Research Article

Gorenstein-Projective Modules over a Class of Morita Rings

Dadi Asefa

Department of Mathematics, College of Natural and Computational Sciences, Ambo University, Ambo, Ethiopia

Correspondence should be addressed to Dadi Asefa; dadi.asefa@ambou.edu.et

Received 7 June 2022; Accepted 9 August 2022; Published 10 October 2022

Copyright © 2022 Dadi Asefa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \(\Delta_{(0,0)} \) be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a \(\Delta_{(0,0)} \)-module \((X, Y, f, g)\) to be Gorenstein-projective. As an application, we give sufficient conditions when the algebras \(A \) and \(B \) inherit the strongly CM-freeness of \(\Delta_{(0,0)} \).

1. Introduction

Gorenstein algebra and Gorenstein-projective modules are important topics of research in Gorenstein homological algebra. A fundamental problem in Gorenstein homological algebra is determining all the Gorenstein-projective \(A \)-modules for a given algebra \(A \). The class of Gorenstein-projective modules is a key component of relative homological algebra and has received a great deal of attention in the study of representation theory (e.g., [1–6, 8–13, 16–18, 20, 23–27]).

For algebras \(A \) and \(B \), bimodules \(B_M A \) and \(A_N B \), and a \(B-B \)-bimodule map \(\phi: M \otimes_A N \rightarrow B \), and an \(A-A \)-bimodule map \(\psi: N \otimes_B M \rightarrow A \) satisfying some special conditions. Bass [7] introduced Morita algebra \(\Delta_{(\phi,\psi)} = \begin{pmatrix} A & AN_B \\ BM_A & B \end{pmatrix} \), where the special conditions for \(\phi \) and \(\psi \) are to guarantee that the multiplication of \(\Delta_{(\phi,\psi)} \) has the associativity. Morita algebras \(\Delta_{(\phi,\psi)} \) give a very large class of algebras, and many important algebras can be realized as Morita algebras. For example, the \(2 \times 2 \) matrix algebra \(M_2(A) = \begin{pmatrix} A & A \\ A & A \end{pmatrix} \) over \(A \), the algebra \(\Delta_{(0,0)} = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \), the upper triangular matrix algebra \(\begin{pmatrix} A & AN_B \\ 0 & B \end{pmatrix} \), the algebras defined by finite quivers and relations. Thus, researching Morita rings is pivotal.

Asefa [1] obtained sufficient conditions for Gorenstein-projective module \((X, Y, f, g)\) over \(\Delta_{(\phi,\psi)} \), implying that \(X \) is a Gorenstein-projective \(A \)-module and \(Y \) is a Gorenstein-projective \(B \)-module. Gao and Psaroudakis [13] constructed Gorenstein-projective modules over a Morita ring \(\Delta_{(0,0)} \). They stated that [13], [Theorem 3.10] does not give sufficient conditions for a module \((X, Y, f, g)\) Gorenstein-projective \(([13], \text{Remark 3.13})\). As a result, it is natural to ask, "When is a module \((X, Y, f, g)\) Gorenstein-projective?". This paper is motivated to answer this question. In the following main result, we give sufficient conditions for \((X, Y, f, g)\) to be a Gorenstein-projective module over a Morita ring \(\Delta_{(0,0)} \).

Theorem 1. Let \(\Delta_{(0,0)} \) be a Morita ring. Assume that

(i) \(M_A \) and \(N_B \) have finite flat dimensions.
(ii) \(BM \) and \(AN \) have finite projective dimensions.

Then, if each of the following conditions holds, a \(\Delta_{(0,0)} \)-module \((X, Y, f, g)\) is Gorenstein-projective.

(1) \(\text{Coker} g \) is Gorenstein-projective \(A \)-module;
(2) \(\text{Coker} f \) is Gorenstein-projective \(B \)-module; and
(3) \(M \otimes_A \text{Coker} g \cong \text{Im} f \) and \(N \otimes_B \text{Coker} f \cong \text{Im} g \).
Lastly, we give sufficient conditions when the algebras \(A \) and \(B \) inherit the strongly CM-freeness of \(\Delta_{(0,0)} \).

2. Preliminaries

This section discusses some basic definitions and facts that will be used throughout the paper.

Throughout, rings mean a ring with unity and an \(R \)-module mean a left \(R \)-module. Let \(R \) be a ring. Let \(M \) be an \(R \)-module, then the projective(injective and flat) dimension of \(M \) will be denoted by \(\text{projdim} \) \(M \) \((\text{injdim} \) \(M \) \(\) and \(\text{flatdim} \) \(M \) \). The class of modules isomorphic to direct sums of copies of \(M \) is denoted by \(\text{Add}(M) \).

An \(R \)-module \(M \) is Gorenstein-projective if there exists an exact sequence of projective \(R \)-modules
\[
\mathcal{P}^* = \cdots \longrightarrow P^{-1} \longrightarrow p^0 \xrightarrow{d^0} P^1 \longrightarrow \cdots
\]
such that \(\text{Hom}_R(\mathcal{P}^*, Q) \) is exact for an arbitrary projective \(R \)-module \(Q \) and \(M \cong \text{Ker} d^0 \). The class of Gorenstein-projective \(R \)-modules will be denoted by \(\text{GProj}_R \).

Let \(A \) and \(B \) be rings, \(ANB \) and \(BMA \) bimodules, and \(\phi: ANA \longrightarrow B \) and \(\psi: NBB \longrightarrow A \) bimodules homomorphism. This class of Gorenstein-projective \(R \)-modules will be denoted by \(\text{GProj}_R \).

Let \(A \) and \(B \) be rings, \(ANB \) and \(BMA \) bimodules, and \(\phi: ANA \longrightarrow B \) and \(\psi: NBB \longrightarrow A \) bimodules homomorphism. This class of Gorenstein-projective \(R \)-modules will be denoted by \(\text{GProj}_R \).

2.2. We Now Recall Functors Given in [16]

(1) The functor \(T_A: A\text{-Mod} \rightarrow \Delta_{(0,0)}\text{-Mod} \) is given by \(T_A(X) = (X, M \otimes_A X, 1, 0) \) for any object \(X \) in \(A\text{-Mod} \).

2.1. Modules over \(\Delta_{(0,0)} \): A left module over \(\Delta_{(0,0)} \) is given as \((X, Y, f, g) \), where \(X \) is an \(A \)-module, \(Y \) is a \(B \)-module, and
\[
\begin{align*}
f &: M \otimes_A X \longrightarrow Y, \\
g &: N \otimes_B Y \longrightarrow X,
\end{align*}
\]
where \(g \) is an \(A \)-module map and \(f \) is a \(B \)-map.

A \(\Delta_{(0,0)} \)-module morphism is given by \((a, b): (X, Y, f, g) \longrightarrow (X', Y', f', g') \), where \(a: X \longrightarrow X' \) is a homomorphism in \(A\text{-Mod} \) and \(b: Y \longrightarrow Y' \) is a homomorphism in \(B\text{-Mod} \) such that the following diagrams are commutative.

\[
\begin{array}{ccc}
M \otimes_A X & \xrightarrow{f} & Y \\
\downarrow \text{Id}_M \otimes a & & \downarrow b \\
M \otimes_A X' & \xrightarrow{f'} & Y'
\end{array}
\]

\[
\begin{array}{ccc}
N \otimes_B Y & \xrightarrow{g} & X \\
\downarrow \text{Id}_N \otimes b & & \downarrow a \\
N \otimes_B Y' & \xrightarrow{g'} & X'
\end{array}
\]

Lemma 1 (see [13]). Let \(\Delta_{(\phi, \psi)} = \left(\begin{array}{c} A \\ B \end{array} \right) \) be a Morita ring.

1. A sequence \(0 \longrightarrow (X'', Y'', f'', g'') \longrightarrow (X', Y', f', g') \longrightarrow (X, Y, f, g) \) is exact in \(\Delta\text{-Mod} \) if and only if the sequence \(0 \longrightarrow X'' \longrightarrow X \longrightarrow X' \longrightarrow 0 \) is exact in \(A\text{-Mod} \) and the sequence \(0 \longrightarrow Y'' \longrightarrow Y \longrightarrow Y' \longrightarrow 0 \) is exact in \(B\text{-Mod} \).

2. Let \((a, b): (X, Y, f, g) \longrightarrow (X_1, Y_1, f_1, g_1) \) a morphism in \(\Delta\text{-Mod} \) and consider the maps \(\alpha: \text{Ker} a \longrightarrow X \) and \(\text{Ker} \beta \longrightarrow Y \).

The case \(\phi = 0 = \psi \) is a subclass of the general Morita rings(e.g., [7, 13–15, 21].)

Similarly, the Cokernel of \((a, b) \) can be described.

2.2. We Now Recall Functors Given in [16]

(1) The functor \(T_A: A\text{-Mod} \rightarrow \Delta_{(0,0)}\text{-Mod} \) is given by \(T_A(X) = (X, M \otimes_A X, 1, 0) \) for any object \(X \) in \(A\text{-Mod} \).

(2) The functor \(T_B: B\text{-Mod} \rightarrow \Delta_{(0,0)}\text{-Mod} \) is given by \(T_B(Y) = (N \otimes_B Y, 0, 1) \) for any object \(Y \) in \(B\text{-Mod} \).

(3) The functor \(U_A: \Delta_{(0,0)}\text{-Mod} \rightarrow A\text{-Mod} \) is given by \(U_A(X, Y, f, g) = X \) for any \((X, Y, f, g) \) in \(\Delta_{(0,0)}\text{-Mod} \).
(4) The functor $U_B: \Delta_{(0,0)}\text{-Mod} \to B\text{-Mod}$ is given by
$U_B(X, Y, f, g) := Y$ for any object (X, Y, f, g) in
$\Delta_{(0,0)}\text{-Mod}$.

(5) Let $X \in A$ be any object in Mod, then we denote by
$\epsilon_X: N \otimes_B \text{Hom}_A(N, X) \to X$ the map A-module
given by involution. The functor $H_A: A\text{-Mod}
\to \Delta_{(0,0)}\text{-Mod}$ is given by
$H_A(X) := (X, \text{Hom}_A(N, X), 0, \epsilon_X)$ for any object X in
$A\text{-Mod}$.

(6) Let Y be any object in $B\text{-Mod}$, the we denote by
$\epsilon_Y: M \otimes_A \text{Hom}_B(M, Y) \to Y$ the map B-module
given by involution. The functor $H_B: B\text{-Mod}
\to \Delta_{(0,0)}\text{-Mod}$ is given by
$H_B(Y) := (\text{Hom}_B(M, Y), Y, \epsilon_Y, 0)$ for any object Y in
$B\text{-Mod}$.

(7) The functor $Z_A: A\text{-Mod} \to \Delta_{(0,0)}\text{-Mod}$ is defined by
$Z_A(X) := (X, 0, 0, 0)$ for any object X in $A\text{-Mod}$. The functor
$Z_B: B\text{-Mod} \to \Delta_{(0,0)}\text{-Mod}$ can be similarly defined.

More information about the functors given above can be found in the following result.

Proposition 1 ([16], Proposition 2.4]). Let $\Delta_{(0,0)}$ be Morita ring. Then,

1. The functors $H_A, H_B, T_A,$ and $T_B,$ are fully faithful.
2. The pairs $(U_A, H_A), (U_B, H_B), (T_A, U_A),$ and (T_B, U_B) are adjoint pairs.
3. The functors U_A and U_B are exact.

Lemma 2. Let $\Delta_{(0,0)}$ be Morita ring.

1. ([19], [Theorem 7.3]) A left $\Delta_{(0,0)}$-module (P, Q, f, g) is projective if and only if
$(P, Q, f, g) = T_A(X) \oplus T_B(Y) = (X, M \otimes_A X, 1, 0) \oplus (Y, N \otimes_B Y, Y, 0, 1)$ for
some projective left A-module X and projective left B-module Y.

2. ([22], [Corollary 2.2]) A left $\Delta_{(0,0)}$-module (I, J, f, g) is injective if and only if
$(I, J, f, g) = H_A(X) \oplus H_B(Y) = (X, \text{Hom}_A(N, X), 0, \epsilon_X) \oplus (\text{Hom}_B(M, Y), Y, \epsilon_Y, 0)$ for some injective left A-module X and injective left B-module Y.

3. Gorenstein-Projective Modules over $\Delta_{(0,0)}$

This section aims to construct Gorenstein-projective modules over $\Delta_{(0,0)}$.

The following lemmas are required in order to prove the main theorems of this paper.

Lemma 3. Let A be a ring and M a B-A-bimodule with finite flat dimension. If a complex of flat A-modules F^\bullet is exact, then, the sequence $M \otimes_A F^\bullet$ is also exact.

Proof. Assume that F^\bullet is an exact complex of flat A-modules. Because M has a finite flat dimension, we have the following flat resolution of M.

$0 \to F^0 \to F^{n-1} \to \cdots \to F^0 \to M_A \to 0. \ (7)$

We obtain the following exact sequence of complexes because all terms in the complex F^\bullet are flat.

$0 \to F^0 \otimes_A F^\bullet \to F^{n-1} \otimes_A F^\bullet \to \cdots \to F^0 \otimes_A F^\bullet \to M_A \otimes_A F^\bullet \to 0. \ (8)$

Since the complexes $F^i \otimes_A F^\bullet$ are exact for all i, so is $M \otimes_A F^\bullet$. □

Lemma 4. Let B be a ring. If a B-module N has finite injective dimension and the complex of projective B-modules,

$Q^\bullet := \cdots \to Q^{n+1} \to Q^n \to Q^{n+1} \to \cdots, \ (9)$

is exact, then so is $\text{Hom}_B(Q^\bullet, N)$.

Lemma 5. Let $\Delta_{(0,0)}$ be a Morita ring with zero bimodule homomorphisms. Then

1. ([13], [Lemma 3.8]) For each $X \in A$-Mod and each $Y \in B$-Mod we have the following exact sequences in $\Delta_{(0,0)}$-Mod.

$0 \to Z_A(M \otimes_A X) \to T_A(X) \to Z_A(X) \to 0. \ (10)$

and

$0 \to Z_A(N \otimes_B Y) \to T_B(Y) \to Z_B(Y) \to 0. \ (11)$

2. ([13], [Lemma 3.9]) For all $X, X' \in A$-Mod and $Y, Y' \in B$-Mod, we have the following isomorphisms:

$\text{Hom}_A(X, X') \equiv \text{Hom}_A(Y, Y'). \ (12)$

and

$\text{Hom}_B(Y, Y') \equiv \text{Hom}_B(Y, Y'). \ (13)$

The following result provides sufficient conditions for the functor $T_A: A$-$\text{Mod} \to \Delta_{(0,0)}$-$\text{Mod}$ and the functor $T_B: B$-$\text{Mod} \to \Delta_{(0,0)}$-$\text{Mod}$ to preserve Gorenstein-projective modules.

Proposition 2

1. Assume that M_A has a finite flat dimension and that A_N has a finite projective dimension. $T_A(X)$ is a Gorenstein-projective $\Delta_{(0,0)}$-module if X is a Gorenstein-projective A-module.

2. Assume that N_B has a finite flat dimension and that B_M has a finite projective dimension. $T_B(Y)$ is a Gorenstein-projective $\Delta_{(0,0)}$-module if Y is a Gorenstein-projective B-module.
Proof. We show (1) and (2) can be proved in a similar manner. Since an A-module X is a Gorenstein-projective, there is an exact sequence of projective A-modules,
\[
\varphi^* : \cdots \rightarrow P^{-1} \rightarrow P^0 \rightarrow P^1 \rightarrow \cdots ,
\]
(14)
such that $T_A(X) \equiv \text{Ker}(d^0, 1 \otimes d^0)$. Now, it is left to show that $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), (X', Y', f', g'))$ is exact for any projective $\Delta_{(0,0)}$-module (X', Y', f', g'). By Lemma 2, this can be proved by showing the exactness of $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_A(\varphi^*))$ and $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_B(Q))$ for any projective A-module P and any projective B-module Q. By Proposition 1 the functor T_A is fully faithful. Thus, $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_A(\varphi^*)) \cong \text{Hom}_A(\varphi^*, \varphi^*)$. Hence $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_A(\varphi^*))$ because $\text{Hom}_A(\varphi^*, \varphi^*)$ is exact. Since (T_A, U_A) are adjoint pairs, we have the following equation:
\[
\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_B(Q)) \cong \text{Hom}_A(\varphi^*, N \otimes_B Q).
\]
(16)

A module $N \otimes_B Q$ has finite projective dimension because it is isomorphic to a direct summand of direct sums of copies of N. Since φ^* is a complete A-projective resolution, the complex $\text{Hom}_A(\varphi^*, N \otimes_B Q)$ is exact (see [18], Proposition 2). Thus, $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), T_B(Q))$ is exact. Hence $\text{Hom}_{A_{(0)}}(T_A(\varphi^*), (X', Y', f', g'))$ is exact for any projective $\Delta_{(0,0)}$-module (X', Y', f', g'). Therefore, $T_A(X)$ is a Gorenstein-projective $\Delta_{(0,0)}$-module. □

In the following result, we give sufficient conditions for a $\Delta_{(0,0)}$-module (X, Y, f, g) to be Gorenstein-projective.

Theorem 2. Let $\Delta_{(0,0)}$ be a Morita ring. Assume that
(i) M_A and N_B have finite flat dimensions.
(ii) B and A have finite projective dimensions.

Then, if each of the following conditions holds, a $\Delta_{(0,0)}$-module (X, Y, f, g) is Gorenstein-projective.
(1) $\text{Coker} g$ is a Gorenstein-projective A-module;
(2) $\text{Coker} f$ is a Gorenstein-projective B-module; and
(3) $M \otimes_A \text{Coker} g \cong \text{Im} f$ and $N \otimes_B \text{Coker} f \cong \text{Im} g$.

Proof. Suppose that conditions (1)–(3) are true. Since $\text{Coker} f$ is a Gorenstein-projective B-module, there exists an exact complex of projective B-modules,
\[
\varphi^* : \cdots \rightarrow Q^{-1} \rightarrow Q^0 \rightarrow Q^1 \rightarrow \cdots ,
\]
(17)
such that $X \equiv \text{Ker} d^0$, and $\text{Hom}_A(\varphi^*, Q)$ exact for any projective A-module Q. Lemma 3 states that the assumption that M_A has finite flat dimension implies the sequence $M \otimes_A \varphi^*$ is exact. Hence we get the exact sequence of projective $\Delta_{(0,0)}$-modules,
\[
\varphi^* : \cdots \rightarrow P^{-1} \rightarrow P^0 \rightarrow P^1 \rightarrow \cdots ,
\]
(15)
such that $\text{Coker} f \equiv \text{Ker} d^0$ and $\text{Hom}_B(\varphi^*, Q)$ is exact for each projective B-module Q. Thus, we get the following exact sequence,
\[
0 \rightarrow N \otimes_B \text{Coker} f \rightarrow N \otimes_B Q \rightarrow \text{Id} \otimes d^0 \rightarrow N \otimes_B Q^1 \rightarrow \cdots ,
\]
(18)
for any projective B-module Q. Since $\text{Coker} g$ is a Gorenstein-projective A-module, there exists a complete projective resolution,
\[
\varphi^* : \cdots \rightarrow P^{-1} \rightarrow P^0 \rightarrow P^1 \rightarrow \cdots ,
\]
(19)
of A-modules such that $\text{Coker} g \equiv \text{Ker} d^0$.

Let $\pi_1 : X \rightarrow \text{Coker} g$ and $\pi_2 : Y \rightarrow \text{Coker} f$. Consider the following commutative diagram of A-modules.
\[
\begin{array}{ccc}
0 & \rightarrow & N \otimes_B \text{Coker} f \\
\downarrow & & \downarrow \\
0 & \rightarrow & N \otimes_B Q \rightarrow \text{Id} \otimes d^0 \rightarrow N \otimes_B Q^1 \rightarrow \cdots \\
\end{array}
\]
(20)

Since $\psi = 0$, the above equation implies that there exists an A-map $i_1 : N \otimes_B \text{Coker} f \rightarrow X$ that is unique and $g = i_1 \circ (\text{Id}_N \otimes \pi_2)$. Thus, from $\text{Im} g \cong N \otimes_B \text{Coker} f$ it follows that i_1 is an injective A-map. Thus, we get the exact sequence as follows:
\[
0 \rightarrow N \otimes_B \text{Coker} f \stackrel{i_1}{\rightarrow} X \rightarrow \text{Coker} g \rightarrow 0.
\]
(21)

Similarly, the sequence
\[
0 \rightarrow M \otimes_A \text{Coker} g \stackrel{i_2}{\rightarrow} Y \rightarrow \text{Coker} f \rightarrow 0,
\](22)
is exact.

Since each $N \otimes_B Q^i$ has finite projective dimension, and since each $\text{Ker} d^i$ is a Gorenstein-projective A-module, we have that $\text{Ext}_A^i(\text{Ker} d^i, N \otimes_B Q^j) = 0, \forall i \geq 0$. Applying generalized Horseshoe Lemma([26], Lemma 1.6 (ii)) to the exact sequences (18) and (21), we obtain an exact sequence as follows:
\[
0 \rightarrow X \rightarrow P^0 \otimes (N \otimes_B Q^0) \rightarrow P^1 \otimes (N \otimes_B Q^1) \rightarrow \cdots .
\]
(23)

with $a_i = \begin{pmatrix} d_i & 0 \\ \gamma_i & \text{Id}_N \otimes d_i \\ \end{pmatrix}, \gamma_i : p^i \rightarrow N \otimes_B Q^{i+1}, \forall i \in \mathbb{Z}$, such that the following diagram
is commutative. The dual argument obtains the commutative diagram with exact rows shown below.

\[\cdots \longrightarrow N \otimes_B Q^{-2} \overset{1d \otimes d^{-2}}\longrightarrow N \otimes_B Q^{-1} \overset{1d \otimes d^{-1}}\longrightarrow N \otimes_B \text{Coker} f \longrightarrow 0 \]
\[\cdots \longrightarrow P^{-2} \oplus N \otimes_B Q^{-2} \overset{\alpha^{-2}}\longrightarrow P^{-1} \oplus N \otimes_B Q^{-1} \longrightarrow X \longrightarrow 0 \]

When we combine (24) and (25), we get the exact sequence shown below.

\[\cdots \longrightarrow P^{-2} \oplus N \otimes_B Q^{-2} \overset{\alpha^{-2}}\longrightarrow P^{-1} \oplus N \otimes_B Q^{-1} \longrightarrow Y \longrightarrow 0 \]

with \(\text{Ker} \alpha^0 = X \).

We now construct an exact sequence similar to (26) for a left \(B \)-module \(Y \). Since each \(M \otimes_A P^i \) has finite projective dimension as \(B \)-module by assumption on \(M \), and \(\text{Ker} d^i \) is a Gorenstein-projective \(B \)-module, it follows that \(\text{Ext}_B^1(\text{Ker} d^i, M \otimes_A P^i) = 0 \). Thus, by ([26], Lemma 1.6 (ii)) again, we obtain the exact sequence as follows:

\[\cdots \longrightarrow 0 \longrightarrow Y \longrightarrow (M \otimes_A P_0) \otimes Q^0 \overset{\beta^0}\longrightarrow (M \otimes_A P_1) \otimes Q^1 \longrightarrow \cdots \]

with \(\beta^0 = \begin{pmatrix} 1d_M \otimes d^{-1} & \sigma^i \\ 0 & d^i \end{pmatrix} \), and \(\sigma^i : Q^i \longrightarrow M \otimes_A P^{i+1} \), \(\forall i \in \mathbb{Z} \), such that the diagram

\[\cdots \longrightarrow M \otimes_A P^{-2} \overset{1d \otimes d^{-2}}\longrightarrow M \otimes_A P^{-1} \overset{1d \otimes d^{-1}}\longrightarrow M \otimes_A \text{Coker} g \longrightarrow 0 \]
\[\cdots \longrightarrow M \otimes_A P^{-2} \oplus Q^{-2} \overset{\beta^{-2}}\longrightarrow M \otimes_A P^{-1} \oplus Q^{-1} \longrightarrow Y \longrightarrow 0 \]

As a result, combining (28) and (29) yields the following exact sequence, which is similar to the following equation:
\[\cdots \to M \otimes_A P^{-2} \otimes Q^{-2} \xrightarrow{\beta^{-2}} M \otimes_A P^{-1} \otimes Q^{-1} \xrightarrow{\beta^{-1}} M \otimes_A P^0 \otimes Q^0 \xrightarrow{\beta^0} M \otimes_A P^1 \otimes Q^1 \xrightarrow{\beta^1} \cdots \] (30)

with \(\ker \beta^0 = Y \).

Glue together the exact sequences (26) and (30) to obtain the following sequence:

\[\mathcal{F}^* : \cdots \to T_A(P^{-1}) \otimes T_B(Q^{-1}) \xrightarrow{(a^{-1} \beta^{-1})} T_A(P^0) \otimes T_B(Q^0) \xrightarrow{(a^0 \beta^0)} \cdots \] (31)

with \(\ker (a^0 \beta^0) = (X, Y, f, g) \).

The morphism \((a^i \beta^i) \forall i \in \mathbb{Z}\) is a \(\Delta_{(0,0)} \)-map because

\[\\
M \otimes_A (P^i \oplus N \otimes B Q^i) \xrightarrow{(\text{Id}_M \otimes P^i, 0)} M \otimes_A P^i \oplus Q^i \\
\xrightarrow{(\text{Id}_M \otimes (d^i, 0), \text{Id}_N \otimes d^i)} M \otimes_A (P^{i+1} \oplus N \otimes B Q^{i+1}) \xrightarrow{(\text{Id}_M \otimes P^{i+1}, 0)} M \otimes_A P^{i+1} \oplus Q^{i+1} \\
\] (32)

and

\[\\
N \otimes_B (M \otimes_A P^i \oplus Q^i) \xrightarrow{(0, \text{Id}_N \otimes d^i)} P^i \oplus N \otimes_B Q^i \\
\xrightarrow{(0, \text{Id}_N \otimes (d^i, 0), \text{Id}_N \otimes \sigma^i)} N \otimes_B (M \otimes_A P^{i+1} \oplus Q^{i+1}) \xrightarrow{(0, \text{Id}_N \otimes d^i, 0)} P^{i+1} \oplus N \otimes_B Q^{i+1} \\
\] (33)

are commutative diagrams.

Since the complexes (26) and (30) are exact, it follows from Lemma 1 (1) that the sequence \(\mathcal{F}^* \) is exact. The object \((X, Y, f, g)\) arises as the kernel of the morphism \((a^0 \beta^0)\), and we see from Lemma 1 (2) that \(f = i_1^\circ (\text{Id}_M \otimes \pi_1) \) and \(g = i_1^\circ (\text{Id}_N \otimes \pi_2) \). However, based on the commutative diagram of \(A \)-modules shown below,

\[N \otimes_B Y \xrightarrow{g} X \xrightarrow{\pi_1} \text{Coker } g \xrightarrow{} 0 \]

(34)

we know that \(g \) is uniquely determined by \(i_1^\circ (\text{Id}_N \otimes \pi_2) \). Similarly, \(f \) is uniquely determined by \(i_1^\circ (\text{Id}_M \otimes \pi_1) \).

We are now left with showing that \(\hom_{\Delta_{(0,0)}}(\mathcal{F}^*, (X', Y', f', g')) \) is exact for each projective \(\Delta_{(0,0)} \)-module \((X', Y', f', g')\). We can deduce from Lemma 2 that it is enough to show that \(\hom_{\Delta_{(0,0)}}(\mathcal{F}^*, T_A(P)) \) and \(\hom_{\Delta_{(0,0)}}(\mathcal{F}^*, T_B(Q)) \) are exact for each projective \(A \)-module \(P \) and for each projective \(B \)-module \(Q \). By Lemma 5 (1) the sequence \(0 \to Z_B(M \otimes_A P) \xrightarrow{T_A(P)} Z_A(P) \to 0 \) is exact. Since each term in the complex \(\mathcal{F}^* \) is a projective \(\Delta_{(0,0)} \)-module, the sequence

\[0 \to \hom_{\Delta_{(0,0)}}(\mathcal{F}^*, Z_B(M \otimes_A P)) \to \hom_{\Delta_{(0,0)}}(\mathcal{F}^*, T_A(P)) \to \hom_{\Delta_{(0,0)}}(\mathcal{F}^*, Z_A(P)) \to 0, \] (35)
is exact. By Lemma 5 (2) we have the following equations,

$$\text{Hom}_{\Delta}(\mathcal{F}^*, Z_A(P)) \cong \text{Hom}_A(\mathcal{F}^*, P).$$

(36)

The complex $\text{Hom}_A(\mathcal{F}^*, P)$ is exact because \mathcal{F}^* is a complete projective resolution. Thus, the complex $\text{Hom}_{\Delta}(\mathcal{F}^*, Z_A(P))$ is exact. Also, by Lemma 5 (2), we have

$$\text{Hom}_{\Delta}(\mathcal{F}^*, Z_B(M \otimes_A P)) \cong \text{Hom}_B(\mathcal{F}^*, M \otimes_A P).$$

(37)

To show the exactness of $\text{Hom}_B(\mathcal{F}^*, M \otimes_A P)$, we know that a B-module $M \otimes A P$ has finite projective dimension, since $M \otimes A P$ is isomorphic to a direct summand of a direct sum of copies of M. Thus, $\text{Hom}_B(\mathcal{F}^*, M \otimes_A P)$ is exact by [18], [Proposition 2.3], which implies $\text{Hom}_{\Delta}(\mathcal{F}^*, Z_B(M \otimes_A P))$ is exact. Hence from the exact sequence of complexes in (35) it follows that the complex $\text{Hom}_{\Delta}(\mathcal{F}^*, T_A(P))$ is exact. Similarly, the complex

$$\text{Hom}_{\Delta}(\mathcal{F}^*, T_B(Q)),$$

is exact. Thus, $\text{Hom}_{\Delta}(\mathcal{F}^*, (X', Y', f', g'))$ is exact for each projective $\Delta_{(0,0)}$-module (X', Y', f', g'). Therefore, a $\Delta_{(0,0)}$-module (X, Y, f, g) is a Gorenstein-projective.

Proof

(1) Assume AN is projective and $\Delta_{(0,0)}$ is a strongly CM-free. Let X be a Gorenstein-projective A-module. Because M_A has a finite projective dimension, Proposition 2 (1) asserts that $T_A(X) = (X, M \otimes_A X, \text{Id}_{M \otimes_A X}, 0)$ is a Gorenstein-projective $\Delta_{(0,0)}$-module. The assumption that $\Delta_{(0,0)}$ is a strongly CM-free implies that $T_A(X)$ is a projective $\Delta_{(0,0)}$-module. By Lemma 2 (1), $T_A(X) = T_A(P)$ for some projective A-module. For some projective B-module Q, hence $X = P$, or $X = N \otimes_A Q$. An A-module $N \otimes_A Q$ is projective because it is isomorphic to a direct summand of a direct sum of copies of AN and AN is projective. Thus, X is a projective A-module. Therefore, A is a strongly CM-free.

(2) Assume BM is projective and $\Delta_{(0,0)}$ is a strongly CM-free. Let Y be a Gorenstein-projective B-module. By similar argument as in (1), Y is a projective B-module. Therefore, B is a strongly CM-free.

As a consequence we have the following corollary.

Corollary 2. Let $\Delta_{(0,0)} = \left(\begin{array}{cc} A & A \\ A & A \end{array}\right)$ be Morita ring. If $\Delta_{(0,0)}$ is a strongly CM-free, then A is a strongly CM-free.

Data Availability

No datasets were generated or analyzed during the study.

Conflicts of Interest

The author declares no conflicts of interest.

References

