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'e distance d(z1, z2) from vertex z1 ∈ V(G) to z2 ∈ V(G) is minimum length of (z1, z2)-path in a given connected graph G

having E(G) and V(G) edges and vertices’/nodes’ sets, respectively. Suppose Z � z1, z2, z3, . . . , zm􏼈 􏼉⊆V(G) is an order set and
c ∈ V(G), and the code of c with reference to Z is the m-tuple {d(c, z1), d(c, z2), d(c, z13), . . ., d(c, zk)}. 'en, Z is named as the
locating set or resolving set if each node of G has unique code. A locating set of least cardinality is described as a basis set for the
graph G, and its cardinal number is referred to as metric dimension symbolized by dim(G). Metric dimension of certain
subdivided convex polytopes STn has been computed, and it is concluded that just four vertices are sufficient for unique coding of
all nodes belonging to this family of convex polytopes.

1. Introduction

In the discipline of computer science and mathematics,
graph theory [1] is the survey of graphs that considers the
link between edges and vertices. 'is is the most celebrated
discipline these days that has applications [2] in computer
science, information technology, biosciences, mathematics,
social sciences, physics, chemistry, and linguistics. To il-
lustrate pairwise relationship of objects, graph theory
analysis is very important [3, 4].

Formally, a graph is the collection of vertices and edges.
Among several types of different graphs, we will analyze a
particular class of graph known as convex polytopes [5].
Convex polytopes are the principal geometric structures
which are under investigation since antiquity. 'e charm of
this concept is nowadays complemented by their signifi-
cance for various mathematical fields, extending from al-
gebraic geometry, linear programming, integration, and
combinatorial optimization. Convex polytope is the simplest
kind of polytopes [6] which satisfies the property of convex

set in k-dimensional Euclidean space Rk. Convex polytopes
play a vital part in enormous areas of mathematics as well as
in applied disciplines, but its role in linear programming is
most influential [7, 8].

Moreover, subdividing is a process in which we add an
extra vertex on each edge of the graph in such a way such
that each will be splitted into two edges, and the resulting
graph is called subdivided graph of the original graph G.
Since a couple of years, the variables associated with
distances in graphs have enchanted the focus of various
researchers, but in the recent years, the phenomenon that
has centered certain surveys is termed as metric dimen-
sion [9]. 'e distance d(z1, z2) from vertex z1 ∈ V(G) to
z2 ∈ V(G) is minimum length of (z1, z2)-path in a given
connected graph G having E(G) and V(G) edges and
vertices’/nodes’ sets, respectively. Suppose Z � z1,􏼈

z2, z3, . . . , zm}⊆V(G) is an order set and c ∈ V(G); the code
of c with reference to Z is the m-tuple {d(c, z1), d(c, z2),
d(c, z13), . . ., d(c, zk)}. 'en, Z is named as the locating set
or resolving set if each node of G has a unique code. A
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locating set of least cardinality is described as a basis set
for the graph G, and its cardinal number is referred as
metric dimension symbolized by dim(G). Moreover, if
every member of a family of graphs possess the same
metric dimension, then it is known as family with con-
stant metric dimension [10, 11].

To find intruder’s location in a network, Slater, in
[12, 13], describedmetric dimension. Harary andMelter [14]
are also the founder of metric dimension. 'e concept of
constant metric dimension of certain class of convex pol-
ytopes is studied in [15, 16]. Generalization of Petersen
graphs with its Bounden metric dimension has been studied
in [3]. It is given in [17] that if we remove the join of the
nodes bi and bi+1, the resulting class of convex polytopes is
Tn, as given in Figure 1, where both the categories of convex
polytopes have identical metric dimension 3.

Metric dimension of a specific class of convex polytope
has been studied in this paper. 'e scope of metric di-
mension is broadened, the generalized family of convex
polytope undergoes subdivision of Tn, and the metric di-
mension of subdivided convex polytope STn has been de-
termined. 'e set of vertices that belongs to the graph of
subdivided convex polytope STn consists of
fi; n≥ i≥ 1 and n � 2k􏼈 􏼉∪ gi; n≥ i≥ 1 and n � 2k􏼈 􏼉 ∪ hi; 1􏼈

≤ i≤ k}∪ li; 1≤ i≤ k􏼈 􏼉∪ mi; 1≤ i≤ k and n � 2k􏼈 􏼉. 'e family
of vertices on inner cycle is fi; n≥ i≥ 1 and n � 2k􏼈 􏼉 and
collection of vertices of outer cycle is
mi; 1≤ i≤ k and n � 2k􏼈 􏼉. 'e collection of vertices assigned
to central cycles is hi; 1≤ i≤ k􏼈 􏼉∪ li; 1≤ i≤ k􏼈 􏼉. 'is study
comprises of three main theorems which define its scope.
Minimal cardinal number for the locating set of subdivided
convex polytope STn is greater than two and is the topic of
first theorem. In the second theorem, the work is extended to
prove that minimal cardinality of the resolving set of convex
polytope is greater than 3. Finally, it is demonstrated in the
third theorem that the subdivided convex polytope STn has
metric dimension equal to 4, and the formulation for the
subdivided convex polytope STn is presented, as given in
Figure 2. Lemma 1 and 'eorem 1 presented in [15] were
useful in finding the results of this paper.

Lemma 1. Let Z be a locating set for a connected graph G and
z1, z2 ∈ V(G). If d(z1, z)≠d(z2, z),∀z ∈ V(G)∖ z1, z2􏼈 􏼉,
then z1, z2􏼈 􏼉∩Z≠ ϕ.

Theorem 1. Let G be a graph with metric dimension 2, and
let the basis set in G be z1, z2􏼈 􏼉 ⊂ V(G). 2en, the following
are true:

(a) 2ere is a unique path between z1 and z2

(b) 2e degree of each z1 and z2 is at most 3

2. Main Results

Theorem 2. Prove that minimal cardinality for the locating
set of subdivided convex polytope STn is greater than 2.

Proof. To prove that minimal cardinality for the locating set
of subdivided convex polytope STn is greater than 2, the
following cases exist.

Case I: both locating nodes have a place in the inner
cycle. Without loss of generality, we can assume that
the first locating node is f1. Assume that the other
locating node is ft(k + 1≥ t≥ 2). 'us, Z � f1, ft􏼈 􏼉 is
the possible locating set. If t varies from 2 to k, then
r(fn/ f1, ft􏼈 􏼉) � (1, t) � r(gn/ f1, ft􏼈 􏼉) and
r(g1/ f1, ft􏼈 􏼉) � r(gn/ f1, ft􏼈 􏼉) � (1, t), for t� k+ 1,
which contradict unique representation.
Case II: one vertex has a place on the inner cycle, and
the other has a place with the family of points whose
distance from the inward cycle is 1. With no loss of
universality, we can assume that the first locating node
is f1. Assume the other node is gt(k + 1≥ t≥ 1). 'us,
Z � f1, gt􏼈 􏼉 is the possible locating set. If t varies from
1 to k− 1 when t is odd, we get
r(gn−2/ f1, gt􏼈 􏼉) � r(gn−1/ f1, gt􏼈 􏼉) � (3, t + 3), and if
2≤ t≤ k, t is even, we get
r(gn−2/ f1, gt􏼈 􏼉) � r(gn−1/ f1, gt􏼈 􏼉) � (3, t + 4) and
r(gn−2/ f1, gt􏼈 􏼉) � r(gn−1/ f1, gt􏼈 􏼉) � (3, t − 1) for
t� k+ 1, which contradict unique representation.
Case III: when one vertex has a place on the inner cycle
and the other has a place with the family of points
whose distance from the inner cycle is 2. Without loss

Figure 1: Convex polytope Tn.

Figure 2: Subdivided convex polytope STn.
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of universality, we can assume that the first locating
node is f1 and the other locating node is
ht(k/2 + 1≥ t≥ 1). 'us, Z � f1, ht􏼈 􏼉 is the possible
locating set. If 1≤ t≤ k/2, where t is odd, then we get
r(gn−2/ f1, ht􏼈 􏼉) � r(gn−1/ f1, ht􏼈 􏼉) � (3, t + 4), and if
2≤ t≤ k/2 + 1, where t is even, we get
r(g1/ f1, ht􏼈 􏼉) � r(gn/ f1, ht􏼈 􏼉) � (1, t + 3), which
contradict unique representation.
Case IV: when one vertex has a place on the inner cycle
and the other has a place with the family of points
whose distance from the inner cycle is 3. Without loss
of universality, we are able to assume that the first
locating node is f1 and the other locating node is
lt(k/2 + 1≥ t≥ 1). 'us, Z � f1, lt􏼈 􏼉 is the possible
locating set. If t varies from 1 to k/2 when t is odd, we
get r(gn−2/ f1, lt􏼈 􏼉) � r(gn−1/ f1, lt􏼈 􏼉) � (3, t + 5), and
if 2≤ t≤ k/2 + 1, where t is even, then we get
r(g1/ f1, lt􏼈 􏼉) � r(gn/ f1, lt􏼈 􏼉) � (1, t + 4), which con-
tradict unique representation.
Case V: one vertex has a place on the inner cycle and the
other has a place with the family of points whose
distance from the inner cycle is 4. Without loss of
universality, we are able to assume that the first locating
node is f1 and the other locating node is
mt(k + 1≥ t≥ 1). 'us, Z � f1, mt􏼈 􏼉 is the possible
locating set. If t varies from 1 to k− 1, we get
r(fn/ f1, mt􏼈 􏼉) � (1, t + 4) � r(gn/ f1, mt􏼈 􏼉) and
r(g1/ f1, mt􏼈 􏼉) � (1, t + 2) � r(gn/ f1, mt􏼈 􏼉) when t� k,
k+ 1 which contradict unique representation.
Case VI: both vertices have a place with the family of
points whose distance from the inner cycle is 1.
Without loss of universality, we are able to assume that
the first locating node is g1 and the other node is
gt(k + 1≥ t≥ 2). 'us, Z � g1, gt􏼈 􏼉 is the possible lo-
cating set. If t varies from 2 to k when t is even, we get
r(gn−2/ g1, gt􏼈 􏼉) � r(gn−1/ g1, gt􏼈 􏼉) � (4, t + 4), and if
k/2≤ t≤ k − 1, where t is odd, we get
r(gn−2/ g1, gt􏼈 􏼉) � r(gn−1/ g1, gt􏼈 􏼉) � (4, t + 3), and if
t� k+ 1, then r(gn−2/ g1, gt􏼈 􏼉) � r(gn−1/ g1, gt􏼈 􏼉)

� (4, t − 1), which contradict unique representation.
Case VII: family of vertices whose distance from the
inward cycle is 1 and 2, respectively. Without loss of
universality, we are able to assume that the first locating
node is g1 and the other node is ht(1≤ t≤ k/2 + 1).
'us, Z � g1, ht􏼈 􏼉 is the possible locating set. If t varies
from 1 to k/2 when t is odd, we get
r(gn−2/ g1, ht􏼈 􏼉) � r(gn−1/ g1, ht􏼈 􏼉) � (4, t + 4), and if
2≤ t≤ k/2 + 1, where t is even, then we get
r(mn−8/ g1, ht􏼈 􏼉) � r(gn−7/ g1, ht􏼈 􏼉) � (6, t + 1), which
contradict unique representation.
Case VIII: family of vertices whose distance from the
inner cycle is 1 and 3, respectively. Without loss of
universality, we are able to assume that the first locating
node is g1 and the other locating node is
lt(k/2 + 1≥ t≥ 1). 'us, Z � g1, lt􏼈 􏼉 is the possible
locating set. If t varies from 1 to k/2 when t is odd, we
get r(gn−2/ g1, lt􏼈 􏼉) � r(gn−1/ g1, lt􏼈 􏼉) � (4, t + 5), and if

2≤ t≤ k/2 + 1, where t is even, then we get
r(fn−8/ g1, lt􏼈 􏼉) � r(mn/ g1, lt􏼈 􏼉) � (4, t + 2), which
contradict unique representation.
Case IX: family of vertices whose distance from the
inner cycle is 1 and 4, respectively. Without loss of
universality, we are able to assume that the first locating
node is g1 and the other node is mt(k + 1≥ t≥ 1). 'us,
Z � g1, mt􏼈 􏼉 is the possible locating set. If t varies from
1 to k− 1, we get
r(fn/ g1, mt􏼈 􏼉) � (2, t + 4) � r(gn/ g1, mt􏼈 􏼉) and
r(f2/ g1, mt􏼈 􏼉) � r(gn/ g1, mt􏼈 􏼉) � (2, t + 2) when t� k,
k+ 1, which contradict unique representation.
Case X: both vertices have a place with the family of
points whose distance from the inner cycle is 2.
Without loss of universality, we are able to assume that
the first locating node is h1 and the other node is
ht(k/2 + 1≥ t≥ 2). 'us, Z � h1, ht􏼈 􏼉 is the possible
locating set. If t varies from 2 to k/2 when t is odd, we
get r(h14/ h1, ht􏼈 􏼉) � r(mn−5/ h1, ht􏼈 􏼉) � (8, t + 9), and if
2≤ t≤ k/2, where t is even, we get
r(g6/ h1, ht􏼈 􏼉) � r(g7/ h1, ht􏼈 􏼉) � (7, t + 3), and if t� k/
2 + 1, we get r(h14/ h1, ht􏼈 􏼉) � r(mn−5/ h1, ht􏼈 􏼉)

� (8, t + 3), which contradict unique representation.
Case XI: family of vertices whose distance from the
inner cycle is 2 and 3, respectively. Without loss of
universality, we are able to assume that the first locating
node is h1 and the other node is lt(1≤ t≤ k/2 + 1).
'us, Z � h1, lt􏼈 􏼉 is the possible locating set. If t varies
from 1 to k/2 when t is odd, we get
r(f2/ h1, lt􏼈 􏼉) � r(g3/ h1, lt􏼈 􏼉) � (3, t + 3), and if
k/2 − 1≤ t≤ k/2 + 1, where t is even, then we get
r(fn−8/ h1, lt􏼈 􏼉) � r(mn/ h1, lt􏼈 􏼉) � (3, t + 2), which
contradict unique representation.
Case XII: family of vertices whose distance from the
inner cycle is 2 and 4, respectively. Without loss of
universality, we are able to assume that the first locating
node is h1 and the other node is mt(k + 1≥ t≥ 1). 'us,
Z � h1, mt􏼈 􏼉 is the possible locating set. If t varies from
1 to k+ 1, we get r(g1/ h1, mt􏼈 􏼉) � (1, t + 2)

� r(g2/ h1, mt􏼈 􏼉), which contradict unique
representation.
Case XIII: both the vertices have a place with the family
of points whose distance from the inner cycle is 3.
Without loss of universality, we are able to assume that
the first locating node is l1 and the other node is
lt(k/2 + 1≥ t≥ 2). 'us, Z � l1, lt􏼈 􏼉 is the possible lo-
cating set. If t varies from 2 to k/2, where t is odd, we get
r(fn−4/ l1, lt􏼈 􏼉) � r(l14/ l1, lt􏼈 􏼉) � (8, t + 9), and if 2
2≤ t≤ k/2, where t is even, we get
r(g6/ l1, lt􏼈 􏼉) � r(g7/ l1, lt􏼈 􏼉) � (8, t + 4), and if t� k/
2 + 1, then we get r(fn−4/ l1, lt􏼈 􏼉) � r(l14/ l1, lt􏼈 􏼉) �

(8, t + 3), which contradict unique representation.
Case XIV: family of vertices whose distance from the
inner cycle is 3 and 4 respectively. Without loss of
universality, we are able to assume that the first locating
node is l1 and the other node is mt(k + 1≥ t≥ 1). 'us,
Z � l1, mt􏼈 􏼉 is the possible locating set. If t varies from 1
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to k+ 1, we get r(g1/ l1, mt􏼈 􏼉) � (2, t + 2) � r(g2
/ l1, mt􏼈 􏼉), which contradict unique representation.
Case XV: both vertices have a place on the outer cycle.
Without loss of universality, we are able to assume that
the first locating node is m1 and the other node is
mt(k + 1≥ t≥ 2). 'us, Z � m1, mt􏼈 􏼉 is the possible
locating set. If t varies from 2 to k, we get
r(l1/ m1, mt􏼈 􏼉) � (1, t) � r(mn/ m1, mt􏼈 􏼉) and
r(m2/ m1, mt􏼈 􏼉) � r(mn/ m1, mt􏼈 􏼉) � (1, t − 2) when
t� k+ 1, which contradict unique representation. From
all the above cases, it is concluded that, for unique
representation of each node, cardinality of the locating
set is greater than two. Hence, the result is
obtained. □

Theorem 3. Prove that minimal cardinality for the locating
set of subdivided convex polytope STn is greater than 3.

Proof. To prove that minimal cardinality for the locating set
of subdivided convex polytope STn is greater than 3, the
following cases exist.

Case I: all the three vertices have a place on the inner
cycle. Without loss of universality, we are able to as-
sume that the first resolving vertex is f1. Let the second
resolving vertex is fr(2≤ r≤ k). Suppose the third
resolving vertex is ft(r + 1≤ t≤ k + 1). Hence,
Z � f1, fr, ft􏼈 􏼉. If 2≤ r≤ k − 1 and r + 1≤ t≤ k − 1,
we get r(gn−2/ f1, fr, ft􏼈 􏼉) � r(gn−1/
f1, fr, ft􏼈 􏼉) � (3, r + 2, t + 2), and if 2≤ r≤ k − 1, t� k,
we get r(gn−2/ f1, fr, ft􏼈 􏼉) � r(gn−1/
f1, fr, ft􏼈 􏼉) � (3, r + 2, t), and if r� k, t� k+ 1, we
get r(gn−2/ f1, fr, ft􏼈 􏼉) � r(gn−1/ f1, fr, ft􏼈 􏼉) �

(3, r, t − 2), which contradict unique representation.
Case II: one vertex has a place on the inner cycle and the
other two have a place with the family of points whose
distance from the inner cycle is 1. Without loss of
universality, we are able to assume that the first re-
solving vertex is f1. Let the second resolving vertex is
gr(1≤ r≤ k). Suppose the third resolving vertex is
gt(r + 1≤ t≤ k + 1). Hence, Z � f1, gr, gt􏼈 􏼉. If
1≤ r≤ k − 1, where r is even and r + 1≤ t≤ k − 1, where
t is odd, we get r(gn−2/ f1, gr, gt􏼈 􏼉) �

r(gn−1/ f1, gr, gt􏼈 􏼉) � (3, r + 4, t + 3); if 1≤ r≤ k − 1,
where r is odd and r + 1≤ t≤ k − 1, where t is even, we
get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) �

(3, r + 3, t + 4); if 1≤ r≤ k − 1, where r is even and t� k,
we get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) �

(3, r + 4, t); if 1≤ r≤ k − 1, where r is odd and t� k, we
get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) �

(3, r + 3, t); if 1≤ r≤ k − 1, where r is even and t� k+ 1,
we get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) �

(3, r + 4, t − 1); if 1≤ r≤ k − 1, r is odd and t� k+ 1, we
get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) �

(3, r + 3, t − 1); if r� k and t� k+ 1, we
get r(gn−2/ f1, gr, gt􏼈 􏼉) � r(gn−1/ f1, gr, gt􏼈 􏼉) � (3, r,

t − 1), which contradict unique representation.

Case III: one vertex has a place on the inner cycle and
the other two have a place with the family of points
whose distance from the inner cycle is 2. Without loss
of universality, we are able to assume that the first
resolving vertex is f1. Let the second resolving vertex
be hr(1≤ r≤ k/2). Suppose the third resolving vertex is
ht(r + 1≤ t≤ k/2 + 1). Hence, Z � f1, hr, ht􏼈 􏼉. If
1≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 − 1, we get
r(gn−2/ f1, hr, ht􏼈 􏼉) � r(gn−1/ f1, hr, ht􏼈 􏼉) � (3, r + 4, t+

5); if 1≤ r≤ k/2, where r is even and t� k/2, we get (3,
r+ 5, t+ 4); if 1≤ r≤ k/2, where r is odd and t� k/2, we
get (3, r+ 4, t+ 4); if 1≤ r≤ k/2, where r is odd and t� k/
2 + 1, we get r(gn−2/ f1, hr, ht􏼈 􏼉) � r(gn−1/
f1, hr, ht􏼈 􏼉) � (3, r + 4, t + 1); if 1≤ r≤ k/2, where r is
even and t� k/2 + 1, we get r(gn−2/ f1, hr, ht􏼈 􏼉) �

r(gn−1/ f1, hr, ht􏼈 􏼉) � (3, r + 5, t + 1), which contradict
unique representation.
Case IV: one vertex has a place on the inner cycle and
the other two have a place with the family of points
whose distance from the inner cycle is 3. Without loss
of universality, we are able to assume that the first
resolving vertex is f1. Let the second resolving vertex
be lr(1≤ r≤ k/2). Suppose the third resolving vertex is
lt(r + 1≤ t≤ k/2 + 1). Hence, Z � f1, lr, lt􏼈 􏼉. If
1≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 − 1, we get
r(gn−2/ f1, lr, lt􏼈 􏼉) � r(gn−1/ f1, lr, lt􏼈 􏼉) � (3, r + 5, t+

6); if 1≤ r≤ k/2, where r is even and t� k/2, we get
r(gn−2/ f1, lr, lt􏼈 􏼉) � r(gn−1/ f1, lr, lt􏼈 􏼉) � (3, r + 6, t+

5); if 1≤ r≤ k/2, where r is odd and t� k/2, we get
r(gn−2/ f1, lr, lt􏼈 􏼉) � r(gn−1/ f1, lr, lt􏼈 􏼉) � (3, r + 5, t+

5); if 1≤ r≤ k/2, where r is odd and t� k/2 + 1, we get
r(gn−2/ f1, lr, lt􏼈 􏼉) � r(gn−1/ f1, lr, lt􏼈 􏼉) � (3, r + 5, t+

2); if 1≤ r≤ k/2, where r is even and t� k/2 + 1, then
we get r(gn−2/ f1, lr, lt􏼈 􏼉) � r(gn−1/ f1, lr, lt􏼈 􏼉) � (3, r +

6, t+ 2), which contradict unique representation.
Case V: one vertex has a place on the inner cycle and the
other two have a place with the family of points whose
distance from the inner cycle is 4. Without loss of
universality, we are able to assume that the first re-
solving vertex is f1. Let the second resolving vertex is
mr(1≤ r≤ k). Suppose the third resolving vertex is
mt(r + 1≤ t≤ k + 1). Hence, Z � f1, mr, mt􏼈 􏼉. If
1≤ r≤ k − 1 and r + 1≤ t≤ k − 1, we get
r(fn/ f1, mr, mt􏼈 􏼉) � r(gn/ f1, mr, mt􏼈 􏼉) � (1, r + 4, t+

4); if 1≤ r≤ k − 1 and t� k, we get r(fn/
f1, mr, mt􏼈 􏼉) � r(gn/ f1, mr, mt􏼈 􏼉) � (1, r + 4, t + 2); if
1≤ r≤ k − 1 and t� k+ 1, we get
r(fn/ f1, mr, mt􏼈 􏼉) � r(gn/ f1, mr, mt􏼈 􏼉) � (1, r + 4, t),
and if r� k and t� k+ 1, we get
r(fn/ f1, mr, mt􏼈 􏼉) � r(gn/ f1, mr, mt􏼈 􏼉) � (1, r + 2, t),
which contradict unique representation.
Case VI: all the three vertices have a place with the
family of points whose distance from the inner cycle is
1. Without loss of universality, we are able to assume
that the first resolving vertex is g1. Let the second
resolving vertex be gr(2≤ r≤ k). Suppose the third
resolving vertex is gt(r + 1≤ t≤ k + 1). Hence,
Z � g1, gr, gt􏼈 􏼉. If 2≤ r≤ k − 1, where r is even and
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r + 1≤ t≤ k − 1, where t is odd, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 4,

t + 3); if 2≤ r≤ k − 1, where r is odd and
r + 1≤ t≤ k − 1, where t is even, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 3,

t + 4); if 2≤ r≤ k − 1, where r is even and t� k, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 4,

t); if 2≤ r≤ k − 1, where r is odd and t� k, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 3,

t); if 2≤ r≤ k − 1, where r is even and t� k+ 1, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 4,

t − 1); if 2≤ r≤ k − 1, where r is odd and t� k+ 1, we get
r(gn−2/ g1, gr, gt􏼈 􏼉) � r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r + 3,

t − 1); if r� k and t� k+ 1, we get r(gn−2/ g1, gr, gt􏼈 􏼉) �

r(gn−1/ g1, gr, gt􏼈 􏼉) � (4, r, t − 1), which contradict
unique representation.
Case VII: family of vertices whose distance from the
inner cycle is 1 and 2, respectively. Without loss of
universality, we are able to assume that the first re-
solving vertex is g1. Let the second resolving vertex be
hr(1≤ r≤ k/2). Suppose the third resolving vertex is
ht(r + 1≤ t≤ k/2 + 1). Hence, Z � gr, hr, ht􏼈 􏼉. If
1≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 − 1, we get
r(gn−2/ gr, hr, ht􏼈 􏼉) � r(gn−1/ gr, hr, ht􏼈 􏼉) � (4, r + 4,

t + 5); if 1≤ r≤ k/2, where r is even and t� k/2, we get
r(gn−2/ gr, hr, ht􏼈 􏼉) � r(gn−1/ gr, hr, ht􏼈 􏼉) � (4, r + 5, t+

4); if 1≤ r≤ k/2, where r is odd and t� k/2, we get (4,
r+ 4, t+ 4); if 1≤ r≤ k/2, where r is odd and t� k/2 + 1,
we get r(gn−2/ gr, hr, ht􏼈 􏼉) � r(gn−1/ gr, hr, ht􏼈 􏼉) �

(4, r+ 4, t + 1); if 1≤ r≤ k/2, where r is even and t� k/
2 + 1, we get r(gn−2/ gr, hr, ht􏼈 􏼉) � r(gn−1/ gr, hr, ht􏼈 􏼉) �

(4, r + 5, t + 1), which contradict unique
representation.
Case VIII: family of vertices whose distance from the
inner cycle is 1 and 3, respectively. Without loss of
universality, we are able to assume that the first re-
solving vertex is g1. Let the second resolving vertex be
lr(1≤ r≤ k/2). Suppose the third resolving verte is
lt(r + 1≤ t≤ k/2 + 1). Hence, Z � g1, lr, lt􏼈 􏼉. If
1≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 − 1, we get
r(gn−2/ g1, lr, lt􏼈 􏼉) � r(gn−1/ g1, lr, lt􏼈 􏼉) � (4, r + 5, t+

6); if 1≤ r≤ k/2, where r is even and t� k/2, we
get r(gn−2/ g1, lr, lt􏼈 􏼉) � r(gn−1/ g1, lr, lt􏼈 􏼉) � (4, r + 6,

t + 5); if 1≤ r≤ k/2, where r is odd and t� k/2, we get
r(gn−2/ g1, lr, lt􏼈 􏼉) � r(gn−1/ g1, lr, lt􏼈 􏼉) � (4, r + 5, t+

5); if 1≤ r≤ k/2, where r is odd and t� k/2 + 1, we get
r(gn−2/ g1, lr, lt􏼈 􏼉) � r(gn−1/ g1, lr, lt􏼈 􏼉) � (4, r + 5, t+

2); if 1≤ r≤ k/2, where r is even and t� k/2 + 1, then we
get r(gn−2/ g1, lr, lt􏼈 􏼉) � r(gn−1/ g1, lr, lt􏼈 􏼉) � (4, r+

6, t + 2), which contradict unique representation.
Case IX: family of vertices whose distance from the
inner cycle is 1 and 4, respectively. Without loss of
universality, we are able to assume that the first re-
solving vertex is g1. Let the second resolving vertex be
mr(1≤ r≤ k). Suppose the third resolving vertex is
mt(r + 1≤ t≤ k + 1). Hence, Z � g1, mr, mt􏼈 􏼉. If
1≤ r≤ k − 1 and r + 1≤ t≤ k − 1, we get r(fn/ g1,􏼈

mr, mt}) � r(gn/ g1, mr, mt􏼈 􏼉) � (2, r + 4, t + 4); if

1≤ r≤ k − 1 and t� k, we get
r(fn/ g1, mr, mt􏼈 􏼉) � r(gn/ g1, mr, mt􏼈 􏼉) � (2, r + 4,

t + 2); if 1≤ r≤ k − 1 and t� k+ 1, we get
r(fn/ g1, mr, mt􏼈 􏼉) � r(gn/ g1, mr, mt􏼈 􏼉) � (2, r + 4, t),
and if r� k and t� k+ 1, we get r(fn/ g1, mr, mt􏼈 􏼉) �

r(gn/ g1, mr, mt􏼈 􏼉) � (2, r + 2, t), which contradict
unique representation.
Case X: all the three vertices have a place with the family
of points whose distance from the inner cycle is 2.
Without loss of universality, we are able to assume that
the first resolving vertex is h1. Let the second resolving
vertex is hr(2≤ r≤ k/2). Suppose the third resolving
vertex is ht(r + 1≤ t≤ k/2 + 1). Hence, Z � h1, hr, ht􏼈 􏼉.
If 2≤ r≤ k/2, where r is even and r + 1≤ t≤ k/2 + 1,
where t is odd, we get r(gn−2/
h1, hr, ht􏼈 􏼉) � r(gn−1/ h1, hr, ht􏼈 􏼉􏼈 􏼉) � (4, r + 5, t + 4); if
2≤ r≤ k/2, where r is even and r + 1≤ t≤ k/2 + 1, where
t is even, we get r(gn−2/ h1, hr, ht􏼈 􏼉) � r

(gn−1/ h1, hr, ht􏼈 􏼉􏼈 􏼉) � (4, r + 5, t + 1); if 2≤ r≤ k/2,
where r is odd and r + 1≤ t≤ k/2 + 1, where t is even,
then we get r(gn−2/ h1, hr, ht􏼈 􏼉) � r(gn−1/

h1, hr, ht􏼈 􏼉􏼈 􏼉) � (4, r + 4, t + 1), which contradict
unique representation.
Case XI: family of vertices whose distance from the
inner cycle is 2 and 3, respectively. Without loss of
universality, we are able to assume that the first re-
solving vertex is h1. Let the second resolving vertex be
lr(1≤ r≤ k/2). Suppose the third resolving vertex is
lt(r + 1≤ t≤ k/2 + 1). Hence, Z � h1, lr, lt􏼈 􏼉. If
1≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 − 1, we get
r(gn−2/ h1, lr, lt􏼈 􏼉) � r(gn−1/ h1, lr, lt􏼈 􏼉􏼈 􏼉) � (5, r + 5, t+

6); if 1≤ r≤ k/2, where r is even and t� k/2, we get
r(gn−2/ h1, lr, lt􏼈 􏼉) � r(gn−1/ h1, lr, lt􏼈 􏼉􏼈 􏼉) � (5, r + 6, t+

5); if 1≤ r≤ k/2, where r is odd and t� k/2, we get
r(gn−2/ h1, lr, lt􏼈 􏼉) � r(gn−1/ h1, lr, lt􏼈 􏼉􏼈 􏼉) � (5, r + 5, t+

5); if 1≤ r≤ k/2, where r is odd and t� k/2 + 1, we get
r(gn−2/ h1, lr, lt􏼈 􏼉) � r(gn−1/ h1, lr, lt􏼈 􏼉􏼈 􏼉) � (5, r + 5, t+

2); if 1≤ r≤ k/2, where r is even and t� k/2 + 1, then we
get r(gn−2/ h1, lr, lt􏼈 􏼉) � r(gn−1/ h1, lr, lt􏼈 􏼉􏼈 􏼉) � (5, r + 6,

t + 2), which contradict unique representation.
Case XII: family of vertices whose distance from the
inward cycle is 2 and 4, respectively. With no loss of
universality, we are able to assume that the first re-
solving vertex is h1. Let the second resolving vertex be
mr(1≤ r≤ k). Suppose the third resolving vertex is
mt(r + 1≤ t≤ k + 1). Hence, Z � h1, mr, mt􏼈 􏼉. If
1≤ r≤ k − 1 and r + 1≤ t≤ k − 1, we get
r(fn/ h1, mr, mt􏼈 􏼉) � r(gn/ h1, mr, mt􏼈 􏼉) � (3, r + 4, t+

4); if 1≤ r≤ k − 1 and t� k, we get r(fn/ h1, mr, mt􏼈 􏼉) �

r(gn/ h1, mr, mt􏼈 􏼉) � (3, r + 4, t+ 2); if 1≤ r≤ k − 1 and
t� k+ 1, we get r(fn/ h1, mr, mt􏼈 􏼉) � r(gn/ h1, mr,􏼈

mt}) � (3, r + 4, t), and if r� k and t� k+ 1, we get
r(fn/ h1, mr, mt􏼈 􏼉) � r(gn/ h1, mr, mt􏼈 􏼉) � (3, r + 2, t),
which contradict unique representation.
Case XIII: all the three vertices have a place with the
family of points whose distance from the inner cycle is
3. Without loss of universality, we are able to assume
that the first resolving vertex is l1. Let the second
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resolving vertex be lr(2≤ r≤ k/2). Suppose the third
resolving vertex is lt(r + 1≤ t≤ k/2 + 1). Hence,
Z � l1, lr, lt􏼈 􏼉. If 2≤ r≤ k/2, where r is even and
r + 1≤ t≤ k/2 + 1, where t is odd, we get
r(gn−2/ l1, lr, lt􏼈 􏼉) � r(gn−1/ l1, lr, lt􏼈 􏼉􏼈 􏼉) � (6, r + 6, t+

5); if 2≤ r≤ k/2, where r is even and r + 1≤ t≤ k/2 + 1,
where t is even, we get r(gn−2/
l1, lr, lt􏼈 􏼉) � r(gn−1/ l1, lr, lt􏼈 􏼉􏼈 􏼉) � (6, r + 6, t + 2); if
2≤ r≤ k/2, where r is odd and r + 1≤ t≤ k/2 + 1, where
t is even, then we get r(gn−2/ l1, lr, lt􏼈 􏼉) �

r(gn−1/ l1, lr, lt􏼈 􏼉􏼈 􏼉) � (6, r + 5, t + 2), which contradict
unique representation.
Case XIV: family of vertices whose distance from the
inner cycle is 3 and 4, respectively. Without loss of
universality, we are able to assume that the first re-
solving vertex is l1. Let the second resolving vertex be
mr(1≤ r≤ k). Suppose the third resolving vertex is
mt(r + 1≤ t≤ k + 1). Hence, Z � l1, mr, mt􏼈 􏼉. If
1≤ r≤ k − 1 and r + 1≤ t≤ k − 1, we get
r(fn/ l1, mr, mt􏼈 􏼉) � r(gn/ l1, mr, mt􏼈 􏼉) � (4, r + 4, t+

4); if 1≤ r≤ k − 1 and t� k, we get r(fn/ l1, mr, mt􏼈 􏼉) �

r(gn/ l1, mr, mt􏼈 􏼉) � (4, r + 4, t+ 2); if 1≤ r≤ k − 1 and
t� k+ 1, we get r(fn/ l1, mr, mt􏼈 􏼉) � r(gn/ l1, mr,􏼈

mt}) � (4, r + 4, t), and if r� k and t� k+ 1, we get
r(fn/ l1, mr, mt􏼈 􏼉) � r(gn/ l1, mr, mt􏼈 􏼉) � (4, r + 2, t),
which contradict unique representation.

Case XV: all the three vertices have a place on the outer
cycle. Without loss of universality, we are able to as-
sume that the first resolving vertex is m1. Let the second
resolving vertex be mr(2≤ r≤ k). Suppose the third
resolving vertex is mt(r + 1≤ t≤ k + 1). Hence,
Z � m1, mr, mt􏼈 􏼉. If 2≤ r≤ k − 1 and r + 1≤ t≤ k − 1,
we get r(gn−2/ m1, mr, mt􏼈 􏼉) � r(gn−1/ m1, mr, mt􏼈 􏼉􏼈 􏼉) �

(5, r+ 4, t + 4), and if 2≤ r≤ k − 1 and t� k, we get
r(gn−2/ m1, mr, mt􏼈 􏼉) � r(gn−1/ m1, mr, mt􏼈 􏼉􏼈 􏼉) � (5, r+

4, t + 2), and if r� k and t� k+ 1, we get
r(gn−2/ m1, mr, mt􏼈 􏼉) � r(gn−1/ m1, mr, mt􏼈 􏼉􏼈 􏼉) � (5, r+

4, t), which contradict unique representation. □

Theorem 4. Prove that metric dimension of a subdivided
convex polytope STn denoted by d(STn) is 4.

Proof. In this theorem, we take n� 2q, q≥ 3, q ∈ Z+. Assume
that Z � f1, fq, gq+1, mq+5􏽮 􏽯⊆V(STn); we will prove that Z is
a locating set of STn which implies that dim (STn)≤ 4. To
prove that Z is the locating set, we will just prove that
representation of each node with respect to Z is unique.

First of all, we find unique representations of the col-
lection f1, f2, f3, . . . , fn􏼈 􏼉:

r
fs

Z
􏼠 􏼡 �

1 − s + 2q, −q + s, −q + s, 2 + s −
3q

2
􏼒 􏼓, 2q≥ s≥

3q

2
+ 1,

(1 − s + 2q, −q + s, −q + s, −1 − s + 2q),
3q

2
≥ s≥ q + 1,

(−1 + s, −s + q, 2 − s + q, −1 − s + 2q), q≥ s≥
q

2
+ 2,

(−1 + s, −s + q, 2 − s + q, −3 + q + s)
q

2
+ 1≥ r≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Representations of the family of vertices
g1, g2, g3, . . . , gn􏼈 􏼉 are

Case I: when s is odd, then

r
gs

Z
􏼒 􏼓 �

(2q − s + 2, s − q + 1, s − q + 1, s − q − 2), 2q − 1≥ s≥ q + 7,

(2q − s + 2, s − q + 1, s − q + 1, 2q − s − 2), q + 5≥ s≥ q + 3,

(s, q − s + 1, q − s + 3, 2q − s − 2), q + 1≥ s≥
q

2
+ 2,

(s, q − s + 1, q − s + 3, q + s − 1),
q

2
≥ s≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)
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Case II: when s is even, then

r
gs

Z
􏼒 􏼓 �

(1 + 2q − s, q, −8 + q, −3 + s − q), 2q≥ s≥ q + 8,

(1 + 2q − s, −8 + s, −8 + s, −1 + 2q − s), q + 6 ≥ s≥ q + 4,

(−1 + q, −4 + 2q − s, 2, −1 + 2q − s), s � q + 2,

(1 + s, 2, 2 + q − s, −1 + 2q − s), q ≥ s≥
q

2
+ 3,

(1 + s, q − s, 2 + q − s, −3 + q + s).
q

2
+ 1≥ s≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Representations of the family of central vertices
h1, h2, h3, . . . , hn􏼈 􏼉 are

r
hs

Z
􏼠 􏼡 �

(2q − 2s + 2, 2s − q + 1, 2s − q + 1, 2s − q − 4), q≥ s≥
q

2
+ 4,

(2q − 2s + 2, 2s − q + 1, 2s − q + 1, 2q − 2s − 2),
q

2
+ 3≥ s≥

q

2
+ 2,

(q, s − 3, s − 5, 2q − 2s − 2), i �
q

2
+ 1,

(2s, 3, q + 3 − 2s, 2q − 2s − 2),
q

2
≥ s≥

q

2
− 1,

(2s, q + 1 − 2s, q + 3 − 2s, q + 2s − 4),
q

2
− 2≥ s≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Representations of the family of vertices l1, l2, l3, . . . , ln􏼈 􏼉

are

r
ls
Z

􏼠 􏼡 �

(2q − 2s + 3, 2s − q + 2, 2s − q + 2, 2s − q − 5), q≥ s≥
q

2
+ 4,

(2q − 2s + 3, 2s − q + 2, 2s − q + 2, 2q − 2s − 3),
q

2
+ 3≥ s≥

q

2
+ 2,

(q + 1, s − 2, s − 4, 2q − 2s − 3), s �
q

2
+ 1,

(2s + 1, 4, q + 4 − 2s, 2q − 2s − 3),
q

2
≥ s≥

q

2
− 1,

(2s + 1, q + 2 − 2s, q + 4 − 2s, q + 2s − 5),
q

2
− 2≥ s≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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Representations of the family of vertices
m1, m2, m3, . . . , mn􏼈 􏼉 on the outward cycle are

r
mi

Z
􏼒 􏼓 �

(s − q − 5, s − 8, s − 8, s − q − 5), s � 2q,

(2q − s + 3, s − 6, s − 8, s − q − 5), 2q − 1≥ s≥ q + 5,

(2q − s + 3, s − 6, s − 8, 2q − s − 5), q + 4≥ s≥ q + 2,

(2q − s + 3, 2q − s − 4, q + 4 − s, q + 5 − s), q + 1≥ s≥ q,

(s + 3, q + 4 − s, q + 4 − s, q + 5 − s), q − 1 ≥ s≥
q

2
+ 3,

(s + 3, q + 2 − s, q + 4 − s, q + 5 − s),
q

2
+ 2≥ s≥

q

2
+ 1,

(s + 3, q + 2 − s, q + 4 − s, s + 5),
q

2
≥ s≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

'us, with the help of this formulation, we can simply
demonstrate that no two such vertices are available that
possess identical representations which implies that
dim(Tn)≤ 4 in this case. 'eorems 2 and 3 imply that
neither dim(STn)≠ 2 nor dim(STn)≠ 3, respectively, so it
can be concluded that dim dim(STn)≥ 4. Hence,
dim(STn) � 4. □

3. Conclusion

Metric dimension of convex polytope STn after subdividing
the convex polytope Tn has been studied. It is proved that the
metric dimension of subdivided convex polytope STn is
finite and independent of the count of vertices in all these
graphs, and just four vertices which are selected properly are
sufficient to locate all the vertices of this family of convex
polytopes. 'e authors also proved that the metric di-
mension of subdivided convex polytope STn is neither 2 nor
3. 'e researcher gave the formulation of the representation
of each vertex of convex polytope with respect to the re-
solving set and disproved lower dimensions by making
different cases.

Open problem: determine edge metric dimension of the
convex polytopes STn.
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