα : FðRmÞ ×Fð
RmÞ⟶ ½0,∞Þ by

d∞ u, vð Þ = sup
1≤α≤2

dH v½ �α, v½ �αf gred: ð13Þ

Therefore, in FðRmÞ, d∞ is metric, and ðFðRmÞ, d∞Þ is
complete metric space. We have below properties for any u
, v,w, z ∈FðRmÞ, λ ∈ Rm:

(i) d∞ðu +w, v +wÞ = d∞ðu + vÞ
(ii) d∞ðu +w, v + zÞ = d∞ðu +wÞ + d∞ðw, vÞ
(iii) d∞ ≤ d∞ðu,wÞ + d∞ðw, vÞ
(iv) d∞ðλu, λv = jλjd∞ðu, vÞ
We use h1i ∈FðRmÞ as h1i = 2f1g, where for y ∈ Rm,

2fygðxÞ = 2 if x = y and 2yðxÞ = 1 if x ≠ y.

Definition 1 See ([33]). A probability space is defined as ðΩ
,N ,℘Þ. If mapping ½X�α : Ω⟶ GðRmÞ is an N -measurable
multifunction for all α ∈ ½1, 2�, FRV is function X : Ω⟶
GðRmÞ.

Assume metric ρ in set FðRmÞ and η-algebra Bρ, which
is created by topology induced by N fuzzy random variable
(FRV) can be thought of as measurable mapping between
two measurable spaces ðΩ,N Þ and ðFðRmÞ,BρÞ, which we
refer to as X is N jBρ-measurable. Take a look at the below
metric:

ds u, vð Þ =max inf
λ∈∧

sup
ν∈ 1,2½ �

λ νð Þ, νk k, sup
ν∈ 1,2½ �

dH Xu νð Þ, Xu λ νð Þð Þð Þ
( )

,

ð14Þ

where ∧ represents set of strictly increasing continuous func-
tions: λ : ½1, 2�⟶ ½1, 2�, where λð1Þ = 1, λð2Þ = 2, and Xu,
Xv : ½1, 2�⟶FðRmÞ are cÃ dlÃ g representations for fuzzy
sets u, v ∈FðRmÞ (see [34]). The space ðFðRmÞ, dsÞ is a Pol-
ish metric space, and space ðFðRmÞ, d∞Þ is complete and
non-separable.

We have
â€“X is FRV if and only if X is N jBds

-measurable for
mapping X : ⟶FðRmÞ on probability space ðΩ,N ,℘Þ.

If X is N jBds
-measurable, it is FRV, but not the other

way.

Definition 2. If ½X�α ∈L℘ðΩ,N ,℘;GðRmÞÞ, for any α ∈ ½1, 2�,
FRV X : Ω⟶FðRmÞ is L℘-integrably bounded for ℘≥2.

Let us denote by L℘ðΩ,N ,℘;FðRmÞÞ set of all L℘

-integrably bounded FRVs. The random variables X, Y ∈
L℘ðΩ,N ,℘;FðRmÞÞ are identical if ℘ðd∞ðX, YÞ = 1Þ = 2.
For FRV X : Ω⟶FðRmÞ, and ℘≥1, the below conditions
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are equivalent:

X ∈L℘ Ω,N ,℘;F Rmð Þð Þ,
X½ �0 ∈L℘ Ω,N ,℘;G Rmð Þð Þ,
X½ �0 �� �� ∈L℘ Ω,N ,℘;Rm

+ð Þred:
ð15Þ

Assume j≔ ½0,I�, and ðΩ,N ,℘Þ be complete probability
space with filtration fN νgν∈j satisfying hypotheses, an
increasing and right continuous family of sub ρ-algebras of
N , and containing all ℘-null sets.

Definition 3. If mapping XðνÞ: Ω⟶FðRmÞ, for every ν ∈ j,
is FRV, then X : j ×Ω⟶FðRmÞ is FSP.

Definition 4. A FSP X is d∞ -continuous, if almost all its tra-
jectories, that is mappings Xð:,ωÞ: j ×Ω⟶FðRmÞ are d∞
-continuous functions.

A FSP X is measurable, if ½X�α : jΩ⟶GðRmÞ is BðjÞ
⊗N -measurable multifunction for all α ∈ ½1, 2�, where Bðj
Þ denotes Borel ρ-algebra of subsets of j.

A process X is nonanticipating if and only if for every
α ∈ ½1, 2�, multifunction ½X�α is measurable with respect to
ρ-algebra A , where it is defined as follows:

A ≔ N ∈K ⊗N : N ν ∈N ν f oreveryν ∈ jf g, ð16Þ

where N ν = fω : ðν, ωÞ ∈N g.

Definition 5. AFSPX is calledL℘ -integrably bounded ð℘≥2Þ,
if there exists real-valued stochastic process h ∈L℘ðjΩ,A ;
FðRmÞÞ, the Fubini theorem, fuzzy integral is defined by

ðI
0
X s, ωð Þds, ð17Þ

for ω ∈Ω \Ax, whereAx ∈N and PðAxÞ = 1. The fuzzy inte-
gral

ÐI
0 Xðs,wÞds can be defined level-wise. For every α ∈ ½1, 2�,

and ω ∈Ω \Ax, Aumann integral
ÐI
0 ½Xðs, ωÞ�

αds belongs to

GðRmÞ, so FRV
ÐI
0 Xðs, ωÞ belongs to FðRmÞ, so FRV

ÐI
0 Xðs

, ωÞds belongs to FðRmÞ∀ω ∈Ω \Ax.

Definition 6. The fuzzy stochastic Lebesgue-Aumann inte-
gral of X ∈L1ðj ×Ω,A ;FðRmÞÞ is defined as

Lx ν, ωð Þ =
ðI
0
2 0,ν½ � sð ÞX s, ωð Þdsf oreveryω ∈Ω \Ax,

0f oreveryω ∈Ax:

8><
>:

ð18Þ

Proposition 7 See ([5]). The properties of the integral Lx
can be demonstrated as follows:

Suppose ℘≥2. If X ∈L℘ðj ×Ω,A ;FðRmÞÞ, then Lxð:,:Þ
∈L℘ðj ×Ω,A ;FðRmÞÞ.

(i) Suppose X ∈L1ðj ×Ω,A ;FðRmÞÞ, then fLxðνÞgν∈j
is d∞-continuous

(ii) Suppose X, Y ∈L℘ðj ×Ω,A ;FðRmÞÞ, for ℘≥1, then
(iii) sup

u∈½0,ν�
d℘∞ðLν,xðuÞ,Lν,yðuÞÞ ≤ νp−1

Ð ν
0d

p
∞ðXðsÞ, YðsÞÞ

ds:

Let us define an embedding of Rm into FðRmÞ by ð:Þ:
Rm ⟶FðRmÞ, which is for r′ ∈ Rm,

k′ að Þ =
1f orn = k′,

0f orn ∈ Rm \ k′
n o

:

8<
: ð19Þ

If X : Ω⟶ Rm is random variable on probability space
ðΩ,N ,℘Þ, now X : Ω⟶FðRmÞ is FRV. The same property
exists for stochastic processes.

We define fuzzy stochastic Itô integral by using FRV asÐI
0 XðsÞdWðsÞ, where W is Wiener process. [5] will be benefi-

cial for the following properties.

Proposition 8. Assume X ∈L2ðj ×Ω,A ; RmÞ, then
fhÐ ν0XðsÞdWðsÞig

ν∈j is FSP, and we have hÐ ν0XðsÞdWðsÞi ∈
L2ðj ×Ω,A ;FðRmÞÞ.

Proposition 9. Suppose X ∈L2ðj ×Ω,A ; RmÞ, then
fhÐ ν0XðsÞdWðsÞig

ν∈j is d∞ -continuous.

3. Application to Fuzzy Stochastic
Differential Equation

The following is a list of FFSDEs driven by FBM that we will
investigate in this section:

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+ 1ffiffiffi
γ

p
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, X sð Þ,DβX sð Þ

� �
ds

�

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, X sð Þ,DβX sð Þ

� �
dBH sð Þ

� ��
,

ð20Þ

such that

Qq νð Þ =Mq θð ÞC tqθð Þdθ, Gq νð Þ =
ðν
0
Cqsds, Pq νð Þ

=
ð∞
0
qθMq θð ÞC tqθð Þdθ,

ð21Þ

where QqðνÞ and GqðνÞ are continuous with Cð0Þ = I and
Kð0Þ = I, jQqðνÞj ≤ c, c > 1 and jGqðνÞj ≤ c, c > 1, ∀ν ∈ ½0, T�.
Equation (20) shows that the Liouville form of FBM with
H ∈ ð1, 2Þ, X0 : Ω⟶FðRmÞ is an FRV, g : j ×Ω ×FðRmÞ
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⟶ Rm. The approximate corresponding equation (20) is

Xε νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+ 1ffiffiffi
γ

p
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε s,DβXε sð Þ

� �� �
ds

�

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� ��

:

ð22Þ

Assumption 10. Consider the below assumptions about coef-
ficients of equation:

A1Þ The mappings f : j ×Ω ×FðRmÞ⟶FðRmÞ and g
: j ×Ω ×FðRmÞ⟶ Rm are N ⊗Ads

jBds
j-measurable and

A ⊗Bds
jBðRmÞj-measurable, respectively

A2Þ There exists constantL > 0∀u, v ∈FðRmÞ and every
ν ∈ j such that

max d∞ f ν, ω, uð Þ, f ν, ω, vð Þð Þ, g ν, ω, uð Þ − g ν, ω, vð Þj jf g
≤Ld∞ u, vð ÞÞ

ð23Þ

A3Þ There exists constant Q > 0∀u, v ∈FðRmÞ and every
ν ∈ j,

max d∞ f ν, ω, uð Þ, 0ð Þ, g ν, ω, uð Þj jf g ≤Q 1 + d∞ u, 0ð Þð Þ
ð24Þ

Proposition 11. See [5]. Suppose X, Y ∈L2ðj ×Ω,A ; RmÞ,
then

E sup
u∈ 0,ν½ �

d2∞

ðu
0
X sð ÞdW sð Þ

� �
,

ðu
0
Y sð ÞdW sð Þ

� �� �

≤ 4E
ðν
0
d2∞ X sð Þh i, Y sð Þh ið Þds,

ð25Þ

for every ν ∈ j.

Theorem 12. Assume f : j ×Ω ×FðRmÞ⟶FðRmÞ and g
: j ×Ω ×FðRmÞ⟶ Rm as mappings satisfy assumptions ðA
1Þ − ðA3Þ and X0 ∈L

2ðΩ,N 0,℘;FðRmÞÞ. Then, Equation
(22) has a strong unique solution.

Proof. Assume SDE (22),

Xε νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� �

:

ð26Þ

By Equation (6), we can write

Xε νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
αφε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
ds

�

+
ðν
0
εα ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dW sð Þ

�
:

ð27Þ

Let us consider the Picard iterations

Xε
n νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s′, Xε

n−1 sð Þ,DβXε
n−1 sð Þ

� �
ds

+
ðν
0
αφε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

n−1 sð ÞDβXε
n−1 sð Þ

� �
ds

�

+
ðν
0
εα ν − sð Þq−1Pq ν − sð Þg s, Xε

n−1 sð ÞDβXε
n−1 sð Þ

� �
dW sð Þ

�
,

ð28Þ

for n=1,2,..., and for every ν ∈ j, and X0ðνÞ = X0. For ν ∈ j
and n ∈A we denote

ℓ1 νð Þ = E sup
u∈ 0,ν½ �

d2∞

ðu
0
ν − sð Þq−1Pq ν − sð Þf s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

�

+
ðu
0
αφε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

�

+
ðu
0
εα ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
dW sð Þ

�
, 0Þ

≤ 3E sup
u∈ 0,ν½ �

d2∞

ðu
0
ν − sð Þq−1Pq ν − sð Þf s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds, 0h i

� �

+ 3E sup
u∈ 0,ν½ �

d2∞

ðu
0
αφε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0h i

� �

+ 3E sup
u∈ 0,ν½ �

d2∞

ðu
0
εα ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
dW sð Þ

� �
, 0h i

� �

≤ 3νE
ðν
0
d2∞ ν − sð Þq−1Pq ν − sð Þf s, Xε

0,DβXε
0 sð Þ

� �
, 0h i

� �
ds

+ 3α2E sup
u∈ 0,ν½ �

d2∞

ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0h i

� �

+ 12ε2αE
ðν
0
d2∞ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �D E
, 0h i

� �
ds

≤ 6Q2 T + 4ε2α
À Á

1 + E Xε½ �0
 ��� ���2� �

ν + 3α2E sup
u∈ 0,ν½ �

d2∞

Á
ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0h i

� �
,

ð29Þ

for α =H − 3/2 > 1. Hence

ℓ1 νð Þ ≤ 6Q2 T + 4ε2α
À Á

1 + E Xε½ �k kj j2
� �

ν + 3α2E sup
u∈ 0,ν½ �

d2∞

Á
ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0h i

� �
:

ð30Þ
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We have

E sup
u∈ 0,ν½ �

d2∞

ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0h i

� �

≤ E sup
u∈ 0,ν½ �

d2H

ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �
, 0

� �

≤ E sup
u∈ 0,ν½ �

ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �2
:

ð31Þ

By applying (7)–(31) and Holder inequality, we have

E sup
u∈ 0,ν½ �

ðu
0
φε sð Þ ν − sð Þq−1Pq ν − sð Þg s, Xε

0 sð Þ,DβXε
0 sð Þ

� �
ds

� �2

= E sup
u∈ 0,ν½ �

ðu
0

ðs
0
s − k′ + ε

� �α−1
dW k′

� �� �
ν − sð Þq−1Pq ν − sð Þg

�

Â s, Xε
0 sð Þ,DβXε

0 sð Þ
� �

ds
�2

= E sup
u∈ 0,ν½ �

ðu
0

ðu
0
ν − sð Þq−1Pq ν − sð Þg k′, Xε

0 k′
� �

,DβXε
0

��

Â k′
� �� ��

k′ − s + ε
� �α−1

dk′dW sð ÞÞ
2

≤ 4E
ðν
0

ðν
s
ν − sð Þq−1Pq ν − sð Þg k′, Xε

0 k′
� ��

,DβXε
0

�

Â k′
� �� �

k′ − s + ε
�α−1

dk′
� �2

ds

≤ 4E
ðν
0

ðν
s
ν − sð Þq−1Pq ν − sð Þg2 k′, Xε

0 k′
� �� ��

Â k′ − s + ε
� �α−1

dk′
� ðν

s
r′ − s + ε

� �α−1
dr′

� �
ds

≤
4
α2

ν + εð ÞαE
ðν
0
ν − sð Þq−1Pq ν − sð Þg2 k′, Xε

0 k′
� ��

,DβXε
0

Â k′
� �� �

k′ + ε
� �α

dk′ ≤ 4
α2

ν + εð Þ2αE
ðν
0
ν − sð Þq−1Pq ν − sð Þg2

Â k′, Xε
0 k′
� �

,DβXε
0 k′
� �� �

dk′ ≤ 8Q2

α2
T + εð Þ2α 1 + E Xε

0½ �j jk k2
� �

ν:

�

ð32Þ

Hence, from (30) and (32), we obtain

j1 νð Þ ≤ 6Q2 T + 4ε2α + 4 T + εð Þ2αÀ Á
1 + E Xε

0½ �0
��� ��� 2� �

νν,

ð33Þ

for every ν ∈ I. Then, similarly,

ℓn+1 νð Þ ≤ 3 ν + 4ε2α + 4 ν + εð Þ2αÀ Á
L2E

ðν
0
d2∞ Xε

n uð Þ, Xε
n−1 uð Þð Þds

≤ 3 ν + 4ε2α + 4 ν + εð Þ2αÀ Á
L2
ðν
0
E sup
u∈ 0,s½ �

d2∞ Xε
n uð Þ, Xε

n−1 uð Þð Þds

≤ 3 ν + 4ε2α + 4 ν + εð Þ2αÀ Á
L2
ðν
0
ℓn sð Þds:

ð34Þ

Therefore,

ℓn νð Þ ≤ 2Q23n ν + 4ε2α + 4 ν + εð Þ2αÀ Án
Á 1 + E Xε

0½ �0
��� ��� 2� �

L2 n−1ð Þ t
n

n!
, ν ∈ j, n ∈N :

ð35Þ

Using Chebyshev inequality, we can determine

P sup
u∈I

d2∞ Xε
n uð Þ, Xε

n−1 uð Þð Þ > 1
2n

� �
≤ 2nℓn Ið Þ: ð36Þ

The series ∑∞
n=12nℓnðTÞ is convergent. Using Borel-

Cantelli lemma, we have

P sup
u∈I

d2∞ Xε
n uð Þ, Xε

n−1 uð Þð Þ > 1ffiffiffi
2

p� �n inf initelyof ten

0
B@

1
CA = 0:

ð37Þ

There is a n0ðωÞ such that for approximately every ω ∈Ω
,

sup
u∈I

d2∞ Xε
n uð Þ,∞ð Þ2 Xε

n−1 uð Þð Þ ≤ 1ffiffiffi
2

p� �n , if n ≥ n0: ð38Þ

The sequence fXε
nð:,ωÞg is uniformly convergent to d2∞

-continuous fuzzy process Xεð:,ωÞ for every ω ∈Ωε, in which
Ωc ∈N and ℘ðΩcÞ = 2. We can define the mapping Xε : j
×Ω⟶FðRmÞ, as Xεð:,ωÞ = Xεð:,ωÞ if ω ∈Ωc and Xεð:,ωÞ
as freely chosen fuzzy function when ω ∈ΩΩc. For every α
∈ ½1, 2� and every ν ∈ j with a.e., we have

dH Xε
n νð Þ½ �α, Xε νð Þ½ �αð Þ⟶ 0asn⟶∞: ð39Þ

Hence, Xε will be continuous FSP. Therefore, by Xε
n ∈

L2ðj ×Ω,A ;FðRmÞÞ, we have Xε ∈L2ðj ×Ω,A ;FðRmÞÞ.
Consequently, as n approaches infinity, we can prove

E sup
ν∈I

d2∞ Xε
n νð Þ, Xε νð Þð Þ + d2∞ Xε

n νð Þ,Qq νð ÞXε
0 + Gq νð ÞXε

1
ÀÂ

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� ��#2

,

ð40Þ
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tends to zero. Now,

E sup
ν∈I

d2∞ Xε νð Þ,Qq νð ÞXε
0 +Gq νð ÞXε

1
ÀÂ

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� ��

� = 0:

ð41Þ

Therefore,

sup
ν∈I

d2∞ Xε νð Þ,Qq νð ÞXε
0 +Gq νð ÞXε

1
ÀÂ

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� ��

� = 0:

ð42Þ

This demonstrates existence of a strong solution.
We suppose that Xε, Yε : j ×Ω⟶FðRmÞ are strong

solutions. Let

ℓ νð Þ = E sup
u∈ 0,T½ �

d2∞ Xε uð Þ, Yε uð Þð Þ: ð43Þ

Then, using computations similar to those used in exist-
ing case, we obtain

ℓ νð Þ ≤ 3 ν + 4ε2α + 4 ν + εð Þ2αÀ Á
L2E

ðν
0
d2∞ Xε sð Þ, Yε sð Þð Þds

≤ 3 T + 4ε2α + α2
À Á

L2
ðν
0
ℓ sð Þds:

ð44Þ

When the Gronwall inequality is applied, ℓðνÞ = 0 is
obtained for ν ∈ j. Therefore,

sup
ν∈j

d2∞ Xε νð Þ, Yε νð Þð Þ = 0, ð45Þ

which completes the uniqueness proof.

Lemma 13. For every ε > 0 and 1 < α < 3/2, we have

ðν
s

k′ − s + ε
� �α−1

− k′ − s
� �α−1

� �
dk′ ≤ α + 1

α
εα: ð46Þ

Proof. To obtain the function fðxÞ = xα−1, we use the finite-
increments formula:

x + εð Þα−1 − xα−1 = α − 1ð Þ x + θεð Þ α−2ð Þ, 1 < θ < 2, ð47Þ

then

k′ − s + ε
�α−1

− k′ − s
�α−1

����
���� ≤ α − 1j j k′ − s

�� ��α−2ε: ð48Þ

Hence,

ðν
s

k′ − s + ε
� �α−1

− k′ − s
� �α−1

����
����dk′

=
ðs+ε
s

k′ − s + ε
� �α−1

− k′ − s
� �α−1

����
����dk′

+
ðν
s+ε

k′ − s + ε
� �α−1

− k′ − s
� �α−1

����
����dk′

≤
ðs+ε
s

2 k′ − s
� �� �α−1

− k′ − s
� �α−1

����
����dk′

+ α − 1j jε
ðν
s+ε

k′ − s
�� ��α−2dk′:

ð49Þ

Therefore,

ðν
s

k′ − s + ε
� �α−1

− k′ − s
� �α−1

����
����dk′ ≤

ðs+ε
s

k′ − s
� �α−1

dk′

+ α − 1j jε
ðν
s+ε

k′ − s
� �α−2

dk′ ≤ 1
α
εα + α − 1j jε 1

α − 1 ε
α−1

� �

= α + 1
α

εα:

ð50Þ

Proposition 14. In L2ðj ×ΩÞ, the solution XεðνÞ of Equa-
tion (22) converges to solution XðνÞ of Equation (20) as ε
⟶ 0 uniformly with regard to ν ∈ ½0,I�.

Proof. Assume the following approximation of equations
based on Equation (20):

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ +Gq νð ÞX1

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, X sð Þ,DβX sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, X sð Þ,DβX sð Þ

� �
dBH sð Þ

� �
,

Xε νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
ν − sð Þq−1Pq ν − sð Þf s, Xε sð Þ,DβXε sð Þ

� �
ds

+
ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dBε

H sð Þ
� �

:

ð51Þ
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We can write

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ ≤ 2E sup
u∈ 0,ν½ �

Á
ðu
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f s, Xε sð Þ,DβXε sð Þ
� �� �

ds

+ 2E sup
u∈ 0,ν½ �

d2∞

ð∞
0

ν − sð Þq−1Pq ν − sð Þg
��

Á s, X sð Þ,DβX sð Þ
� �

dBH sð Þ
E
,

ðu
0
ν − sð Þq−1Pq ν − sð Þg

�

Á s, Xε sð Þ,DβXε sð Þ
� �

dBε
H sð Þ

E
Þ:

ð52Þ

Then

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ ≤ 2E sup
u∈ 0,ν½ �

Á
ðu
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f s, Xε sð Þ,DβXε sð Þ
� �� �

ds

+ 4E sup
u∈ 0,ν½ �

d2∞

ðu
0
ν − sð Þq−1Pq ν − sð Þg

��

Á s, X sð Þ,DβXε sð Þ
� ��

dBH sð Þi,
ðu
0
ν − sÞq−1Pq ν − sð ÞgÀ�

Á s, X sð Þ,DβXε sð Þ
� ��

dBε
H sð ÞiÞ + 4E sup

u∈ 0,ν½ �
d2∞

Á
ðu
0
ν − sð Þq−1Pq ν − sð Þg s, X sð Þ,DβXε sð Þ

� ��
dBε

H sð Þ
� �

,
�

Á
ðu
0

ν − sÞq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ
� �� �

dBε
H sð Þ

� ��

= 2E
ðν
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f s, Xε sð Þð Þ,DβXε sð Þ

� �
ds

+ 4E sup
u∈ 0,I½ �

ðν
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð ÞDβXε sð Þ

� �
dBε

H sð Þð
����

− dBH sð ÞÞj2 + 4E sup
u∈ 0,ν½ �

ðν
0
g s, X sð ÞDβX sð Þ
� �����

− g s, Xε sð ÞDβXε sð Þ
� �

dBε
H sð Þ

���2:
ð53Þ

To get the solution, consider Equation (6):

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ ≤ 2E
ðν
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f

�

Á s, Xε sð Þ,DβXε sð Þ
� ��

ds + 8ε2αE sup
u∈ 0,ν½ �

ðu
0
ν − sð Þq−1Pq ν − sð Þg

����
Á s, Xε sð Þ,DβXε sð Þ
� �

dW sð Þ
���2 + 8α2E sup

u∈ 0,ν½ �

ðu
0
ν − sð Þq−1Pq ν − sð Þg

����
Á s, Xε sð Þ,DβXε sð Þ
� � ðs

0
s − k′ + ε

� �α−1
�

− s − k′
� �α−1

dW k′
� ��

dsj
2
+ 8α2E sup

u∈ 0,ν½ �

ðu
0

g s, X sð Þ,DβXε sð Þ
� ������

− g s, Xε sð Þð ÞÞ
ðs
0
s − k′ + ε

� �α−1
dW k′

� �� �
dsj

2

+ 8ε2αE sup
u∈ 0,ν½ �

ðu
0

g s, X sð Þ,DβX sð Þ
� �

− g s, Xε sð Þ,DβXε sð Þ
� �� �

dW sð Þ
����

����
2
:

ð54Þ

Then,

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ ≤ 2E
ðν
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f

�
Á s, Xε sð Þ,DβXε sð Þ
� ��

ds + 8ε2αE,

sup
u∈ 0,ν½ �

ðu
0
ν − sð Þq−1Pq ν − sð Þg s, Xε sð Þ,DβXε sð Þ

� �
dW sð Þ

����
����
2
+ 8α2E,

sup
u∈ 0,ν½ �

ðu
0

ðu
s
ν − sð Þq−1Pq ν − sð Þg k′, Xε k′

� ��
,DβX

����
Á ε k′

� �
k′ − s + ε

� �α−1
�

− s − k′
� �α−1

dk′dW sð Þ
����
2

+ 8α2E sup
u∈ 0,ν½ �

ðu
0

g k′, X k′
� �� ��

− g s, Xε sð Þ,DβX ε sð Þð Þ
�����

Á k′ − s + ε
� �α−1

dk′dW sð Þ
����
2
+ 8ε2αE sup

u∈ 0,ν½ �
j

Á
ðu
0

g s, X sð Þ,DβX sð Þ
� �

− g s, Xε sð Þ,DβXε sð Þ
� �� �

dW sð Þ
����
2
:

ð55Þ

Apply the Holder inequality, Doob inequality, and Itô
isometry property to gain

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ ≤ 2E
ðν
0
d2∞ f s, X sð Þ,DβX sð Þ

� �
, f

�

Á s, Xε sð Þ,DβXε sð Þ
� ��

ds + 32ε2α
ðν
0
ν − sð Þq−1Pq ν − sð Þg2

Á s, Xε sð Þ,DβX sð Þ
� �

ds + 32α2E
ðν
0

ðν
s
ν − sð Þq−1Pq ν − sð Þg2

�

Á k′, Xε k′
� ��

,DβXε k′
� �

k′ − s + ε
� �α−1

�

− k′ − s
� �α−1

�
dk′ ×

ðν
s

k′ − s + ε
� �α−1

�

− k′ − s
� �α−1

�
dk′�ds + 32α2E

ðν
0

ðν
s

g k′, X k′
� �� ���

− g s, Xε sð Þ,DβXε sð Þ
� �2

k′ − s + ε
� �α−1

dk′
�

×
ðν
s

k′ − s + ε
� �α−1

dk′
� �

ds + 32ε2αE
ðν
0

g s, X sð Þ,DβX sð Þ
� ��

− g s, Xε sð Þ,DβXε sð Þ
� ��2

ds:

ð56Þ

We conclude that using similar arguments to (32), from
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(46), and assumptions ðA1Þ − ðA3Þ:

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ

≤ 2L2E
ðν
0
d2∞ X sð Þ, Xε sð Þð Þds + 64ε2αQ2

ðν
0

1 + Ej Xε sð Þ½ �0
� �

ds

+ 64Q2 T + εð Þ2α α + 1
α

εα
ðν
0

1 + E Xε sð Þ½ �0
 ��� ���2� �

ds

+ 32L2 T + εð Þ2αE
ðν
0
d2∞ X sð Þ, Xε sð Þð Þds

+ 32L2ε2αE
ðν
0
d2∞ X sð Þ, Xε sð Þð Þds:

ð57Þ

Hence,

E sup
u∈ 0,ν½ �

d2∞ X uð Þ, Xε uð Þð Þ

≤ 2L2 + 32L2 T + εð Þ2α + 32L2ε2α
À Áðν

0
E sup
u∈ 0,s½ �

d2∞ X uð Þ, Xε uð Þð Þds

+ 64ε2αQ2 + 64Q2 T + εð Þ2α α + 1
α

εα
� �ðν

0
1 + E Xε sð Þ½ �2

 ��� ���2� �
ds:

ð58Þ

The proof is completed by applying Gronwall’s lemma to
E supu∈½0,ν�d2∞ðXðuÞ, XεðuÞÞ⟶ 0 as ε⟶ 0.

3.1. Example in Finance. The preceding crisp SFDE is often
used in financial modeling:

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞX sð Þds

+
ðν
0
σ ν − sð Þq−1Pq ν − sð ÞX νð ÞdBH sð Þ

� �
,

ð59Þ

where FBM is underlying stochastic process. Because of
FBM’s long-range dependence and self-similarity property,
it is a good fit for describing financial quantities. On the
other hand, the equation that includes the uncertainties
can be used to model the price dynamics. As a result, fuzzy
processes in equations are used to model. When dealing with
linear coefficients, we get an explicit solution to Equation
(20). Suppose FSDE that meet Theorem 12’s assumptions
as follows:

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞX sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ X1
l sð Þ + X1

u sð ÞÀ Á
dBH sð Þ

� �
,

ð60Þ

X : Rm
+ ×Ω⟶FðRmÞ,BH is an FBM, X1

l , X1
u : Rm

+ ×Ω

⟶ Rm that is ½XðνÞ�1 = ½X1
l ðνÞ, X1

uðνÞ�, X0 ∈L
2ðΩ,N 0,℘;

FðRmÞÞ, and μ, σ ∈ Rm. To find the closed explicit form of
the solution to μ ≥ 0, we need to solve below system of
equations (60).

X1
l νð Þ =Qq νð ÞX1

l 0ð Þ + Gq νð ÞXl′1 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞX1

l sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ X1
l sð Þ + X1

u sð ÞÀ Á
dBH sð Þ

� �
,

X1
u νð Þ =Qq νð ÞX1

u 0ð Þ +Gq νð ÞXu′1 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞX1

u sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ X1
l sð Þ + X1

u sð ÞÀ Á
dBH sð Þ

� �
,

ð61Þ

then,

X1
l νð Þ + X1

u νð Þ =Qq νð ÞX1
l 0ð Þ + Gq νð ÞXl′1 0ð Þ +Qq νð ÞX1

u 0ð Þ
+Gq νð ÞXu′1 0ð Þ +

ðν
0
μ ν − sð Þq−1Pq ν − sð Þ X1

l sð Þ + X1
u

À Á
ds

+
ðν
0
σ ν − sð Þq−1Pq ν − sð Þ X1

l sð Þ + X1
u sð ÞÀ Á

dBH sð Þ
� �

:

ð62Þ

The approximation solution of Equation (62) given by
Equation (6) is

Xε1
l νð Þ + Xε1

u νð Þ =Qq νð ÞXε1
l 0ð Þ + Gq νð ÞXl′ε1 0ð Þ

+Qq νð ÞXε1
u 0ð Þ + Gq νð ÞXu′ε1 0ð Þ

+
ðν
0
μ + σαφε sð Þ ν − sð Þq−1Pq ν − sð Þ Xε1

l sð Þ + Xε1
u

À ÁÀ Á
ds

+
ðν
0
σεα ν − sð Þq−1Pq ν − sð Þ Xε1

l sð Þ + Xε1
u sð ÞÀ Á

dW sð Þ:

ð63Þ

Therefore, one can derive a unique solution from explicit
solution of crisp linear SDEs.

Xε1
l νð Þ + Xε1

u νð Þ = Qq νð ÞXε1
l 0ð Þ + Gq νð ÞXl′ε1 0ð Þ

�
+Qq νð ÞXε1

u 0ð Þ +Gq νð ÞXu′ε1 0ð Þ
�
exp μν + σα

ðν
0
φε sð Þds

�

−
1
2σ

2ε2αν + σεαW νð Þ
�
= Qq νð Þ Xε1

l 0ð Þ +mXε1
l

À Á
0ð ÞÀ

+Gq νð ÞXl′ε1 0ð Þ +Qq νð ÞXε1
u 0ð Þ

+Gq νð ÞXu′ε1 0ð Þ
�
exp μν + σBε

H νð Þ − 1
2σ

2ε2αν

� �
:

ð64Þ
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Now, we apply a similar method to each α ∈ ½1, 2� to gen-
erate the following system:

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ +Gq νð ÞXl′εα 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

l sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ Xε1
l sð Þ + Xε1

u sð ÞÀ Á
dBε

H sð Þ,

Xεα
u νð Þ =Qq νð ÞXεα

l 0ð Þ + Gq νð ÞXl′εα 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

u sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ Xε1
l sð Þ + Xε1

u sð ÞÀ Á
dBε

H sð Þ:

ð65Þ

We use solution (64) to get below system for μ ≥ 0:

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ +Gq νð ÞXl′εα 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

l sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ Xε1
l 0ð ÞÀ

+ Xε1
u 0ð ÞÁ exp μs + σBε

H sð Þ − 1
2σ

2ε2αs
� �

dBε
H sð Þ,

Xεα
u νð Þ =Qq νð ÞXεα

u 0ð Þ +Gq νð ÞXu′εα 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

u sð Þds

+
ðν
0

σ

2 ν − sð Þq−1Pq ν − sð Þ Xε1
l 0ð ÞÀ

+ Xε1
u 0ð ÞÁ exp μs + σBε

H sð Þ − 1
2σ

2ε2αs
� �

dBε
H sð Þ:

ð66Þ

Alternatively, we haveW in terms of the Wiener process:

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ +Gq νð ÞXεα
l 0ð Þ

+
ðν
0
μXεα

l sð Þ + α
σ

2 Xε1
l 0ð Þ + Xε1

u

À Á
×
ðν
0
φε sð Þ exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ εα
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ,

ð67Þ

Xεα
u νð Þ =Qq νð ÞXεα

u 0ð Þ + Gq νð ÞXεα
u 0ð Þ +

ðν
0
μXεα

u sð Þ

+ α
σ

2 Xε1
l 0ð Þ + Xε1

u

À Á
×
ðν
0
φε sð Þ exp

Á μs + σα
ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ εα
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ:

ð68Þ
Use Theorem 12 in [35] to find unique solution to (67)

in the following format:

Xεα
l νð Þ = eμνQq νð ÞXεα

l 0ð Þ + eμνGq νð ÞXεα
l 0ð Þ

+ eμνα
σ

2 Xε1
l 0ð Þ + Xε1

u

À Á
×
ðν
0
φε sð Þ exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ eμνεα
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ,

Xεα
u νð Þ = eμνQq νð ÞXεα

l 0ð Þ + eμνGq νð ÞXεα
l 0ð Þ

+ eμνα
σ

2 Xε1
l 0ð Þ + Xε1

u

À Á
×
ðν
0
φε sð Þ exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ eμνεα
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ:

ð69Þ

Then,

Xεα
l νð Þ = eμν Qq νð ÞXεα

l 0ð Þ + Gq νð ÞXl′εα 0ð Þ + σ

2 Xε1
l 0ð ÞÀh

+ Xε1
u 0ð ÞÁ × ðν

0
exp σBε

H sð Þ − 1
2 σ

2ε2αs
� �

dBε
H sð Þ�,

Xεα
u νð Þ = eμν Qq νð ÞXεα

u 0ð Þ + Gq νð ÞXu′εα 0ð Þ + σ

2 Xε1
l 0ð ÞÀh

+ Xε1
u 0ð ÞÁ × ðν

0
exp σBε

H sð Þ − 1
2 σ

2ε2αs
� �

dBε
H sð Þ�:

ð70Þ

As a result, the fuzzy approximation solution for μ ≥ 0 is

Xε νð Þ =Qq νð Þeμν X 0ð Þ +Gq νð ÞeμνX ′ 0ð Þ
�

+ σ

2 Xε1
l 0ð Þ + Xμν

u 0ð ÞÀ Á
eμν

ðν
0
exp

�

Á σBε
H sð Þ − 1

2σ
2ε2αs

� �
dBε

H sð Þ
�
:

ð71Þ
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For μ < 0, we can demonstrate that

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ + Gq νð ÞXl′εα 0ð Þ +
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

u sð Þds

+ α
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
φε sð Þ exp

Á μs + σα
ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ εα
α

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
× ,

ð72Þ

Xεα
u νð Þ =Qq νð ÞXεα

u 0ð Þ + Gq νð ÞXu′εα 0ð Þ
+
ðν
0
μ ν − sð Þq−1Pq ν − sð ÞXεα

l sð Þds + α
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
φε sð Þ exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
ds

+ εα
α

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp μs + σα

ðs
0
φε uð Þdu − 1

2σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ:

ð73Þ

The following matrix represents the unique solution
to (72):

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ cosh μνð Þ + Gq νð ÞXl′εα 0ð Þ cosh μνð Þ
+Qq νð ÞXεα

u 0ð Þ sinh μνð Þ +Gq νð ÞXu′εα 0ð Þ sinh μνð Þ
+ eμνα

σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
φε sð Þ exp σα

ðs
0
φε uð Þdu − 1

2 σ
2ε2αs + σεαW sð Þ

� �
ds

+ eμνεα
α

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp σα

ðs
0
φε uð Þdu − 1

2 σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ,

Xεα
u νð Þ =Qq νð ÞXεα

l 0ð Þ cosh μνð Þ + Gq νð ÞXl′εα 0ð Þ cosh μνð Þ
+Qq νð ÞXεα

u 0ð Þ sinh μνð Þ +Gq νð ÞXu′εα 0ð Þ sinh μνð Þ
+ eμνα

σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
φε sð Þ exp σα

ðs
0
φε uð Þdu − 1

2 σ
2ε2αs + σεαW sð Þ

� �
ds

+ eμνεα
α

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
×
ðν
0
exp σα

ðs
0
φε uð Þdu − 1

2 σ
2ε2αs + σεαW sð Þ

� �
dW sð Þ:

ð74Þ

Then,

Xεα
l νð Þ =Qq νð ÞXεα

l 0ð Þ cosh μνð Þ +Gq νð ÞXl′εα 0ð Þ cosh μνð Þ
+Qq νð ÞXεα

u 0ð Þ sinh μνð Þ + Gq νð ÞXu′εα 0ð Þ sinh μνð Þ

+ eμν
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Áðν
0
exp σBε

H sð Þ − 1
2 σ

2ε2αs
� �

dBε
H sð Þ,

Xεα
u νð Þ =Qq νð ÞXεα

l 0ð Þ cosh μνð Þ + Gq νð ÞXl′εα 0ð Þ cosh μνð Þ
+Qq νð ÞXεα

u 0ð Þ sinh μνð Þ + Gq νð ÞXu′εα 0ð Þ sinh μνð Þ

+ eμν
σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Áðν
0
exp σBε

H sð Þ − 1
2 σ

2ε2αs
� �

dBε
H sð Þ:

ð75Þ

As a result, the fuzzy approximation solution for μ < 0 is

Xε νð Þ = Qq νð ÞX 0ð Þ cosh μνð Þ +Gq νð ÞX ′ 0ð Þ cosh μνð Þ
+Qq νð ÞX 0ð Þ sinh μνð Þ + Gq νð ÞX ′ 0ð Þ sinh μνð Þ

+ σ

2 Xε1
l 0ð Þ + Xε1

u 0ð ÞÀ Á
eμν

ðν
0
exp σBε

H sð Þ − 1
2σ

2ε2αs
� �

dBε
H sð Þ

� �
:

ð76Þ

4. Application to a Model of
Population Dynamics

Consider a population of a particular species that lives on a
specific piece of land. The number of individuals in the
underlying population at the instant ν is denoted by XðνÞ.
The Mslthus differential equation describes a conventional,
crisp, deterministic model of population evolution:

c
0D

α
νX νð Þ = N − Lð ÞX νð Þ + f ν, X νð Þ,DβX νð Þ

� �
ds, ν ∈ 0,I½ �,

ð77Þ

X 0ð Þ +m Xð Þ = X0, ð78Þ

X ′ 0ð Þ = X1: ð79Þ
The reproduction and mortality coefficients are defined

by the constants N and L, respectively. The notation X0 −
mðXÞ and X1 denotes the initial number of people. The X
result of this equation is

X νð Þ = X0 exp aνf g, where a =N − L: ð80Þ

Assume that a ≠ 0 is true. Let us observe that the mild
solution of Equation (77):

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ +Gq νð ÞX1

+ 1ffiffiffi
γ

p a
ðν
0
ν − sð Þq−1Pq ν − sð Þf ν, X νð Þ,DβX νð Þ

� �
ds:

ð81Þ

In the next section, we will apply the previous model to
the situation when there are certain uncertainties in XðνÞ.
Let us introduce an observer (who keeps an eye on this pop-
ulation). Assume that the population’s state is determined by
random factors and that the observer can only explain the
population’s state using linguistic terms, such as “very
small,” “small,” “not big,” and “large”. In this way, the pop-
ulation growth model incorporates two types of uncertainty.
The first type of uncertainty belongs to probability theory,
whereas the second belongs to fuzzy set theory. We could
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write the model with uncertainties like this at this point:

X ν, ωð Þ =Qq νð Þ X0 −m Xð Þð Þ +Gq νð ÞX1

+ 1ffiffiffi
γ

p a
ðν
0
ν − sð Þq−1Pq ν − sð Þf ν, X νð Þ,DβX νð Þ

� �
, ω

�
ds,

ð82Þ

where ω represents a random factor (a probability space ð
Ω,N ,℘Þ is taken into account; ω ∈Ω, X0 −mðXÞ, and X1
are a FRV; the integral has become a fuzzy integral; and
the solution X is now a fuzzy stochastic process X : ½0, T�
×FðRÞ. Such problem 39 has its differential counterpart,
and exemplifies the random fuzzy integral equations or,
equivalently, random fuzzy differential equations (see 36).

Consider that some people leave their homeland and
aliens enter the population and that this occurs in a disor-
derly manner. Allow Brownian motion B to model the
aggregated immigration process. The population dynamics
may now be simulated using the following equation with
uncertainties:

X ν, ωð Þ =Qq νð Þ X0 −m Xð Þð Þ + Gq νð ÞX1

+ 1ffiffiffi
γ

p a
ðν
0
ν − sð Þq−1Pq ν − sð Þf

Á ν, X νð Þ,DβX νð Þ
� �

, ω
� �

ds + B ν, ωð Þh i:

ð83Þ

This equation can be rewritten as follows (we will not
write the argument ω in the next section):

X νð Þ =Qq νð Þ X0 −m Xð Þð Þ +Gq νð ÞX1

+ 1ffiffiffi
γ

p a
ðν
0
ν − sð Þq−1Pq ν − sð Þf ν, X νð Þ,DβX νð Þ

� �
ds

+ B sð Þh i:
ð84Þ

Alternatively, in a symbolic, differential form:

c
0D

α
νX νð Þ = N − Lð ÞX νð Þ + N − Lð ÞX ′ νð Þ

+ f ν, X νð Þ,DβX νð Þ
�� �i

ds + dB tð Þh i, ν ∈ 0,I½ �,
ð85Þ

X 0ð Þ +m Xð Þ = X0, ð86Þ

X ′ 0ð Þ = X1, ð87Þ
So we get to the SFDE of type 2.1, where f : ½0, T� × Ξ

×FðRÞ⟶FðRÞ is given by fðν, uÞ = a:u, and g : ½0, T� ×
Ω ×FðRÞ⟶ R is defined by gðν, uÞ = 1. The coefficients
of such equations satisfy the requirements ðA1Þ − ðA3Þ. Con-
sidering that X0 : Ω⟶FðRÞ is a FRV with the property
that X0 −mðXÞ ∈ L2ðΩ,N ,℘;FðRÞÞ, X1 ∈ L2ðΩ,N ,℘;FðRÞÞ
and X0 −mðXÞ, X1 are N -measurable, Equation (85), or
equivalently Equation (84), has a unique solution.

In the sequel, we shall establish the explicit solution to
(84) with a ≠ 0. To this end, let us denote the α-levels ðα
∈ ½1, 2�Þ of the solution X : ½0, T� ×Ω⟶FðRÞ and α
-levels of initial value X0 −mðXÞ: Ω⟶FðRÞ and X1 : Ω
⟶FðRÞ as

X νð Þ½ �α = Lα νð Þ,Uα νð Þ½ � and X0½ �α = Xα
0,L, L, Xα

0,U
Â Ã

, ð88Þ

respectively. Obviously, Lα,Uα : ½0, T� ×Ω⟶ R are the
stochastic processes; also, Xα

0,L −mðXÞα, Xα
0,U −mðXÞα : Ω

⟶ R and Xα
1,L, Xα

1,U : Ω⟶ R are the random variables.
If the FSP X is a solution to (84), then for every ν ∈ ½0,
T�, the following property should hold:

P X νð Þ½ �α = να−1Pα νð Þ Qq νð Þ X0 −m Xð Þð ÞÂ ÃαÀ
+ να−1Pα νð Þ Gq νð ÞX1

Â Ãα
+ a

ðν
0
ν − sð Þq−1Pq ν − sð Þf ν, X νð Þ,DβX νð Þ

� �
ds

� �α

+
ðt
0
dB sð Þ

� �� �α
,∀α ∈ 1, 2½ �

�
= 2:

ð89Þ

5. Example

Assume the following FSDEs:

c
0D

γ
νX νð Þ = X νð Þ + ν2 + sin2X + cos 2X, ð90Þ

where ν ∈ ½1, 2�, f ðν, XðνÞÞ = YðνÞ + ν2, gðν, XðνÞÞ = sin2X
+ cos 2X, 3/2 < β < 2. It is easy to verify that f , σ satisfy the
A1 − A3. Define �f ðX, YÞ as follows:ð2

1
�f X, Yð Þ ν2 + ν

À Á
dν =

ð2
1
�f ν, X, Yð Þ ν2 + ν

À Á
dν: ð91Þ

We can prove that �f ðX, YÞ = ðν3/3Þ + ðν2/2Þ. Similarly,
�gðX, YÞ = ð1/2ÞðX + sin 2XÞ + ð1/4Þ sin 2X. The averaging
form of (90) can be written as

c
0D

γ
νY νð Þ = Y νð Þ ν3

3 + ν2

2

� �
+ 1

2 X + sin 2Xð Þ + 1
4 sin 2X

� �
dBH

ν :

ð92Þ

As ε approaches zero, the solutions XðνÞ and YðνÞ are
equal in the sense of mean square, according to Theorem
12. As a result, the findings may be verified.

6. Conclusion

In order to model fuzziness in the Liouville form FBM, we
created a fuzzy stochastic differential equation with a num-
ber of characteristics, such as long-range dependence and
unpredictability. We applied an approximation strategy to
fractional stochastic integrals and embedded the Itô classical
integral in fuzzy set space. We used the Picard iteration
method to examine the existence-uniqueness of solutions.
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We demonstrated that the approximate solution converges
uniformly to the precise solution. We also demonstrate the
existence and uniqueness of solutions to FFSDEs under the
Lipschitzian coefficient. Illustrations of the application to a
population dynamics model are also provided. The example
is also illustrated at the end of the text. Future work may also
involve generalizing other tasks, adding observability, and
developing the concept that was introduced in this mission.
This is a fertile field with numerous research initiatives that
have the potential to produce a wide range of theories and
applications.
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