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A radio labeling of a simple connected graphG � (V, E) is a function h : V⟶ N such that |h(x) − h(y)|≥ diam(G) + 1 − d(x, y),
where diam (G) is the diameter of graph and d(x, y) is the distance between the two vertices.  e radio number of G, denoted
by rn (G), is the minimum span of a radio labeling for G. In this study, the upper bounds for radio number of the tri-
angular snake and the double triangular snake graphs are introduced.  e computational results indicate that the presented
upper bounds are better than the results of the mathematical model provided by Badr and Moussa in 2020. On the
contrary, these proposed upper bounds are better than the results of algorithms presented by Saha and Panigrahi in 2012
and 2018.

1. Introduction

 e �eld of graph theory assumes a crucial part in di�erent
�elds. One of the signi�cant regions in graph theory is graph
labeling which is used in many applications such as coding
theory, x-ray crystallography, radar, astronomy, circuit
design, communication network addressing, data base
management, and channel assignment problem. e channel
assignment problem is the problem of assigning channels
(nonnegative integers) to the stations in an optimal way such
as the interference is avoided. In [1], Badr and Moussa
proposed a work on upper bound of radio k-chromatic
number for a given graph against the other which is due to
Saha and Panigrahi [2]. Badr and Moussa proposed a new
mathematical model for �nding the upper bound of a graph
[1]. In [3], Saha and Panigrahi introduced another algorithm
(with time complexity O(n4)) for determining the upper
bound of a graph. Ali et al. gave the upper bound for the
radio number of generalized gear graph [4]. Fernandez et al.

proved that the radio number of the n-gear is 4n+ 2 [5]. Yao
et al. were de�ned as a new graph radio labeling on trees, and
the properties of trees labeling were shown [6]. Smitha and
 irusangu determined the radio mean number of double
triangular snake graph and alternate double triangular snake
graph [7]. If p&q is prime numbers, the radio numbers of
zero divisor graphs Γ(ZP2 × Zq) were investigated by
Ahmad and Haider [8].

For more details about how to formulate a problem to
a mathematical model, the reader can refer to [9–11]. On
the contrary, for more details about other labeling that are
related to radio labeling such as radio mean, radio mean
square, and radio geometric.  e reader is referred to
[10, 11].

In this current work, the upper bounds for radio number
of the triangular snake and the double triangular snake
graphs are introduced.  e computational results indicate
that the presented upper bounds are better than the results of
the mathematical model provided by Badr and Moussa [1].
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On the contrary, these proposed upper bounds are better
than the results of algorithms presented by Saha and Pan-
igrahi [2, 3].

2. Materials and Methods

In this section, we introduce some basic definitions before
we prove the theorems that determine the upper bounds’
radio of the number for triangular snake and double tri-
angular snake. On the contrary, we introduce the previous
works which are related to the determining of the upper
bound of radio number of a graph.

Definition 1 (see [12], diameter of graph).*e diameter of G

is the greatest eccentricity among all vertices of G and it is
denoted by diam (G).

Definition 2 (see [13], triangular snake). A triangular snake
(or Δ-snake) is a connected graph in which all blocks are
triangles and the block-cut-point graph is a path.

Definition 3 (see [7], double triangular snake). A double
triangular snake D(Tn) is obtained from two triangular
snakes with a common path.

In 2013, Algorithm 1 was introduced by Saha and
Panigrahi [2] for determining the upper bound of the radio
number of a given graph. Algorithm 1 has O(n3) time
complexity such that n is the number of the vertices of G. In
2018, Saha and Panigrahi [2] proposed a new algorithm
(Algorithm 2) for determining the upper bound of the radio
number of a given graph. Algorithm 2 has O(n4) time
complexity. On the contrary, in 2020, Badr and Moussa [1]
proposed a novel mathematical model which finds the upper
bound of the radio number of a given graph.

3. Results and Discussion

Here, we introduce two theorems which determine the
upper bounds for radio number of triangular snake and
double triangular snake. *e presented upper bounds (by
*eorems 1 and 2) are better than the results of the
mathematical model provided by Badr and Moussa [1]. On
the contrary, these proposed upper bounds are better than
the results of algorithms presented by Saha and Panigrahi
[2, 3].

Theorem 1. Let G be a triangular snake graph (Δk − snake)
with k blocks and n vertices, where d(x, y)≥ 1; then, the upper
bound of the radio number of Δk − snake is defined as follows:

rn Δk − snake( 􏼁≤
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Proof. To prove this theorem, its suffices to give a distance
labeling h of Δk − snake.

Let x1, x2, x3, . . . , xn be a Δk − snake of length k, i.e.,
diameter of (Δk − snake) � k.

Define a function h: V(Δk − snake)⟶ N as the fol-
lowing cases. □
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Now, we are in a position to prove that the function h(x)
is the distance labeling of Δk − snake.
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Suppose that 1≤ i≤ k, 0 ≤ j≤ k − 1.
If i� j,
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Case 2. k is even is similarly proved:
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We show that the function h(x) is the distance labeling of
Δk − snake.
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For each ( i, i + 1),

|ki − k(i + 1)|≥ diam + 1 − d(x, y),

|ki − k(i + 1)|≥ k + 1 − d(x, y),

k≥ k + 1 − d(x, y).
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Example 1. Figure 1 presents the labeling Δ3(snake)
according to *eorem 1.

Theorem 2. Let G be a double triangular snake graph with k
blocks and n vertices; then, the upper bound of the radio
number of double Δk − snake is defined as follows:

rn Δk(snake)( ≤

3, if k � 1,

7, if k � 2,

2k
2

− k + 3, if k is odd,

2k
2

− k + 2, if k is even.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Proof. To prove this theorem, it suffices to give a distance
labeling h of double Δk − snake. Notice that the diameter of
double triangular snake is the same as the diameter of tri-
angular snake graph. Let x1, x2, x3, . . . , xn be a 2Δk − snake
of length k, where the diameter of 2(Δk − snake) �

k and n � 3k + 1.
Define a function h: V(doubleΔk − snake)⟶ N as the

following cases:

For k� 1, let the sufficed labeling
h(x1) � 0, h(x2) � 2 , h(x3) � 5, and h(x4) � 3
For k� 2, let h(x1) � 4, h(x2) � 2 , h(x3) � 0,

h(x4) � 5, h(x5) � 3, h(x6) � 6, and h(x7) � 7 □

Case 3. k is even and k> 2,
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We are in a position to prove that the function h(xi) are
the distance labeling of double Δk − snake.

For each (i, i + 1),
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Figure 1: *e radio number of Δ3(snake).
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otherwise,
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Figure 2: *e radio number of double triangular Δ3(snake).
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Input: G be an n-vertex simple connected graph, k be a positive integer, and the adjacency matrix A[n][n] of G

Output: A radio k-coloring of G.
Begin

Compute the distance matrix D[n][n] of G using Floyed–Warshall’s algorithm and the adjacency matrix A[n][n] of G.
RadioNumber�∞;
for l� 1 to n do
for i� 1 to n do
labeling [i]� 0;

end
for i� 1 to n do

for j� 1 to n do
c[i][j]� diam+ 1 − D[i][j];

end
c[i][j]�∞;

end
for i� 2 to n do

/∗find the minimum value m of the column with position p∗/
[m, p]�min [c(l, :)];
for j� 1 to n

c[p][j]� c[p][j] +m
if c[p][j]< c[l][j]
c[p][j]� c[l][j]

end
end
labeling [p]�m
l� p

end
/∗ find the max value of the labeling ∗/

Max_Value�max (labeling))
if RadioNumber>Max_Value
RadioNumber�Max_Value

end
end

End

ALGORITHM 1: [2] Finding a radio k-coloring of a graph.

Input: G be an n-vertex graph, simple connected graph, and the diameter of (diam).
Output: an upper bound of radio number of G.
Begin
Step 1: choose a vertex u and col(u) � floor(

�����
diam

√
).

Step 2: S � u{ }.
Step 3: for all v ∈ V(G) − S, compute

temp(v) � max
t∈s

col(t) + max
���������������
(D + 1 − d(u, v), 1

􏽰
􏽮 􏽯􏽮 􏽯.

Step 4: let min � min
v∈V(G)− S

temp(v)􏼈 􏼉.
Step 5: choose a vertex v ∈ V(G) − S, such that temp(v) � min.
Step 6: give col(v) � min.
Step 7: S � S∪ v{ }

Step 8: repeat Step 3 to Step 6 until all vertices are labeled.
Step 9: repeat Step 1 to Step 7 for every vertex x ∈ V(G).

End

ALGORITHM 2: [3] Finding an upper bound of the radio number of a graph G.

Journal of Mathematics 5
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Figure 3: Comparison among UB0, Ub1, UB2, and UB3 for the
radio number of triangular snake.
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Figure 4: Comparison among UB0, Ub1, UB2, and UB3 for the
radio number of double triangular snake.

Table 1: Comparison between standard radio number and the upper bound of radio number for the triangular snake graph.

k n
UB0 [2] UB1 [3] UB2 [1] UB3

rn CPU time rn CPU time rn CPU time rn CPU time
1 3 2 0.007704 2 0.0040755 2 0.0017378 2 O(1)
2 5 6 0.004364 5 0.004255 6 0.002382 5 O(1)
3 7 12 0.00612 12 0.00555 14 0.005265 11 O(1)
4 9 20 0.024677 18 0.012055 26 0.005364 18 O(1)
5 11 30 0.051972 30 0.013155 42 0.005659 28 O(1)
6 13 42 0.230102 39 0.013621 62 0.005799 39 O(1)
7 15 56 0.307545 56 0.013755 86 0.006905 53 O(1)
8 17 72 0.308318 68 0.014298 114 0.007153 68 O(1)
9 19 90 0.468408 90 0.014749 146 0.007203 86 O(1)
10 21 110 0.751755 105 0.01493 182 0.00743 105 O(1)
11 23 132 0.924785 132 0.015201 222 0.007672 127 O(1)
12 25 156 1.219799 150 0.015988 266 0.008343 150 O(1)
13 27 182 1.674918 182 0.016105 314 0.008354 176 O(1)
14 29 210 2.689564 203 0.016197 366 0.008496 203 O(1)
15 31 240 3.224403 240 0.016201 422 0.008661 233 O(1)
16 33 272 3.567201 264 0.01711 482 0.009033 264 O(1)
17 35 306 4.447875 306 0.017625 546 0.009587 298 O(1)
18 37 342 5.561139 333 0.018556 614 0.009701 333 O(1)
19 39 380 6.933108 380 0.019099 686 0.009929 371 O(1)
20 41 420 8.345423 410 0.020327 762 0.010011 410 O(1)
21 43 462 12.868485 462 0.021287 842 0.010364 452 O(1)
22 45 506 13.787422 495 0.021983 926 0.011044 495 O(1)
23 47 552 15.946642 552 0.022126 1014 0.011472 541 O(1)
24 49 600 20.145523 588 0.029388 1106 0.011726 588 O(1)
25 51 650 22.931427 650 0.049946 1202 0.012145 638 O(1)
26 53 702 26.792638 689 0.053599 1302 0.013162 689 O(1)
27 55 756 30.007477 756 0.058895 1406 0.013417 743 O(1)
28 57 812 33.778689 798 0.060056 1514 0.013437 798 O(1)
29 59 870 39.570408 870 0.089137 1626 0.017043 856 O(1)
30 61 930 45.216577 915 0.148602 1742 0.026953 915 O(1)
50 101 2550 342.011401 2525 0.282964 1862 0.259496 2525 O(1)
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2
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(33)

otherwise,

k
2

−
1
2

k +
3
2
≥ k + 1 − d(x, y). (34)

Example 2. Figure 2 presents the labeling double triangular
Δ3(snake) according to *eorem 2.

4. Computational Study

In order to evaluate the proposed upper bounds presented
by *eorems 1 and 2, we make a numerical experiment
between the proposed results and the results of [1–3]. *is
experiment applies on two graphs (triangular snake and
double triangular snake). *e description of the environ-
ment is as follows: MATLAB R2016a with default options
and all runs were carried out under MS Windows 7

Professional system, having Intel® Core™ i3-3217U CPU@
1.80GHz and 4Gb RAM.

In Tables 1 and 2, the abbreviations Ub0, Ub1, Ub2, and
Ub3 are used to denote upper bounds are due to the works of
Saha and Panigrahi [2], Saha and Panigrahi [3], Badr and
Moussa [1], and the proposed algorithm, respectively.

Table 1 and Figure 3 show that the proposed upper
bound Ub3 overcomes the upper bound UB0 and UB2
which is due to the works of Saha and Panigrahi [2] and Badr
and Moussa [1], respectively. On the contrary, the proposed
upper bound Ub3 overcomes the upper bound UB1 (for k is
odd only) which is due to the works of Saha and Panigrahi
[2]. *e upper bound (for k is even) of the UB3 and UB1 are
equal.

Table 1 and Figure 4 explain that the proposed upper
bounds outperform all results of UB0, UB1, and UB2
according to CPU time. On the contrary, the mathematical
model UB2 [1] overcomes UB0 and UB1.

5. Conclusions

In this study, the upper bounds for the radio number of the
triangular snake and the double triangular snake graphs are
introduced. *e computational results indicate that the
presented upper bounds are better than the results of the

Table 2: Comparison between standard radio number and for the upper bound of the radio number for the double triangular snake graph.

k n
UB0 [2] UB1 [3] UB2 [1] UB3

rn CPU time rn CPU time rn CPU time rn CPU time
1 4 2 0.008905 3 0.013994 2 0.007179 3 O(1)
2 7 7 0.009302 8 0.014494 8 0.008093 7 O(1)
3 10 15 0.012654 17 0.015187 19 0.010171 18 O(1)
4 13 26 0.01432 29 0.016028 36 0.011224 30 O(1)
5 16 41 0.022551 44 0.026618 59 0.012734 48 O(1)
6 19 57 0.022565 62 0.031761 88 0.014698 68 O(1)
7 22 78 0.024324 83 0.097335 123 0.017663 94 O(1)
8 25 100 0.026327 107 0.099599 164 0.025045 122 O(1)
9 28 127 0.030762 134 0.168036 211 0.025465 156 O(1)
10 31 155 0.038029 164 0.217785 264 0.031522 192 O(1)
11 34 188 0.048976 197 0.312401 323 0.032649 234 O(1)
12 37 222 0.058516 233 0.476330 388 0.033239 278 O(1)
13 40 262 0.067316 272 0.648300 459 0.039245 328 O(1)
14 43 301 0.092605 314 0.831050 536 0.043670 380 O(1)
15 46 347 0.101886 359 1.087081 619 0.045682 438 O(1)
16 49 392 0.157635 407 1.389141 708 0.052569 498 O(1)
17 52 444 0.163901 458 1.740725 803 0.065006 564 O(1)
18 55 495 0.270554 512 2.151552 904 0.131148 632 O(1)
19 58 553 0.287547 569 2.625657 1011 0.156826 706 O(1)
20 61 610 0.325028 629 3.229021 1124 2.637903 782 O(1)
21 64 675 0.350093 692 3.867577 1243 2.655901 864 O(1)
22 67 737 0.355919 758 4.619990 1368 2.676703 948 O(1)
23 70 808 0.369294 827 5.625904 1499 2.698903 1038 O(1)
24 73 876 0.460056 899 6.570240 1636 3.174321 1130 O(1)
25 76 953 0.512382 974 7.552782 1779 3.321324 1228 O(1)
26 79 1027 0.553158 1052 9.093392 1928 3.592834 1328 O(1)
27 82 1110 0.625059 1133 10.404067 2083 3.720172 1434 O(1)
28 85 1190 0.740484 1217 12.811142 2244 4.019234 1542 O(1)
29 88 1280 0.77942 1304 13.942115 2411 4.892321 1656 O(1)
30 91 1365 0.974537 1394 16.356469 2584 5.109283 1772 O(1)
50 151 3775 4.497669 3824 130.59526 2763 9.981278 4952 O(1)
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mathematical model provided by Badr and Moussa [1]. On
the contrary, these proposed upper bounds are better than
the results of algorithms presented by Saha and Panigrahi
[2, 3].
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