Research Article

Sum of the Hurwitz-Lerch Zeta Function over Natural Numbers: Derivation and Evaluation

Robert Reynolds (i) and Allan Stauffer (1)
Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J1P3
Correspondence should be addressed to Robert Reynolds; milver@my.yorku.ca
Received 30 March 2022; Revised 28 April 2022; Accepted 12 May 2022; Published 7 June 2022
Academic Editor: A. Ghareeb

Copyright © 2022 Robert Reynolds and Allan Stauffer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a Hurwitz-Lerch zeta function $\Phi(s, z, a)$ sum over the natural numbers. We provide an analytically continued closed form solution for this sum in terms of the addition of Hurwitz-Lerch zeta functions. A new recurrence identity with consecutive neighbours and the product of trigonometric functions is derived.

1. Introduction

The Hurwitz-Lerch zeta functions have been published in the following papers [1-7]. The object of this paper is the derivation and evaluation of a new expression for the finite
sum of the Hurwitz-Lerch zeta function $\Phi(s, z, a)$. This derivation is expressed in terms of the sum of two HurwitzLerch zeta functions given by the following theorem.

Theorem 1. For all $k, a, m \in \mathbb{C}, n \in \mathbb{N}^{+}$, then

$$
\begin{align*}
& \sum_{p=0}^{n-1} e^{4 i \pi p / n} \Phi\left(-e^{2 i(m+2 p \pi / n)},-k, 1-\frac{1}{2} i \log (a)\right) \\
& \quad=-\frac{1}{2} n(\mathrm{in})^{k} e^{1 / 2 i(\pi(n-k)+2 m(n-2))}\left(\left(1+e^{i \pi n}\right) \Phi\left(e^{i n(2 m+\pi)},-k, \frac{n-i \log (a)}{2 n}\right)\right. \tag{1}\\
& \left.\quad+2 e^{1 / 2 i(2 m+\pi) n} \Phi\left(e^{i n(2 m+\pi)},-k, 1-\frac{i \log (a)}{2 n}\right)\right)
\end{align*}
$$

Proof. Observe that the addition of the right-hand sides of equations (3) and (4) is equal to the addition of the righthand sides of equations (3)-(8), so we may equate the lefthand sides and simplify the Gamma function to yield the stated result.

The derivations follow the method used by us in [8]. This method involves using a form of the generalized Cauchy's integral formula given by

$$
\begin{equation*}
\frac{y^{k}}{\Gamma(k+1)}=\frac{1}{2 \pi i} \int_{C} \frac{e^{w y}}{w^{k+1}} \mathrm{~d} w \tag{2}
\end{equation*}
$$

where $y, w \in \mathbb{C}$, and C is in general an open contour in the complex plane where the bilinear concomitant [8] has the same value at the end points of the contour. This method involves using a form of (2), then multiplies both sides by a function, and then takes the sum of both sides. This yields a sum in terms of a contour integral. Then, we multiply both sides of (2) by another function and take the infinite sum of both sides such that the contour integrals of both equations are the same.

2. The Lerch Function

See section 4 in [9].

3. Derivation of the Contour Integrals

3.1. Finite Sum of the Contour Integral. We use the method in [8]. The cut and contour are in the first quadrant of the complex $w+m$-plane with $0<\operatorname{Re}(2(w+m))+\pi$. The cut approaches the origin from the interior of the first quadrant and goes to infinity vertically and the contour goes round the origin with zero radius and is on opposite sides of the cut. Using a generalization of Cauchy's integral formula (2), we first replace $y \longrightarrow \log (a)+2 i(y+1)$, then multiply both sides by $-2 i(-1)^{y} e^{2 i(y+1)(m+2 \pi p / n)}$, and take the infinite sums over $y \in[0, \infty)$ and $p \in\{0,1, \ldots, n-1\}$ and simplify in terms of the Hurwitz-Lerch zeta function to get

$$
\begin{align*}
& -\sum_{p=0}^{n-1} \frac{(2 i)^{k+1} e^{2 i m+4 i \pi p / n} \Phi\left(-e^{2 i(m+2 p \pi / n)},-k, 1-1 / 2 i \log (a)\right)}{\Gamma(k+1)} \\
= & -\frac{1}{2 \pi i} \sum_{y=0}^{\infty} \sum_{p=0}^{n-1} \int_{C} 2 i(-1)^{y} a^{w} w^{-k-1} e^{2 i(y+1)(n(m+w)+2 \pi p) / n} d w \\
= & -\frac{1}{2 \pi i} \int_{C} \sum_{p=0}^{n-1} \sum_{y=0}^{\infty} 2 i(-1)^{y} a^{w} w^{-k-1} e^{2 i(y+1)(n(m+w)+2 \pi p) / n} \mathrm{~d} w \tag{3}\\
= & \frac{1}{2 \pi i} \int_{C} \sum_{p=0}^{n-1}\left(a^{w} w^{-k-1} \tan \left(m+\frac{2 \pi p}{n}+w\right)-i a^{w} w^{-k-1}\right) \mathrm{d} w \\
= & -\frac{1}{2 \pi i} \int_{C} \frac{1}{2} n a^{w} w^{-k-1}\left(2 \cot \left(\frac{1}{2} n(2(m+w)+\pi)\right)+(-1)^{n} \csc \left(\frac{1}{2} n(2(m+w)+\pi)\right)\right. \\
& \left.+\csc \left(\frac{1}{2} n(2(m+w)+\pi)\right)\right) \mathrm{d} w,
\end{align*}
$$

from [10] and equation (2) in [11] where $\operatorname{Re}(2(m+w)+\pi)>0, \quad \operatorname{Im}(2(m+w)+\pi)>0, n \in \mathbb{N}^{+} \quad$ in order for the sums to converge. We apply Tonelli's theorem for multiple sums, see page 189 in [12] as the summand is of bounded measure over the space $\mathbb{C} \times\{0, \ldots, n-1\} \times[0, \infty)$.
3.1.1. The Additional Contour Integral. Using a generalization of Cauchy's integral formula (2), we first replace $y \longrightarrow \log (a)$ and multiply both sides by-in simplified to get

$$
\begin{equation*}
-\frac{i n \log ^{k}(a)}{\Gamma(k+1)}=-\frac{i n}{2 \pi i} \int_{C} \operatorname{in} a^{w} w^{-k-1} \mathrm{~d} w \tag{4}
\end{equation*}
$$

3.2. Infinite Sum of the Contour Integral

3.2.1. Derivation of the First Contour Integral. We use the method in [8]. Using a generalization of Cauchy's integral formula (2), we first replace $y \longrightarrow \log (a)+2 \operatorname{in}(y+1)$, then multiply both sides by 2 ine $e^{2 i(m+\pi / 2) n(y+1)}$, and take the infinite sums over $y \in[0, \infty)$ and simplify in terms of the Hurwitz-Lerch zeta function to get

$$
\begin{gathered}
\frac{2^{k+1}(i n)^{k+1} e^{i(2 m+\pi) n} \Phi\left(e^{i n(2 m+\pi)},-k, 1-i \log (a) / 2 n\right)}{\Gamma(k+1)} \\
=\frac{1}{2 \pi i} \sum_{y=0}^{\infty} \int_{C} 2 i n a^{w} w^{-k-1} e^{i n(y+1)(2 m+2 w+\pi)} \mathrm{d} w
\end{gathered}
$$

$$
\begin{align*}
& =\frac{1}{2 \pi i} \int_{C} \sum_{y=0}^{\infty} 2 i n a^{w} w^{-k-1} e^{i n(y+1)(2 m+2 w+\pi)} \mathrm{d} w \\
& =-\frac{1}{2 \pi i} \int_{C} n a^{w} w^{-k-1} \cot \left(\frac{1}{2} n(2 m+2 w+\pi)\right)-i n a^{w} w^{-k-1} \mathrm{~d} w \tag{5}
\end{align*}
$$

From equation (2) in [11], $\operatorname{Im}(2(m+w)+\pi)>0$ in order for the sum to converge.
3.2.2. The Additional Contour Integral. Using a generalization of Cauchy's integral formula (2), we first replace $y \longrightarrow \log (a)$ and multiply both sides by- i simplified to get

$$
\begin{equation*}
-\frac{i \log ^{k}(a)}{\Gamma(k+1)}=-\frac{1}{2 \pi i} \int_{C} i a^{w} w^{-k-1} \mathrm{~d} w . \tag{6}
\end{equation*}
$$

3.2.3. Derivation of the Second Contour Integral. We use the method in [8]. Using a generalization of Cauchy's integral formula (2), we first replace $y \longrightarrow \log (a)+2$ in $(y+1)$, then multiply both sides by in $e^{i(m+\pi / 2) n(2 y+1)}$, and take the infinite sums over $y \in[0, \infty)$ and simplify in terms of the Hurwitz-Lerch zeta function to get

$$
\begin{align*}
& \frac{2^{k}(\mathrm{in})^{k+1} e^{1 / 2 i(2 m+\pi) n} \Phi\left(e^{i n(2 m+\pi)},-k, n-i \log (a) / 2 n\right)}{\Gamma(k+1)} \\
& \quad=\frac{1}{2 \pi i} \sum_{y=0}^{\infty} \int_{C} i n a^{w} w^{-k-1} e^{1 / 2 i n(2 y+1)(2 m+2 w+\pi)} \mathrm{d} w \tag{7}\\
& \quad=\frac{1}{2 \pi i} \int_{C} \sum_{y=0}^{\infty} i n a^{w} w^{-k-1} e^{1 / 2 i n(2 y+1)(2 m+2 w+\pi)} \mathrm{d} w \\
& \quad=-\frac{1}{2 \pi i} \int_{C} \frac{1}{2} n a^{w} w^{-k-1} \csc \left(\frac{1}{2} n(2 m+2 w+\pi)\right) \mathrm{d} w .
\end{align*}
$$

From equation (2) in [11], $\operatorname{Im}(2(m+w)+\pi)>0$ in order for the sum to converge.
3.2.4. Derivation of the Third Contour Integral. We use the method in [8]. Using a generalization of Cauchy's integral
formula (2), we first replace $y \longrightarrow \log (a)+2 \operatorname{in}(y+1)$, then multiply both sides by $(-1)^{n}$ in $e^{i(m+\pi / 2) n(2 y+1)}$, and take the infinite sums over $y \in[0, \infty)$ and simplify in terms of the Hurwitz-Lerch zeta function to get

$$
\begin{align*}
& \frac{2^{k}(i n)^{k+1} e^{1 / 2 i(2 m+3 \pi) n} \Phi\left(e^{i n(2 m+\pi)},-k, n-i \log (a) / 2 n\right)}{\Gamma(k+1)} \\
& \quad=\frac{1}{2 \pi i} \sum_{y=0}^{\infty} \int_{C} i(-1)^{n} n a^{w} w^{-k-1} e^{1 / 2 i n(2 y+1)(2 m+2 w+\pi)} \mathrm{d} w \tag{8}\\
& \quad=\frac{1}{2 \pi i} \int_{C} \sum_{y=0}^{\infty} i(-1)^{n} n a^{w} w^{-k-1} e^{1 / 2 i n(2 y+1)(2 m+2 w+\pi)} \mathrm{d} w \\
& \quad=-\frac{1}{2 \pi i} \int_{C} \frac{1}{2^{i \pi n}} n a^{w} w^{-k-1} \csc \left(\frac{1}{2} n(2 m+2 w+\pi)\right) \mathrm{d} w
\end{align*}
$$

From equation (2) in [11], $\operatorname{Im}(2(m+w)+\pi)>0$ in order for the sum to converge.

4. Table of Finite Products and Recursive Identities

In this section, we will evaluate (1) for various ranges of the parameters involved and apply the method in [13] to derive
recursive identities and finite products involving trigonometric functions.

Example 1. The degenerate case.

$$
\begin{align*}
& \sum_{p=0}^{n-1} \tan \left(m+\frac{2 \pi p}{n}\right) \tag{9}\\
& \quad=-\frac{1}{2} \csc \left(m n+\frac{\pi n}{2}\right)\left(2 n \cos \left(m n+\frac{\pi n}{2}\right)+n+i n \sin (\pi n)+n \cos (\pi n)\right)
\end{align*}
$$

Proof. Use equation (1) and set $k=0$ and simplify using entry (4) below ($64: 12: 7$) in [14].

Example 2. A recurrence identity with consecutive neighbours:

Proof. Use equation (1) and set $n=2, a=e^{2 i(a-1)}, k=-s, m=\log (2) /(2 i)$ and simplify.

Example 3.

$$
\begin{equation*}
\Phi(-z, s, a)=2^{-s}\left(\Phi\left(z^{2}, s, \frac{a}{2}\right)-z \Phi\left(z^{2}, s, \frac{a+1}{2}\right)\right) . \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
\prod_{p=0}^{n-1} & \cos \left(\frac{2 p \pi}{n}+\frac{x}{2}\right) \sec \left(\frac{2 p \pi}{n}+x\right) \exp \left(\sec \left(\frac{2 p \pi}{n}+\frac{x}{2}\right) \sec \left(\frac{2 p \pi}{n}+x\right) \sin \left(\frac{x}{2}\right)\right) \\
= & \exp \left(\frac{1}{2} n\left(i\left(\frac{2 e^{1 / 2 i n(3 \pi+x)}}{-1+e^{i n(\pi+x)}}+x\right)-\frac{4 e^{i n(\pi+x)} \cos (n \pi / 2)}{-1+e^{i n(\pi+2 x)}}+\csc \left(\frac{1}{2} n(\pi+x)\right)\right)\right) \\
& \cdot\left(\frac{-1+e^{1 / 2 i n(\pi+x)}}{-1+e^{1 / 2 i n(\pi+2 x)}}\right)^{3 / 2} \sqrt{\frac{1+e^{1 / 2 i n(\pi+x)}}{1+e^{1 / 2 i n(\pi+2 x)}}} \exp \left(n \csc \left(\frac{1}{2} n(\pi+x)\right) \csc \left(\frac{1}{2} n(\pi+2 x)\right) \sin \left(\frac{n x}{2}\right)\right) \\
& \cdot\left(\cot \left(\frac{1}{4} n(\pi+2 x)\right) \tan \left(\frac{1}{4} n(\pi+x)\right)\right)^{1 / 2 e^{i n \pi}}
\end{aligned}
$$

Proof. Use equation (1) and set $k=1, a=e, m=x$ and

Example 4.

 apply the method in section 8 in [13].$$
\begin{align*}
& \prod_{p=0}^{n-1} e^{2 \tan (2 \pi p / n+x)-2 \tan (2 \pi p / n+x / 2)}\left(\cos \left(\frac{2 \pi p}{n}+\frac{x}{2}\right) \sec \left(\frac{2 \pi p}{n}+x\right)\right)^{2 i \pi} \\
&=\left(1-e^{1 / 2 i n(x+\pi)}\right)^{i \pi\left(3+e^{i \pi n}\right)}\left(1+e^{1 / 2 i n(x+\pi)}\right)^{-i \pi\left(-1+e^{i \pi n}\right)} \tag{12}\\
& \cdot\left(1-e^{1 / 2 i n(2 x+\pi)}\right)^{-i \pi\left(3+e^{i \pi n}\right)}\left(1+e^{1 / 2 i n(2 x+\pi)}\right)^{i \pi\left(-1+e^{i \pi n}\right)} \\
& \quad \cdot \exp \left(n\left(\frac{2 i\left(e^{1 / 2 i n(x+\pi)}+e^{1 / 2 i n(x+3 \pi)}+2\right)}{-1+e^{i n(x+\pi)}}-\frac{4 i\left(1+e^{i n(x+\pi)} \cos (\pi n / 2)\right)}{-1+e^{i n(2 x+\pi)}}-\pi x\right)\right)
\end{align*}
$$

Proof. Use equation (1) and set $k=1, a=-1, m=x$ and apply the method in section (8) in [13].

$$
\begin{align*}
\prod_{p=0}^{n-1} & \frac{\cos ^{4}(2 \pi p / n+x / 8) \cos ^{7 / 2}(2 \pi p / n+x / 2) \sec ^{7}(2 \pi p / n+x / 4)}{\sqrt{\cos (2 \pi p / n+x)}} \\
= & \left(1-e^{1 / 2 i n(x+\pi)}\right)^{\left(1+e^{i \pi n}\right)\left(-3 e+7 e^{i \pi n}-1\right) / 4\left(-1+e^{i \pi n}\right)}\left(1+e^{1 / 2 i n(x+\pi)}\right)^{-\left(1+e^{i \pi n}\right)\left(3 e+7 e^{i \pi n}-13\right) / 4\left(-1+e^{i \pi n}\right)} \\
& \cdot\left(1-e^{1 / 4 i n(x+2 \pi)}\right)^{-\left(1+e^{i \pi n}\right)\left(-e^{i \pi n / 2}+7 e^{i \pi n}-5\right) / 2\left(-1+e^{i \pi n}\right)}\left(1-e^{1 / 8 i n(x+4 \pi)}\right)^{2\left(3+e^{i \pi n}\right)}\left(1+e^{1 / 8 i n(x+4 \pi)}\right)^{2-2 e^{i \pi n}} \\
& \cdot\left(1-e^{i n(2 x+\pi)}\right)^{-e^{i \pi n / 2}+e^{3 i \pi n / 2}-4 / 4\left(-1+e^{i \pi n}\right)}\left(1-e^{1 / 2 i n(x+2 \pi)}\right)^{8-e^{i \pi n}(\cos (\pi n / 2)+6) /-1+e^{i \pi n}} \tag{13}\\
& \cdot\left(1+e^{1 / 4 i n(x+2 \pi)}\right)^{e^{i \pi n}(8 i \sin (\pi n)+\cos (\pi n / 2)-\cos (\pi n)-1) /-1+e^{i \pi n}}\left(1+e^{1 / 2 i n(2 x+\pi)}\right)^{e^{i \pi n}(2 i \sin (\pi n)+\cos (\pi n / 2)-\cos (\pi n)-1) / 2\left(-1+e^{i \pi n}\right)} \\
& \cdot\left(1-e^{1 / 2 i n(2 x+\pi)}\right)^{1 / 4 i \cos (\pi n / 2)(2 \cos (\pi n / 2)-1)(\cot (\pi n / 2)+i)} \\
& \cdot\left(1-e^{i n(x+\pi)}\right)^{1 / 8(6 i \sin (\pi n / 2)+6 \cos (\pi n / 2)-9 i \tan (\pi n / 2)+3 i \cot (\pi n / 2)+28)}
\end{align*}
$$

Example 5.

Proof. Use equation (1) and set $k=2, a=1, m=x$ and Example 6. apply the method in section (8) in [13].

$$
\begin{align*}
& \prod_{p=0}^{n-1} \cos \left(\frac{2 \pi p}{n}+\frac{x}{2}\right) \sec \left(\frac{2 \pi p}{n}+x\right)\left(e^{8 \sin (x / 2) / \cos (4 \pi p / n+3 x / 2)+\cos (x / 2)}\right)^{-i / 2 / \pi} \\
& \quad=\left(\tan \left(\frac{1}{4} n(x+\pi)\right) \cot \left(\frac{1}{4} n(2 x+\pi)\right)\right)^{1 / 2 e^{i \pi n}} \tag{14}\\
& \quad \cdot \exp \left(\frac{i n\left(\pi x-4 \sin (n x / 4)\left(2 \cos (n x / 4)+\left(1+e^{i \pi n}\right) \cos (1 / 4 n(3 x+2 \pi))\right) \csc (1 / 2 n(x+\pi)) \csc (1 / 2 n(2 x+\pi))\right)}{2 \pi}\right) \\
& \quad \cdot \sqrt{e^{-i n x} \sin ^{3}\left(\frac{1}{4} n(x+\pi)\right) \cos \left(\frac{1}{4} n(x+\pi)\right) \csc ^{3}\left(\frac{1}{4} n(2 x+\pi)\right) \sec \left(\frac{1}{4} n(2 x+\pi)\right)}
\end{align*}
$$

Proof. Use equation (1) and set $k=1, a=i, m=x$ and apply

Example 7.

 the method in section (8) in [13].$$
\begin{align*}
& \prod_{p=0}^{n-1}\left(1-i e^{i(2 \pi p / n+x)}\right)^{-i e^{i(2 \pi p / n+x)}}\left(1+i e^{i(i(2 \pi p / n+x))}\right)^{i e^{i(2 \pi p / n+x)}} \tag{15}\\
& \quad=\exp \left(e^{i n(2 x+\pi)} \Phi\left(e^{i n(2 x+\pi)}, 1,1-\frac{1}{2 n}\right)+\frac{1}{2}\left(1+e^{i \pi n}\right) e^{1 / 2 \operatorname{in}(2 x+\pi)} \Phi\left(e^{\operatorname{in}(2 x+\pi)}, 1, \frac{n-1}{2 n}\right)\right)
\end{align*}
$$

Proof. Use equation (1) and set $k=-1, a=e^{-i}, m=x$ and apply the method in section (8) in [13].

Example 8.

$$
\begin{align*}
& \prod_{p=0}^{n-1}\left(1+e^{2 i(2 \pi p / n+x)}\right)^{e^{-2 i(2 \pi p / n+x)}} \tag{16}\\
& \quad=\exp \left(\frac{1}{2}\left(\left(1+e^{i \pi n}\right) e^{1 / 2 \operatorname{in}(2 x+\pi)} \Phi\left(e^{\operatorname{in}(2 x+\pi)}, 1, \frac{1}{2}+\frac{1}{n}\right)+2 e^{\operatorname{in}(2 x+\pi)} \Phi\left(e^{\operatorname{in}(2 x+\pi)}, 1,1+\frac{1}{n}\right)+2 n\right)\right)
\end{align*}
$$

Proof. Use equation (1) and set $k=-1, a=e^{2 i}, m=x$ and apply the method in section (8) in [13].

Example 9. A recurrence identity with consecutive neighbours.

$$
\begin{align*}
\Phi(z, s, a)= & 3^{1-s} z^{2} \Phi\left(z^{3}, s, \frac{a+2}{3}\right)+\frac{1}{2}(1+i \sqrt{3}) \Phi\left(-\frac{1}{2}(1+i \sqrt{3}) z, s, a\right) \\
& -\frac{1}{2} i(\sqrt{3}+i) \Phi\left(\frac{1}{2} i(i+\sqrt{3}) z, s, a\right) . \tag{17}
\end{align*}
$$

Proof. Use equation (1) and set $n=3, a=e^{2 i(a-1)}$,
Example 10. $k=-s, m=\log \left(i z^{1 / 2}\right) /(i)$ and simplify.

$$
\begin{align*}
& \prod_{p=0}^{n-1} \cos \left(m+\frac{2 \pi p}{n}\right) \sec \left(\frac{2 \pi p}{n}+q\right) \tag{18}\\
& \quad=\sin \left(\frac{1}{2}(2 m+\pi) n\right) \csc \left(\frac{1}{2} n(2 q+\pi)\right)\left(\cot \left(\frac{1}{4}(2 m+\pi) n\right) \tan \left(\frac{1}{4} n(2 q+\pi)\right)\right)^{1 / 2\left(-1-e^{i \pi n}\right)} .
\end{align*}
$$

Proof. Use equation (1) and form a second equation by replacing m by q and take their difference and set $k=-1, a=$ 1 and simplify using entry (3) below ($64: 12: 7$) in [14].

5. Conclusion

In this paper, we have presented a novel method for deriving a new finite sum of the Hurwitz-Lerch zeta function over the natural numbers along with some interesting products of trigonometric functions and a new recurrence identity using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.

Data Availability

No data were used to support this study.

Disclosure

This paper is available as a preprint on arXiv with reference number 2204.03821.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by NSERC Canada under Grant 504070.

References

[1] H. M. Srivastava, M.-J. Luo, and R. K. Raina, "New results involving a class of generalized hurwitz-lerch zeta functions and their applications," Turkish Journal of Analysis and Number Theory, vol. 1, pp. 26-35, 2013.
[2] R. K. Parmar, M. Luo, and R. K. Raina, "On a multivariable class of Mittag-Leffler type functions," Journal of Applied Analysis \& Computation, vol. 6, no. 4, pp. 981-999, 2016.
[3] M. J. Luo, R. K. Parmar, and R. K. Raina, "On extended Hurwitz-Lerch zeta function," Journal of Mathematical Analysis and Applications, vol. 448, no. 2, pp. 1281-1304, 2017.
[4] M.-J. Luo and R. K. Raina, "New Results for srivastava's λ-generalized hurwitz-lerch zeta function," Filomat, vol. 31, no. 8 , pp. 2219-2229, 2017.
[5] H. M. Srivastava and J. Choi, Zeta and Q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Publishers, Amsterdam, Netherlands, 2012.
[6] J. Choi and R. K. Parmar, "An extension of the generalized hurwitz-lerch zeta function of two variables," Filomat, vol. 31, no. 1, pp. 91-96, 2017.
[7] J. Choi, R. K. Parmar, and R. K. Saxena, "An extension of the extended hurwitz-lerch zeta functions of two variables," Bulletin of the Korean Mathematical Society, vol. 54, no. 6, pp. 1951-1967, 2017.
[8] R. Reynolds and A. Stauffer, "A method for evaluating definite integrals in terms of special functions with examples," International Mathematical Forum, vol. 15, no. 5, pp. 235-244, 2020.
[9] R. Reynolds and A. Stauffer, "A quadruple integral involving the product of generalized parabolic cylinder functions $D_{v}(\beta x) D_{u}(\alpha z)$: derivation and evaluation," Proceedings of the American Mathematical Society Serbian B, vol. 9, pp. 174-179, 2022.
[10] https://functions.wolfram.com/01.11.23.0003.01.
[11] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, Cambridge, MA, USA, 6th edition, 2000.
[12] R. Gelca and T. Andreescu, Putnam and Beyond, Springer International Publishing, Berlin, Germany, 2017.
[13] R. Reynolds and A. Stauffer, "A note on the infinite sum of the lerch function," European Journal of Pure and Applied Mathematics, vol. 15, no. 1, pp. 158-168, 2022.
[14] K. B. Oldham, J. C. Myland, and J. Spanier, An Atlas of Functions: With Equator, the Atlas Function Calculator, Springer, Berlin, Germany, 2nd edition, 2009.

